What are the minimal folding seeds in proteins? Experimental and theoretical assessment of secondary structure propensities of small peptide fragments
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38179543
PubMed Central
PMC10763034
DOI
10.1039/d3sc04960d
PII: d3sc04960d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in α-helices, and only 3% occurs in the extended parts of proteins (typically β-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'α-helical' in proteins), KAM(α), ALA(α), DIC(α), EKF(α), IYI(pro-β-sheet or more generally, pro-extended), and VIV(β), and the reference α-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal "folding seeds". Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.
Zobrazit více v PubMed
Englander S. W. Mayne L. Proc. Natl. Acad. Sci. U. S. A. 2014;111:15873–15880. doi: 10.1073/pnas.1411798111. PubMed DOI PMC
Dill K. A. MacCallum J. L. Science. 2012;338:1042–1046. doi: 10.1126/science.1219021. PubMed DOI
Dorn M. e Silva M. B. Buriol L. S. Lamb L. C. Comput. Biol. Chem. 2014;53:251–276. doi: 10.1016/j.compbiolchem.2014.10.001. PubMed DOI
Groups Analysis: Zscores – CASP14, https://predictioncenter.org/casp14/zscores_final.cgi
Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S. A. A. Ballard A. J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A. W. Kavukcuoglu K. Kohli P. Hassabis D. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Outeiral C. Nissley D. A. Deane C. M. Bioinformatics. 2022;38:1881–1887. doi: 10.1093/bioinformatics/btab881. PubMed DOI PMC
Culka M. Rulíšek L. J. Phys. Chem. B. 2019;123:6453–6461. doi: 10.1021/acs.jpcb.9b04866. PubMed DOI
Culka M. Rulíšek L. J. Phys. Chem. B. 2020;124:3252–3260. doi: 10.1021/acs.jpcb.9b11784. PubMed DOI
Flory P. J. Volkenstein M. Biopolymers. 1969;8:699–700. doi: 10.1002/bip.1969.360080514. DOI
Toal S. Schweitzer-Stenner R. Biomolecules. 2014;4:725–773. doi: 10.3390/biom4030725. PubMed DOI PMC
Zaman M. H. Shen M.-Y. Berry R. S. Freed K. F. Sosnick T. R. J. Mol. Biol. 2003;331:693–711. doi: 10.1016/S0022-2836(03)00765-4. PubMed DOI
Yang L.-Q. Ji X.-L. Liu S.-Q. J. Biomol. Struct. Dyn. 2013;31:982–992. doi: 10.1080/07391102.2012.748536. PubMed DOI
Brady G. P. Sharp K. A. Curr. Opin. Struct. Biol. 1997;7:215–221. doi: 10.1016/S0959-440X(97)80028-0. PubMed DOI
Towse C.-L. Akke M. Daggett V. J. Phys. Chem. B. 2017;121:3933–3945. doi: 10.1021/acs.jpcb.7b00577. PubMed DOI
Galzitskaya O. V. Garbuzynskiy S. O. Proteins: Struct., Funct., Bioinf. 2006;63:144–154. doi: 10.1002/prot.20851. PubMed DOI
Ilawe N. V. Raeber A. E. Schweitzer-Stenner R. Toal S. E. Wong B. M. Phys. Chem. Chem. Phys. 2015;17:24917–24924. doi: 10.1039/C5CP03646A. PubMed DOI
Yu W. Wu Z. Chen H. Liu X. MacKerell A. D. Lin Z. J. Phys. Chem. B. 2012;116:2269–2283. doi: 10.1021/jp207807a. PubMed DOI PMC
Denarie L. Al-Bluwi I. Vaisset M. Siméon T. Cortés J. Molecules. 2018;23:373. doi: 10.3390/molecules23020373. PubMed DOI PMC
