Boostering diagnosis of frontotemporal lobar degeneration with AI-driven neuroimaging - A systematic review and meta-analysis
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, systematický přehled, metaanalýza
PubMed
39983552
PubMed Central
PMC11889731
DOI
10.1016/j.nicl.2025.103757
PII: S2213-1582(25)00027-0
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial Intelligence, Frontotemporal lobar degeneration, Machine Learning, Meta-analysis, Neuroimaging,
- MeSH
- frontotemporální lobární degenerace * diagnostické zobrazování diagnóza MeSH
- lidé MeSH
- neurozobrazování * metody MeSH
- strojové učení MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH
BACKGROUND AND OBJECTIVES: Frontotemporal lobar degeneration (FTLD) as the second most common dementia encompasses a range of syndromes and often shows overlapping symptoms with other subtypes or neurodegenerative diseases, which poses a significant clinical diagnostic challenge. Recent advancements in artificial intelligence (AI), specifically the application of machine learning (ML) algorithms to neuroimaging, have significantly progressed in addressing this challenge. This study aims to assess the diagnostic and predictive efficacy of neuroimaging feature-based AI algorithms for FTLD. METHODS: We conducted a systematic review and meta-analysis following PRISMA guidelines. We searched Pubmed, Scopus, and Web of Science for English-language, peer-reviewed studies using the following three umbrella terms: artificial intelligence, frontotemporal lobar degeneration, and neuroimaging modality. Our survey focused on computer-aided diagnosis for FTLD, employing machine/deep learning with neuroimaging radiomic features. RESULTS: The meta-analysis includes 75 articles with 20,601 subjects, including 8,051 FTLD patients. The results reveal that FTLD can be automatically classified against healthy controls (HC) with pooled sensitivity and specificity of 86% and 89%, respectively. Likewise, FTLD versus Alzheimer's disease (AD) classification exhibits pooled sensitivity and specificity of 84% and 81%, while FTLD versus Parkinson's disease (PD) demonstrates pooled sensitivity and specificity of 84% and 75%, respectively. Classification performance distinguishing FTLD from atypical Parkinsonian syndromes (APS) showed pooled sensitivity and specificity of 84% and 79%, respectively. Multiclass classification sensitivity ranges from 42% to 100%, with lower sensitivity occurring in higher class distinctions (e.g., 5-class and 11-class). DISCUSSION: Our study demonstrates the effectiveness of utilizing neuroimaging features to distinguish FTLD from HC, AD, APS, and PD in binary classification. Utilizing deep learning with multimodal neuroimaging data to differentiate FTLD subtypes and perform multiclassification among FTLD and other neurodegenerative disease holds promise for expediting diagnosis. In sum, the meta-analysis supports translation of machine learning tools in combination with imaging to clinical routine paving the way to precision medicine.
Zobrazit více v PubMed
Ratnavalli E., Dawson C.K., Hodges J.R. The prevalence of frontotemporal dementia. Neurology. 2002;58(11):1615–1621. doi: 10.1212/wnl.58.11.1615. PubMed DOI
Young J.J., Lavakumar M., Tampi D., Balachandran S., Tampi R.R. Frontotemporal dementia: latest evidence and clinical implications. Ther Adv Psychopharmacol. 2018;8(1):33–48. doi: 10.1177/2045125317739818. PubMed DOI PMC
Gorno-Tempini M.L., Hillis A.E., Weintraub S., et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–1014. doi: 10.1212/WNL.0b013e31821103e6. PubMed DOI PMC
Riedl L., Mackenzie I.R., Förstl H., Kurz A., Diehl-Schmid J. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatric Disease and Treatment. 2014;10:297–310. doi: 10.2147/NDT.S38706. PubMed DOI PMC
