What are the minimal folding seeds in proteins? Experimental and theoretical assessment of secondary structure propensities of small peptide fragments

. 2024 Jan 03 ; 15 (2) : 594-608. [epub] 20231123

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38179543

Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in α-helices, and only 3% occurs in the extended parts of proteins (typically β-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'α-helical' in proteins), KAM(α), ALA(α), DIC(α), EKF(α), IYI(pro-β-sheet or more generally, pro-extended), and VIV(β), and the reference α-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal "folding seeds". Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.

Zobrazit více v PubMed

Englander S. W. Mayne L. Proc. Natl. Acad. Sci. U. S. A. 2014;111:15873–15880. doi: 10.1073/pnas.1411798111. PubMed DOI PMC

Dill K. A. MacCallum J. L. Science. 2012;338:1042–1046. doi: 10.1126/science.1219021. PubMed DOI

Dorn M. e Silva M. B. Buriol L. S. Lamb L. C. Comput. Biol. Chem. 2014;53:251–276. doi: 10.1016/j.compbiolchem.2014.10.001. PubMed DOI

Groups Analysis: Zscores – CASP14, https://predictioncenter.org/casp14/zscores_final.cgi

Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S. A. A. Ballard A. J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A. W. Kavukcuoglu K. Kohli P. Hassabis D. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Outeiral C. Nissley D. A. Deane C. M. Bioinformatics. 2022;38:1881–1887. doi: 10.1093/bioinformatics/btab881. PubMed DOI PMC

Culka M. Rulíšek L. J. Phys. Chem. B. 2019;123:6453–6461. doi: 10.1021/acs.jpcb.9b04866. PubMed DOI

Culka M. Rulíšek L. J. Phys. Chem. B. 2020;124:3252–3260. doi: 10.1021/acs.jpcb.9b11784. PubMed DOI

Flory P. J. Volkenstein M. Biopolymers. 1969;8:699–700. doi: 10.1002/bip.1969.360080514. DOI

Toal S. Schweitzer-Stenner R. Biomolecules. 2014;4:725–773. doi: 10.3390/biom4030725. PubMed DOI PMC

Zaman M. H. Shen M.-Y. Berry R. S. Freed K. F. Sosnick T. R. J. Mol. Biol. 2003;331:693–711. doi: 10.1016/S0022-2836(03)00765-4. PubMed DOI

Yang L.-Q. Ji X.-L. Liu S.-Q. J. Biomol. Struct. Dyn. 2013;31:982–992. doi: 10.1080/07391102.2012.748536. PubMed DOI

Brady G. P. Sharp K. A. Curr. Opin. Struct. Biol. 1997;7:215–221. doi: 10.1016/S0959-440X(97)80028-0. PubMed DOI

Towse C.-L. Akke M. Daggett V. J. Phys. Chem. B. 2017;121:3933–3945. doi: 10.1021/acs.jpcb.7b00577. PubMed DOI

Galzitskaya O. V. Garbuzynskiy S. O. Proteins: Struct., Funct., Bioinf. 2006;63:144–154. doi: 10.1002/prot.20851. PubMed DOI

Ilawe N. V. Raeber A. E. Schweitzer-Stenner R. Toal S. E. Wong B. M. Phys. Chem. Chem. Phys. 2015;17:24917–24924. doi: 10.1039/C5CP03646A. PubMed DOI

Yu W. Wu Z. Chen H. Liu X. MacKerell A. D. Lin Z. J. Phys. Chem. B. 2012;116:2269–2283. doi: 10.1021/jp207807a. PubMed DOI PMC

Denarie L. Al-Bluwi I. Vaisset M. Siméon T. Cortés J. Molecules. 2018;23:373. doi: 10.3390/molecules23020373. PubMed DOI PMC

Prasad V. K. Otero-de-la-Roza A. DiLabio G. A. Sci. Data. 2019;6:180–310. doi: 10.1038/s41597-019-0183-6. PubMed DOI PMC

Shepherd N. E. Hoang H. N. Abbenante G. Fairlie D. P. J. Am. Chem. Soc. 2005;127:2974–2983. doi: 10.1021/ja0456003. PubMed DOI