Prasad V. K. Otero-de-la-Roza A. DiLabio G. A. Sci. Data. 2019;6:180–310. doi: 10.1038/s41597-019-0183-6. PubMed DOI PMC
Shepherd N. E. Hoang H. N. Abbenante G. Fairlie D. P. J. Am. Chem. Soc. 2005;127:2974–2983. doi: 10.1021/ja0456003. PubMed DOI
Krstenansky J. L. Owen T. J. Hagaman K. A. McLean L. R. FEBS Lett. 1989;242:409–413. doi: 10.1016/0014-5793(89)80512-5. PubMed DOI
Culka M. Kalvoda T. Gutten O. Rulíšek L. J. Phys. Chem. B. 2021;125:58–69. doi: 10.1021/acs.jpcb.0c09251. PubMed DOI
Culka M. Galgonek J. Vymětal J. Vondrášek J. Rulíšek L. J. Phys. Chem. B. 2019;123:1215–1227. doi: 10.1021/acs.jpcb.8b09245. PubMed DOI
Kalvoda T. Culka M. Rulíšek L. Andris E. J. Phys. Chem. B. 2022;126:5949–5958. doi: 10.1021/acs.jpcb.2c02861. PubMed DOI
Kabsch W. Sander C. Biopolymers. 1983;22:2577–2637. doi: 10.1002/bip.360221211. PubMed DOI
Joosten R. P. te Beek T. A. H. Krieger E. Hekkelman M. L. Hooft R. W. W. Schneider R. Sander C. Vriend G. Nucleic Acids Res. 2011;39:D411–D419. doi: 10.1093/nar/gkq1105. PubMed DOI PMC
Evans J. N. S., Biomolecular NMR Spectroscopy, Oxford University Press Inc., 1995
Keiderling T. A. Curr. Opin. Chem. Biol. 2002;6:682–688. doi: 10.1016/S1367-5931(02)00369-1. PubMed DOI
Kessler J. Andrushchenko V. Kapitán J. Bouř P. Phys. Chem. Chem. Phys. 2018;20:4926–4935. doi: 10.1039/C7CP08016F. PubMed DOI
Shi Z. Olson C. A. Rose G. D. Baldwin R. L. Kallenbach N. R. Proc. Natl. Acad. Sci. U. S. A. 2002;99:9190–9195. doi: 10.1073/pnas.112193999. PubMed DOI PMC
Drake A. F. Siligardi G. Gibbons W. A. Biophys. Chem. 1988;31:143–146. doi: 10.1016/0301-4622(88)80019-X. PubMed DOI
Koji N. and Woody R. W., Circular Dichroism: Principles and Applications, ed. Nina Berova, Koji Nakanishi, and Robert W. Woody, Wiley-VCH, American Chemical Society, 2nd edn, 2002, vol. 124
Billeter M. Braun W. Wüthrich K. J. Mol. Biol. 1982;155:321–346. doi: 10.1016/0022-2836(82)90008-0. PubMed DOI
Dračínský M. Annu. Rep. NMR Spectrosc. 2017;90:1–40. doi: 10.1016/bs.arnmr.2016.07.001. DOI
Conibear A. C. Rosengren K. J. Becker C. F. W. Kaehlig H. J. Biomol. NMR. 2019;73:587–599. doi: 10.1007/s10858-019-00270-4. PubMed DOI PMC
Karplus M. J. Am. Chem. Soc. 1963;85:2870–2871. doi: 10.1021/ja00901a059. DOI
Haasnoot C. A. G. Leeuw F. A. A. M. D. Leeuw H. P. M. D. Altona C. Biopolymers. 1981;20:1211–1245. doi: 10.1002/bip.1981.360200610. DOI
Wu A. Cremer D. Auer A. A. Gauss J. J. Phys. Chem. A. 2002;106:657–667. doi: 10.1021/jp013160l. DOI
Schmidt J. M. Blümel M. Löhr F. Rüterjans H. J. Biomol. NMR. 1999;14:1–12. doi: 10.1023/A:1008345303942. PubMed DOI
Perera S. A. Bartlett R. J. Magn. Reson. Chem. 2001;39:S183–S189. doi: 10.1002/mrc.911. DOI
Bouř P. Buděšínský M. Špirko V. Kapitán J. Šebestík J. Sychrovský V. J. Am. Chem. Soc. 2005;127:17079–17089. doi: 10.1021/ja0552343. PubMed DOI
Pardi A. Billeter M. Wüthrich K. J. Mol. Biol. 1984;180:741–751. doi: 10.1016/0022-2836(84)90035-4. PubMed DOI
Dračínský M. Bouř P. J. Chem. Theory Comput. 2010;6:288–299. doi: 10.1021/ct900498b. PubMed DOI
Dračínský M. Hodgkinson P. Chem. – Eur. J. 2014;20:2201–2207. doi: 10.1002/chem.201303496. PubMed DOI
Dračínský M. Kaminský J. Bouř P. J. Chem. Phys. 2009;130:94–106. doi: 10.1063/1.3081317. PubMed DOI
Toal S. E. Kubatova N. Richter C. Linhard V. Schwalbe H. Schweitzer-Stenner R. Chem. – Eur. J. 2017;23:18084–18087. doi: 10.1002/chem.201705353. PubMed DOI
Hagarman A. Mathieu D. Toal S. Measey T. J. Schwalbe H. Schweitzer-Stenner R. Chem. – Eur. J. 2011;17:6789–6797. doi: 10.1002/chem.201100016. PubMed DOI
Hagarman A. Measey T. J. Mathieu D. Schwalbe H. Schweitzer-Stenner R. J. Am. Chem. Soc. 2010;132:540–551. doi: 10.1021/ja9058052. PubMed DOI
Graf J. Nguyen P. H. Stock G. Schwalbe H. J. Am. Chem. Soc. 2007;129:1179–1189. doi: 10.1021/ja0660406. PubMed DOI
Schweitzer-Stenner R. Mol. Biosyst. 2011;8:122–133. doi: 10.1039/C1MB05225J. PubMed DOI
Rezac J. Bim D. Gutten O. Rulisek L. J. Chem. Theory Comput. 2018;14:1254–1266. doi: 10.1021/acs.jctc.7b01074. PubMed DOI
Couture J.-F. Legrand P. Cantin L. Labrie F. Luu-The V. Breton R. J. Mol. Biol. 2004;339:89–102. doi: 10.1016/j.jmb.2004.03.035. PubMed DOI
Andrushchenko V. V. Vogel H. J. Prenner E. J. J. Pept. Sci. 2007;13:37–43. doi: 10.1002/psc.793. PubMed DOI
Sreerama N. Woody R. W. Anal. Biochem. 2000;287:252–260. doi: 10.1006/abio.2000.4880. PubMed DOI
Pracht P. Bohle F. Grimme S. Phys. Chem. Chem. Phys. 2020;22:7169–7192. doi: 10.1039/C9CP06869D. PubMed DOI
Gnanakaran S. García A. E. Proteins: Struct., Funct., Bioinf. 2005;59:773–782. doi: 10.1002/prot.20439. PubMed DOI
Nerenberg P. S. Head-Gordon T. J. Chem. Theory Comput. 2011;7:1220–1230. doi: 10.1021/ct2000183. PubMed DOI
Best R. B. Buchete N.-V. Hummer G. Biophys. J. 2008;95:L07–L09. doi: 10.1529/biophysj.108.132696. PubMed DOI PMC
Zhang S. Schweitzer-Stenner R. Urbanc B. J. Chem. Theory Comput. 2020;16:510–527. doi: 10.1021/acs.jctc.9b00588. PubMed DOI
Bannwarth C. Ehlert S. Grimme S. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI
Ehlert S. Stahn M. Spicher S. Grimme S. J. Chem. Theory Comput. 2021;17:4250–4261. doi: 10.1021/acs.jctc.1c00471. PubMed DOI
TURBOMOLE V7.6 2021, A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since, 2007, available from, http://www.turbomole.com
Becke A. D. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Godbout N. Salahub D. R. Andzelm J. Wimmer E. Can. J. Chem. 1992;70:560–571. doi: 10.1139/v92-079. DOI
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Hostaš J. Řezáč J. J. Chem. Theory Comput. 2017;13:3575–3585. doi: 10.1021/acs.jctc.7b00365. PubMed DOI
Klamt A. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:699–709. PubMed PMC
Klamt A. Volker J. Thorsten B. Lohrenz J. C. W. J. Phys. Chem. A. 1998;102:5074–5085. doi: 10.1021/jp980017s. DOI
Klamt A. Diedenhofen M. J. Comput. Chem. 2018;39:1648–1655. doi: 10.1002/jcc.25342. PubMed DOI
Andrushchenko V. Benda L. Páv O. Dračínský M. Bouř P. J. Phys. Chem. B. 2015;119:10682–10692. doi: 10.1021/acs.jpcb.5b05124. PubMed DOI
Andrushchenko V. Tsankov D. Krasteva M. Wieser H. Bouř P. J. Am. Chem. Soc. 2011;133:15055–15064. doi: 10.1021/ja204630k. PubMed DOI
Lanza G. Chiacchio M. A. J. Phys. Chem. B. 2016;120:11705–11719. doi: 10.1021/acs.jpcb.6b08108. PubMed DOI
Cock P. J. A. Antao T. Chang J. T. Chapman B. A. Cox C. J. Dalke A. Friedberg I. Hamelryck T. Kauff F. Wilczynski B. de Hoon M. J. L. Bioinformatics. 2009;25:1422–1423. doi: 10.1093/bioinformatics/btp163. PubMed DOI PMC
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16, Rev. A03, Gaussian, Inc., Wallingford, CT, 2016
Lee C. Yang W. Parr R. G. J. Phys. Chem. B. 1988;37:785–789. PubMed
Becke A. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Klamt A. Schüürmann G. J. Chem. Soc., Perkin Trans. 2. 1993:799–805. doi: 10.1039/P29930000799. DOI
Scholten K. Merten C. Phys. Chem. Chem. Phys. 2022;24:3611–3617. doi: 10.1039/D1CP05457K. PubMed DOI
Rappoport D. Furche F. J. Chem. Phys. 2010;133:134105. doi: 10.1063/1.3484283. PubMed DOI
Krupová M. Leszczenko P. Sierka E. Hamplová S. E. Pelc R. Andrushchenko V. Chem. – Eur. J. 2022;28:e202201922. doi: 10.1002/chem.202201922. PubMed DOI
Bouř P. Keiderling T. A. J. Am. Chem. Soc. 1993;115:9602–9607. doi: 10.1021/ja00074a027. DOI
Polyanichko A. M., Andrushchenko V. V., Bouř P. and Wieser H., Vibrational Circular Dichroism Studies of Biological Macromolecules and their Complexes, in Circular Dichroism: Theory and Spectroscopy, ed. D. S. Rodgers, Nova Science Publishers, Inc., Hauppauge, NY, 2012, pp. 67–126
Keiderling T. A. Chem. Rev. 2020;120:3381–3419. doi: 10.1021/acs.chemrev.9b00636. PubMed DOI
Jackson M. Mantsch H. H. Crit. Rev. Biochem. Mol. Biol. 1995;30:95–120. doi: 10.3109/10409239509085140. PubMed DOI
Tatulian S. A. Biochemistry. 2003;42:11898–11907. doi: 10.1021/bi034235+. PubMed DOI
Schweitzer-Stenner R. J. Phys. Chem. B. 2009;113:2922–2932. doi: 10.1021/jp8087644. PubMed DOI
Eker F. Cao X. Nafie L. Schweitzer-Stenner R. J. Am. Chem. Soc. 2002;124:14330–14341. doi: 10.1021/ja027381w. PubMed DOI
Dukor R. K. Keiderling T. A. Biopolymers. 1991;31:1747–1761. doi: 10.1002/bip.360311409. PubMed DOI
Andrushchenko V. Matějka P. Anderson D. T. Kaminský J. Horníček J. Paulson L. O. Bouř P. J. Phys. Chem. A. 2009;113:9727–9736. doi: 10.1021/jp9045512. PubMed DOI
Shi Z. Chen K. Liu Z. Kallenbach N. R. Chem. Rev. 2006;106:1877–1897. doi: 10.1021/cr040433a. PubMed DOI
Schweitzer-Stenner R. Eker F. Griebenow K. Cao X. Nafie L. A. J. Am. Chem. Soc. 2004;126:2768–2776. doi: 10.1021/ja039452c. PubMed DOI
Toal S. Meral D. Verbaro D. Urbanc B. Schweitzer-Stenner R. J. Phys. Chem. B. 2013;117:3689–3706. doi: 10.1021/jp310466b. PubMed DOI PMC
Tran H. T. Wang X. Pappu R. V. Biochemistry. 2005;44:11369–11380. doi: 10.1021/bi050196l. PubMed DOI