Galimberti D., Dell'Osso B., Altamura A.C., Scarpini E. Psychiatric symptoms in frontotemporal dementia: epidemiology, phenotypes, and differential diagnosis. Biological Psychiatry. 2015;78(10):684–692. doi: 10.1016/j.biopsych.2015.03.028. PubMed DOI
Logroscino G., Piccininni M., Graff C., et al. Incidence of syndromes associated with frontotemporal lobar degeneration in 9 European countries. JAMA Neurology. 2023;80(3):279–286. doi: 10.1001/jamaneurol.2022.5128. PubMed DOI PMC
McInnes M.D.F., Moher D., Thombs B.D., McGrath T.A., Bossuyt P.M., Group atP-D Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. Jama. 2018;319(4):388–396. doi: 10.1001/jama.2017.19163. PubMed DOI
Whiting P.F., Rutjes A.W., Westwood M.E., et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536. doi: 10.7326/0003-4819-155-8-201110180-00009. PubMed DOI
Glas A.S., Lijmer J.G., Prins M.H., Bonsel G.J., Bossuyt P.M. The diagnostic odds ratio: a single indicator of test performance. Journal of Clinical Epidemiology. 2003;56(11):1129–1135. doi: 10.1016/s0895-4356(03)00177-x. PubMed DOI
Deeks J.J., Bossuyt P.M., Leeflang M.M., Takwoingi Y. 1st edition. John Wiley & Sons; Chichester (UK): 2023. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. PubMed PMC
Deeks J.J. Systematic reviews in health care: Systematic reviews of evaluations of diagnostic and screening tests. Bmj. 2001;323(7305):157–162. doi: 10.1136/bmj.323.7305.157. PubMed DOI PMC
Canu E., Agosta F., Imperiale F., et al. Added value of multimodal MRI to the clinical diagnosis of primary progressive aphasia variants. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior. 2019;113:58–66. doi: 10.1016/j.cortex.2018.11.025. PubMed DOI
Keator L.M., Yourganov G., Faria A.V., Hillis A.E., Tippett D.C. Application of the dual stream model to neurodegenerative disease: evidence from a multivariate classification tool in primary progressive aphasia. Aphasiology. 2022;36(5):618–647. doi: 10.1080/02687038.2021.1897079. PubMed DOI PMC
Martin S.A., Townend F.J., Barkhof F., Cole J.H. Interpretable machine learning for dementia: A systematic review. Alzheimer's & Dementia. 2023 doi: 10.1002/alz.12948. n/a(n/a) PubMed DOI PMC
Javeed A., Dallora A.L., Berglund J.S., Ali A., Ali L., Anderberg P. Machine Learning for Dementia Prediction: A Systematic Review and Future Research Directions. Journal of Medical Systems. 2023;47(1):17. doi: 10.1007/s10916-023-01906-7. PubMed DOI PMC
Ahmed M.R., Zhang Y., Feng Z., Lo B., Inan O.T., Liao H. Neuroimaging and Machine Learning for Dementia Diagnosis: Recent Advancements and Future Prospects. IEEE Rev Biomed Eng. 2019;12:19–33. doi: 10.1109/rbme.2018.2886237. PubMed DOI
McCarthy J., Collins D.L., Ducharme S. Morphometric MRI as a diagnostic biomarker of frontotemporal dementia: A systematic review to determine clinical applicability. NeuroImage Clinical. 2018;20:685–696. doi: 10.1016/j.nicl.2018.08.028. PubMed DOI PMC
Grossman M., Seeley W.W., Boxer A.L., et al. Frontotemporal lobar degeneration. Nature Reviews Disease Primers. 2023;9(1):40. doi: 10.1038/s41572-023-00447-0. PubMed DOI
Liscic R.M., Storandt M., Cairns N.J., Morris J.C. Clinical and Psychometric Distinction of Frontotemporal and Alzheimer Dementias. Arch Neurol-Chicago. 2007;64(4):535–540. doi: 10.1001/archneur.64.4.535. PubMed DOI
Ossenkoppele R., Singleton E.H., Groot C., et al. Research Criteria for the Behavioral Variant of Alzheimer Disease: A Systematic Review and Meta-analysis. JAMA Neurology. 2022;79(1):48–60. doi: 10.1001/jamaneurol.2021.4417. PubMed DOI PMC