Krstenansky J. L. Owen T. J. Hagaman K. A. McLean L. R. FEBS Lett. 1989;242:409–413. doi: 10.1016/0014-5793(89)80512-5. PubMed DOI

Culka M. Kalvoda T. Gutten O. Rulíšek L. J. Phys. Chem. B. 2021;125:58–69. doi: 10.1021/acs.jpcb.0c09251. PubMed DOI

Culka M. Galgonek J. Vymětal J. Vondrášek J. Rulíšek L. J. Phys. Chem. B. 2019;123:1215–1227. doi: 10.1021/acs.jpcb.8b09245. PubMed DOI

Kalvoda T. Culka M. Rulíšek L. Andris E. J. Phys. Chem. B. 2022;126:5949–5958. doi: 10.1021/acs.jpcb.2c02861. PubMed DOI

Kabsch W. Sander C. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI

Joosten R. P. te Beek T. A. H. Krieger E. Hekkelman M. L. Hooft R. W. W. Schneider R. Sander C. Vriend G. Nucleic Acids Res. 2011;39:D411–D419. doi: 10.1093/nar/gkq1105. PubMed DOI PMC

Evans J. N. S., Biomolecular NMR Spectroscopy, Oxford University Press Inc., 1995

Keiderling T. A. Curr. Opin. Chem. Biol. 2002;6:682–688. doi: 10.1016/S1367-5931(02)00369-1. PubMed DOI

Kessler J. Andrushchenko V. Kapitán J. Bouř P. Phys. Chem. Chem. Phys. 2018;20:4926–4935. doi: 10.1039/C7CP08016F. PubMed DOI

Shi Z. Olson C. A. Rose G. D. Baldwin R. L. Kallenbach N. R. Proc. Natl. Acad. Sci. U. S. A. 2002;99:9190–9195. doi: 10.1073/pnas.112193999. PubMed DOI PMC

Drake A. F. Siligardi G. Gibbons W. A. Biophys. Chem. 1988;31:143–146. doi: 10.1016/0301-4622(88)80019-X. PubMed DOI

Koji N. and Woody R. W., Circular Dichroism: Principles and Applications, ed. Nina Berova, Koji Nakanishi, and Robert W. Woody, Wiley-VCH, American Chemical Society, 2nd edn, 2002, vol. 124

Billeter M. Braun W. Wüthrich K. J. Mol. Biol. 1982;155:321–346. doi: 10.1016/0022-2836(82)90008-0. PubMed DOI

Dračínský M. Annu. Rep. NMR Spectrosc. 2017;90:1–40. doi: 10.1016/bs.arnmr.2016.07.001. DOI

Conibear A. C. Rosengren K. J. Becker C. F. W. Kaehlig H. J. Biomol. NMR. 2019;73:587–599. doi: 10.1007/s10858-019-00270-4. PubMed DOI PMC

Karplus M. J. Am. Chem. Soc. 1963;85:2870–2871. doi: 10.1021/ja00901a059. DOI

Haasnoot C. A. G. Leeuw F. A. A. M. D. Leeuw H. P. M. D. Altona C. Biopolymers. 1981;20:1211–1245. doi: 10.1002/bip.1981.360200610. DOI

Wu A. Cremer D. Auer A. A. Gauss J. J. Phys. Chem. A. 2002;106:657–667. doi: 10.1021/jp013160l. DOI

Schmidt J. M. Blümel M. Löhr F. Rüterjans H. J. Biomol. NMR. 1999;14:1–12. doi: 10.1023/A:1008345303942. PubMed DOI

Perera S. A. Bartlett R. J. Magn. Reson. Chem. 2001;39:S183–S189. doi: 10.1002/mrc.911. DOI

Bouř P. Buděšínský M. Špirko V. Kapitán J. Šebestík J. Sychrovský V. J. Am. Chem. Soc. 2005;127:17079–17089. doi: 10.1021/ja0552343. PubMed DOI

Pardi A. Billeter M. Wüthrich K. J. Mol. Biol. 1984;180:741–751. doi: 10.1016/0022-2836(84)90035-4. PubMed DOI

Dračínský M. Bouř P. J. Chem. Theory Comput. 2010;6:288–299. doi: 10.1021/ct900498b. PubMed DOI

Dračínský M. Hodgkinson P. Chem. – Eur. J. 2014;20:2201–2207. doi: 10.1002/chem.201303496. PubMed DOI

Dračínský M. Kaminský J. Bouř P. J. Chem. Phys. 2009;130:94–106. doi: 10.1063/1.3081317. PubMed DOI

Toal S. E. Kubatova N. Richter C. Linhard V. Schwalbe H. Schweitzer-Stenner R. Chem. – Eur. J. 2017;23:18084–18087. doi: 10.1002/chem.201705353. PubMed DOI

Hagarman A. Mathieu D. Toal S. Measey T. J. Schwalbe H. Schweitzer-Stenner R. Chem. – Eur. J. 2011;17:6789–6797. doi: 10.1002/chem.201100016. PubMed DOI

Hagarman A. Measey T. J. Mathieu D. Schwalbe H. Schweitzer-Stenner R. J. Am. Chem. Soc. 2010;132:540–551. doi: 10.1021/ja9058052. PubMed DOI

Graf J. Nguyen P. H. Stock G. Schwalbe H. J. Am. Chem. Soc. 2007;129:1179–1189. doi: 10.1021/ja0660406. PubMed DOI

Schweitzer-Stenner R. Mol. Biosyst. 2011;8:122–133. doi: 10.1039/C1MB05225J. PubMed DOI

Rezac J. Bim D. Gutten O. Rulisek L. J. Chem. Theory Comput. 2018;14:1254–1266. doi: 10.1021/acs.jctc.7b01074. PubMed DOI

Couture J.-F. Legrand P. Cantin L. Labrie F. Luu-The V. Breton R. J. Mol. Biol. 2004;339:89–102. doi: 10.1016/j.jmb.2004.03.035. PubMed DOI

Andrushchenko V. V. Vogel H. J. Prenner E. J. J. Pept. Sci. 2007;13:37–43. doi: 10.1002/psc.793. PubMed DOI

Sreerama N. Woody R. W. Anal. Biochem. 2000;287:252–260. doi: 10.1006/abio.2000.4880. PubMed DOI

Pracht P. Bohle F. Grimme S. Phys. Chem. Chem. Phys. 2020;22:7169–7192. doi: 10.1039/C9CP06869D. PubMed DOI

Gnanakaran S. García A. E. Proteins: Struct., Funct., Bioinf. 2005;59:773–782. doi: 10.1002/prot.20439. PubMed DOI

Nerenberg P. S. Head-Gordon T. J. Chem. Theory Comput. 2011;7:1220–1230. doi: 10.1021/ct2000183. PubMed DOI

Best R. B. Buchete N.-V. Hummer G. Biophys. J. 2008;95:L07–L09. doi: 10.1529/biophysj.108.132696. PubMed DOI PMC

Zhang S. Schweitzer-Stenner R. Urbanc B. J. Chem. Theory Comput. 2020;16:510–527. doi: 10.1021/acs.jctc.9b00588. PubMed DOI

Bannwarth C. Ehlert S. Grimme S. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI

Ehlert S. Stahn M. Spicher S. Grimme S. J. Chem. Theory Comput. 2021;17:4250–4261. doi: 10.1021/acs.jctc.1c00471. PubMed DOI

TURBOMOLE V7.6 2021, A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since, 2007, available from, http://www.turbomole.com

Becke A. D. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Godbout N. Salahub D. R. Andzelm J. Wimmer E. Can. J. Chem. 1992;70:560–571. doi: 10.1139/v92-079. DOI

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Hostaš J. Řezáč J. J. Chem. Theory Comput. 2017;13:3575–3585. doi: 10.1021/acs.jctc.7b00365. PubMed DOI

Klamt A. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:699–709. PubMed PMC

Klamt A. Volker J. Thorsten B. Lohrenz J. C. W. J. Phys. Chem. A. 1998;102:5074–5085. doi: 10.1021/jp980017s. DOI

Klamt A. Diedenhofen M. J. Comput. Chem. 2018;39:1648–1655. doi: 10.1002/jcc.25342. PubMed DOI