Musa G., Slachevsky A., Muñoz-Neira C., et al. Alzheimer's Disease or Behavioral Variant Frontotemporal Dementia? Review of Key Points Toward an Accurate Clinical and Neuropsychological Diagnosis. Journal of Alzheimer's Disease : JAD. 2020;73(3):833–848. doi: 10.3233/jad-190924. PubMed DOI PMC
Schroeter M.L., Neumann J. Combined Imaging Markers Dissociate Alzheimer's Disease and Frontotemporal Lobar Degeneration - An ALE Meta-Analysis. Frontiers in Aging Neuroscience. 2011;3:10. doi: 10.3389/fnagi.2011.00010. PubMed DOI PMC
Bohnen N.I., Djang D.S.W., Herholz K., Anzai Y., Minoshima S. Effectiveness and safety of <sup>18</sup>F-FDG PET in the Evaluation of Dementia: A Review of the Recent Literature. Journal of Nuclear Medicine. 2012;53(1):59. doi: 10.2967/jnumed.111.096578. PubMed DOI
Chouliaras L., O’Brien J.T. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol Psychiatr. 2023;28(10):4084–4097. doi: 10.1038/s41380-023-02215-8. PubMed DOI PMC
Williams D.R., Lees A.J. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. The Lancet Neurology. Mar 2009;8(3):270–279. doi: 10.1016/s1474-4422(09)70042-0. PubMed DOI
Lampe L., Niehaus S., Huppertz H.J., et al. Comparative analysis of machine learning algorithms for multi-syndrome classification of neurodegenerative syndromes. Alzheimer's Research & Therapy. May 3. 2022;14(1):62 doi: 10.1186/s13195-022-00983-z. PubMed DOI PMC
Segato A., Marzullo A., Calimeri F., De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng. 2020;4(4) doi: 10.1063/5.0011697. PubMed DOI PMC
Chougar L., Faouzi J., Pyatigorskaya N., et al. Automated Categorization of Parkinsonian Syndromes Using Magnetic Resonance Imaging in a Clinical Setting. Movement Disorders : Official Journal of the Movement Disorder Society. 2021;36(2):460–470. doi: 10.1002/mds.28348. PubMed DOI
Lampe L., Huppertz H.-J., Anderl-Straub S., et al. Multiclass prediction of different dementia syndromes based on multi-centric volumetric MRI imaging. NeuroImage: Clinical. 2023;37 doi: 10.1016/j.nicl.2023.103320. PubMed DOI PMC
Younes K., Borghesani V., Montembeault M., et al. Right temporal degeneration and socioemotional semantics: semantic behavioural variant frontotemporal dementia. Brain : a Journal of Neurology. 2022;145(11):4080–4096. doi: 10.1093/brain/awac217. PubMed DOI PMC
Wilson S.M., Ogar J.M., Laluz V., Miller B.L., Weiner M.W., Gorno-Tempini M.L. Automated MRI-based classification of primary progressive aphasia variants. NeuroImage. 2009;47:S58. doi: 10.1016/S1053-8119(09)70234-4. PubMed DOI PMC
Bisenius S., Mueller K., Diehl-Schmid J., et al. Predicting primary progressive aphasias with support vector machine approaches in structural MRI data. NeuroImage Clinical. 2017;14:334–343. doi: 10.1016/j.nicl.2017.02.003. PubMed DOI PMC
Nicastro N., Wegrzyk J., Preti M.G., et al. Classification of degenerative parkinsonism subtypes by support-vector-machine analysis and striatal 123I-FP-CIT indices. Journal of Neurology. 2019;266(7):1771–1781. doi: 10.1007/s00415-019-09330-z. PubMed DOI PMC
Correia M.M., Rittman T., Barnes C.L., et al. Towards accurate and unbiased imaging-based differentiation of Parkinson's disease, progressive supranuclear palsy and corticobasal syndrome. Brain Commun. 2020;2(1) doi: 10.1093/braincomms/fcaa051. PubMed DOI PMC
Illán-Gala I., Nigro S., VandeVrede L., et al. Diagnostic Accuracy of Magnetic Resonance Imaging Measures of Brain Atrophy Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Degeneration. JAMA Netw Open. Apr 1. 2022;5(4) doi: 10.1001/jamanetworkopen.2022.9588. PubMed DOI PMC
Saito Y., Kamagata K., Wijeratne P.A., et al. Temporal Progression Patterns of Brain Atrophy in Corticobasal Syndrome and Progressive Supranuclear Palsy Revealed by Subtype and Stage Inference (SuStaIn) Frontiers in Neurology. 2022;13 doi: 10.3389/fneur.2022.814768. PubMed DOI PMC