Andrushchenko V. Benda L. Páv O. Dračínský M. Bouř P. J. Phys. Chem. B. 2015;119:10682–10692. doi: 10.1021/acs.jpcb.5b05124. PubMed DOI

Andrushchenko V. Tsankov D. Krasteva M. Wieser H. Bouř P. J. Am. Chem. Soc. 2011;133:15055–15064. doi: 10.1021/ja204630k. PubMed DOI

Lanza G. Chiacchio M. A. J. Phys. Chem. B. 2016;120:11705–11719. doi: 10.1021/acs.jpcb.6b08108. PubMed DOI

Cock P. J. A. Antao T. Chang J. T. Chapman B. A. Cox C. J. Dalke A. Friedberg I. Hamelryck T. Kauff F. Wilczynski B. de Hoon M. J. L. Bioinformatics. 2009;25:1422–1423. doi: 10.1093/bioinformatics/btp163. PubMed DOI PMC

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16, Rev. A03, Gaussian, Inc., Wallingford, CT, 2016

Lee C. Yang W. Parr R. G. J. Phys. Chem. B. 1988;37:785–789. PubMed

Becke A. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Klamt A. Schüürmann G. J. Chem. Soc., Perkin Trans. 2. 1993:799–805. doi: 10.1039/P29930000799. DOI

Scholten K. Merten C. Phys. Chem. Chem. Phys. 2022;24:3611–3617. doi: 10.1039/D1CP05457K. PubMed DOI

Rappoport D. Furche F. J. Chem. Phys. 2010;133:134105. doi: 10.1063/1.3484283. PubMed DOI

Krupová M. Leszczenko P. Sierka E. Hamplová S. E. Pelc R. Andrushchenko V. Chem. – Eur. J. 2022;28:e202201922. doi: 10.1002/chem.202201922. PubMed DOI

Bouř P. Keiderling T. A. J. Am. Chem. Soc. 1993;115:9602–9607. doi: 10.1021/ja00074a027. DOI

Polyanichko A. M., Andrushchenko V. V., Bouř P. and Wieser H., Vibrational Circular Dichroism Studies of Biological Macromolecules and their Complexes, in Circular Dichroism: Theory and Spectroscopy, ed. D. S. Rodgers, Nova Science Publishers, Inc., Hauppauge, NY, 2012, pp. 67–126

Keiderling T. A. Chem. Rev. 2020;120:3381–3419. doi: 10.1021/acs.chemrev.9b00636. PubMed DOI

Jackson M. Mantsch H. H. Crit. Rev. Biochem. Mol. Biol. 1995;30:95–120. doi: 10.3109/10409239509085140. PubMed DOI

Tatulian S. A. Biochemistry. 2003;42:11898–11907. doi: 10.1021/bi034235+. PubMed DOI

Schweitzer-Stenner R. J. Phys. Chem. B. 2009;113:2922–2932. doi: 10.1021/jp8087644. PubMed DOI

Eker F. Cao X. Nafie L. Schweitzer-Stenner R. J. Am. Chem. Soc. 2002;124:14330–14341. doi: 10.1021/ja027381w. PubMed DOI

Dukor R. K. Keiderling T. A. Biopolymers. 1991;31:1747–1761. doi: 10.1002/bip.360311409. PubMed DOI

Andrushchenko V. Matějka P. Anderson D. T. Kaminský J. Horníček J. Paulson L. O. Bouř P. J. Phys. Chem. A. 2009;113:9727–9736. doi: 10.1021/jp9045512. PubMed DOI

Shi Z. Chen K. Liu Z. Kallenbach N. R. Chem. Rev. 2006;106:1877–1897. doi: 10.1021/cr040433a. PubMed DOI

Schweitzer-Stenner R. Eker F. Griebenow K. Cao X. Nafie L. A. J. Am. Chem. Soc. 2004;126:2768–2776. doi: 10.1021/ja039452c. PubMed DOI

Toal S. Meral D. Verbaro D. Urbanc B. Schweitzer-Stenner R. J. Phys. Chem. B. 2013;117:3689–3706. doi: 10.1021/jp310466b. PubMed DOI PMC

Tran H. T. Wang X. Pappu R. V. Biochemistry. 2005;44:11369–11380. doi: 10.1021/bi050196l. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace