The effect of individual visual sensitivity on time perception
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
39994279
PubMed Central
PMC11850724
DOI
10.1038/s41598-025-88778-8
PII: 10.1038/s41598-025-88778-8
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Photic Stimulation MeSH
- Virtual Reality MeSH
- Time Perception * physiology MeSH
- Visual Perception * physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The human mind, trying to perceive events coherently, creates the illusion of continuous time passage. Empirical evidence suggests distortions in subjectively perceived time flow associated with well-studied neural responses to sensory stimuli. This study aimed to investigate whether visually uncomfortable patterns, causing exceptionally strong brain activation, affect short time estimates and whether these estimates vary based on the overall reported sensory sensitivity and cortical excitability of individuals. Two experiments in virtual reality testing our assumptions at different levels of complexity of timed stimuli provided initial insight into the studied processes in highly controlled and realistic conditions. Data analysis results did not support our hypotheses, but showed that subjectively most visually uncomfortable simple patterns, i.e., achromatic gratings, cause more variable temporal judgments. Supposedly, this inaccuracy depends on the currently perceived visual comfort and thus the current visual system sensitivity, which cannot be satisfactorily derived from trait-based measures. The exploration of the effect of complex stimuli, i.e., virtual exteriors, suggested that their visual comfort does not affect time perception at all. Biological sex was an important variable across experiments, as males experienced temporal compression of stimuli compared to females. Neuroimaging research is needed for a deeper investigation of the origin of these results.Protocol registration: The Stage 1 manuscript associated with this Registered Report was in-principle accepted on 4 March 2024 prior to data collection for hypothesis testing. The accepted version of the manuscript can be found in the publicly available OSF repository at https://doi.org/ https://doi.org/10.17605/OSF.IO/K3YZE .
Department of Psychology Faculty of Arts Masaryk University Brno Czech Republic
Department of Psychology Montana State University Bozeman MT USA
Department of Visual Computing Faculty of Informatics Masaryk University Brno Czech Republic
See more in PubMed
Matthews, W. J. & Meck, W. H. Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychol. Bull.142, 865–907 (2016). PubMed
Eagleman, D. M. & Pariyadath, V. Is subjective duration a signature of coding efficiency? Philos. Trans. R. Soc. B Biol. Sci.364, 1841–1851 (2009). PubMed PMC
Pariyadath, V. & Eagleman, D. The effect of predictability on subjective duration. PLoS ONE2, e1264 (2007). PubMed PMC
Kinzuka, Y., Sato, F., Minami, T. & Nakauchi, S. Effect of glare illusion-induced perceptual brightness on temporal perception. Psychophysiology58, e13851 (2021). PubMed PMC
Kruijne, W., Olivers, C. N. L. & van Rijn, H. Neural repetition suppression modulates time perception: Evidence from electrophysiology and pupillometry. J. Cogn. Neurosci.33, 1230–1252 (2021). PubMed
Matthews, W. J. & Gheorghiu, A. I. Repetition, expectation, and the perception of time. Curr. Opin. Behav. Sci.8, 110–116 (2016).
Roseboom, W. et al. Activity in perceptual classification networks as a basis for human subjective time perception. Nat. Commun.10, 267 (2019). PubMed PMC
Sadeghi, N. G., Pariyadath, V., Apte, S., Eagleman, D. M. & Cook, E. P. Neural correlates of subsecond time distortion in the middle temporal area of visual cortex. J. Cogn. Neurosci.23, 3829–3840 (2011). PubMed
Cai, M. B., Eagleman, D. M. & Ma, W. J. Perceived duration is reduced by repetition but not by high-level expectation. J. Vis.15, 19 (2015). PubMed PMC
Ward, J. Individual differences in sensory sensitivity: A synthesizing framework and evidence from normal variation and developmental conditions. Cogn. Neurosci.10, 139–157 (2018). PubMed
Aron, E. N. & Aron, A. Sensory-processing sensitivity and its relation to introversion and emotionality. J. Pers. Soc. Psychol.73, 345–368 (1997). PubMed
Robertson, A. E. & Simmons, D. R. The relationship between sensory sensitivity and autistic traits in the general population. J. Autism Dev. Disord.43, 775–784 (2013). PubMed
Green, S. A. et al. Overreactive brain responses to sensory stimuli in youth with autism spectrum disorders. J. Am. Acad. Child Adolesc. Psychiatry52, 1158–1172 (2013). PubMed PMC
Green, S. A. et al. Neurobiology of sensory overresponsivity in youth with autism spectrum disorders. JAMA Psychiatry72, 778–786 (2015). PubMed PMC
Braithwaite, J. J., Broglia, E., Bagshaw, A. P. & Wilkins, A. J. Evidence for elevated cortical hyperexcitability and its association with out-of-body experiences in the non-clinical population: New findings from a pattern-glare task. Cortex49, 793–805 (2013). PubMed
Braithwaite, J. J. et al. Signs of increased cortical hyperexcitability selectively associated with spontaneous anomalous bodily experiences in a nonclinical population. Cognit. Neuropsychiatry18, 549–573 (2013). PubMed
Jurkovičová, L. et al. Resting GABA and glutamate concentrations in primary visual cortex and right anterior insula predict subjective visual sensitivity [Unpublished manuscript]. Department of Neurology, Masaryk University (2023).
Wilkins, A. What is visual discomfort? Trends Neurosci.9, 343–346 (1986).
Wilkins, A. et al. A neurological basis for visual discomfort. Brain107, 989–1017 (1984). PubMed
Wilkins, A. J. Visual stress. (OUP Oxford, 1995).
Hibbard, P. B. & O’Hare, L. Uncomfortable images produce non-sparse responses in a model of primary visual cortex. R. Soc. Open Sci.2, 140535 (2014). PubMed PMC
Penacchio, O. & Wilkins, A. J. Visual discomfort and the spatial distribution of Fourier energy. Vision Res.108, 1–7 (2015). PubMed
Huang, J. et al. FMRI evidence that precision ophthalmic tints reduce cortical hyperactivation in migraine. Cephalalgia31, 925–936 (2011). PubMed PMC
Juricevic, I., Land, L., Wilkins, A. & Webster, M. A. Visual discomfort and natural image statistics. Perception39, 884–899 (2010). PubMed PMC
O’Hare, L. & Hibbard, P. B. Spatial frequency and visual discomfort. Vision Res.51, 1767–1777 (2011). PubMed
Wilkins, A. J., Binnie, C. D. & Darby, C. E. Visually-induced seizures. Prog. Neurobiol.15, 85–117 (1980). PubMed
Le, A. T. D. et al. Discomfort from urban scenes: Metabolic consequences. Landsc. Urban Plan.160, 61–68 (2017).
Brielmann, A. A., Buras, N. H., Salingaros, N. A. & Taylor, R. P. What happens in your brain when you walk down the street? Implications of architectural proportions, biophilia, and fractal geometry for urban science. Urban Sci.6, 3 (2022).
Burtan, D. et al. The nature effect in motion: visual exposure to environmental scenes impacts cognitive load and human gait kinematics. R. Soc. Open Sci.8, 201100 (2021). PubMed PMC
Menzel, C. & Reese, G. Implicit associations with nature and urban environments: Effects of lower-level processed image properties. Front. Psychol.12, 591403 (2021). PubMed PMC
Penacchio, O., Haigh, S. M., Ross, X., Ferguson, R. & Wilkins, A. J. Visual discomfort and variations in chromaticity in art and nature. Front. Neurosci.15, 711064 (2021). PubMed PMC
O’Hare, L., Sharp, A., Dickinson, P., Richardson, G. & Shearer, J. Investigating head movements induced by ‘riloid’ patterns in migraine and control groups using a virtual reality display. Multisensory Res.31, 753–777 (2018). PubMed
Braithwaite, J. J., Marchant, R., Takahashi, C., Dewe, H. & Watson, D. G. The Cortical Hyperexcitability Index (CHi): A new measure for quantifying correlates of visually driven cortical hyperexcitability. Cognit. Neuropsychiatry20, 330–348 (2015). PubMed
Fong, C. Y., Takahashi, C. & Braithwaite, J. J. Evidence for distinct clusters of diverse anomalous experiences and their selective association with signs of elevated cortical hyperexcitability. Conscious. Cogn.71, 1–17 (2019). PubMed
Aaen-Stockdale, C., Hotchkiss, J., Heron, J. & Whitaker, D. Perceived time is spatial frequency dependent. Vision Res.51, 1232–1238 (2011). PubMed PMC
Terhune, D. B., Russo, S., Near, J., Stagg, C. J. & Kadosh, R. C. GABA predicts time perception. J. Neurosci.34, 4364–4370 (2014). PubMed PMC
Rey, A. E. et al. Pain dilates time perception. Sci. Rep.7, 1–6 (2017). PubMed PMC
Tipples, J. Negative emotionality influences the effects of emotion on time perception. Emotion8, 127–131 (2008). PubMed
Bartholomew, A. J., Meck, W. H. & Cirulli, E. T. Analysis of genetic and non-genetic factors influencing timing and time perception. PLoS ONE10, e0143873 (2015). PubMed PMC
Coutts, L. V., Cooper, C. E., Elwell, C. E. & Wilkins, A. J. Time course of the haemodynamic response to visual stimulation in migraine, measured using near-infrared spectroscopy. Cephalalgia32, 621–629 (2012). PubMed
Haigh, S. M. Variable sensory perception in autism. Eur. J. Neurosci.47, 602–609 (2018). PubMed
Schwedt, T. J. Multisensory integration in migraine. Curr. Opin. Neurol.26, 248–253 (2013). PubMed PMC
Song, C., Schwarzkopf, D. S., Kanai, R. & Rees, G. Neural population tuning links visual cortical anatomy to human visual perception. Neuron85, 641–656 (2015). PubMed PMC
Schwarzkopf, D. S., Anderson, E. J., de Haas, B., White, S. J. & Rees, G. Larger extrastriate population receptive fields in autism spectrum disorders. J. Neurosci.34, 2713–2724 (2014). PubMed PMC
Bargary, G., Furlan, M., Raynham, P. J., Barbur, J. L. & Smith, A. T. Cortical hyperexcitability and sensitivity to discomfort glare. Neuropsychologia69, 194–200 (2015). PubMed
Huang, J., Cooper, T. G., Satana, B., Kaufman, D. I. & Cao, Y. Visual distortion provoked by a stimulus in migraine associated with hyperneuronal activity. Headache J. Head Face Pain43, 664–671 (2003). PubMed
Milne, E., Dickinson, A. & Smith, R. Adults with autism spectrum conditions experience increased levels of anomalous perception. PLoS ONE12, e0177804 (2017). PubMed PMC
Takarae, Y. & Sweeney, J. Neural hyperexcitability in autism spectrum disorders. Brain Sci.7, 129 (2017). PubMed PMC
Kaplan, A. D. et al. The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: A meta-analysis. Hum. Factors63, 706–726 (2021). PubMed
Ugwitz, P., Šašinková, A., Šašinka, Č, Stachoň, Z. & Juřík, V. Toggle toolkit: A tool for conducting experiments in unity virtual environments. Behav. Res. Methods53, 1581–1591 (2021). PubMed
Allan, L. G. & Gibbon, J. Human bisection at the geometric mean. Learn. Motiv.22, 39–58 (1991).
Church, R. M. & Deluty, M. Z. Bisection of temporal intervals. J. Exp. Psychol. Anim. Behav. Process.3, 216–228 (1977). PubMed
Wearden, J. H. Human performance on an analogue of an interval bisection task. Q. J. Exp. Psychol. Sect. B43, 59–81 (1991). PubMed
Wearden, J. H. & Ferrara, A. Stimulus spacing effects in temporal bisection by humans. Q. J. Exp. Psychol. Sect. B48, 289–310 (1995). PubMed
Rudroff, T., Workman, C. D., Fietsam, A. C. & Kamholz, J. Response variability in transcranial direct current stimulation: Why sex matters. Front. Psychiatry11, 585 (2020). PubMed PMC
Smith, M. J. et al. Menstrual cycle effects on cortical excitability. Neurology53, 2069–2069 (1999). PubMed
Smith, M. J., Adams, L. F., Schmidt, P. J., Rubinow, D. R. & Wassermann, E. M. Effects of ovarian hormones on human cortical excitability. Ann. Neurol.51, 599–603 (2002). PubMed
Meisel, C. et al. Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl. Acad. Sci. U. S. A.112, 14694–14699 (2015). PubMed PMC
Kemeny, A., Chardonnet, J.-R. & Colombet, F. Self-motion perception and cybersickness. Get. Rid Cybersickness10.1007/978-3-030-59342-1_2 (2020).
Hoekstra, R. A. et al. The construction and validation of an abridged version of the autism-spectrum quotient (AQ-Short). J. Autism Dev. Disord.41, 589–596 (2011). PubMed PMC
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J. & Clubley, E. The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord.31, 5–17 (2001). PubMed
Grove, R., Hoekstra, R. A., Wierda, M. & Begeer, S. Exploring sex differences in autistic traits: A factor analytic study of adults with autism. Autism21, 760–768 (2017). PubMed
Kennedy, R. S., Lane, N. E., Berbaum, K. S. & Lilienthal, M. G. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol.3, 203–220 (2009).
Davis, S., Nesbitt, K. & Nalivaiko, E. Systematic review of cybersickness. In Proceedings of the 2014 conference on interactive entertainment (2014). 10.1145/2677758.2677780?casa_token=GgMAbV9LzzkAAAAA%3AnMY1V7OB-6FeZWuWc1E675SChrrUwBvLBSCz95kzvosCp2tMApIZlB-3YS_-LcG_76_CFkgwCUpN. (Accessed 28th June 2023)
Lim, H. K. et al. Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG). Neurosci. Lett.743, 135589 (2021). PubMed
Makransky, G. & Mayer, R. E. Benefits of taking a virtual field trip in immersive virtual reality: Evidence for the immersion principle in multimedia learning. Educ. Psychol. Rev.34, 1771–1798 (2022). PubMed PMC
Radianti, J., Majchrzak, T. A., Fromm, J. & Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ.147, 103778 (2020).
Panagiotidi, M., Overton, P. G. & Stafford, T. The relationship between ADHD traits and sensory sensitivity in the general population. Compr. Psychiatry80, 179–185 (2018). PubMed
Panagiotidi, M., Overton, P. G. & Stafford, T. The relationship between sensory processing sensitivity and attention deficit hyperactivity disorder traits: A spectrum approach. Psychiatry Res.293, 113477 (2020). PubMed
Pöhlmann, K. M. T., Föcker, J., Dickinson, P., Parke, A. & O’Hare, L. The relationship between vection, cybersickness and head movements elicited by illusory motion in virtual reality. Displays71, 102111 (2022).
Wolde, T. Effects of caffeine on health and nutrition: A Review. Food Sci. Qual. Manag.30, 59–65 (2014).
Droit-Volet, S., Lamotte, M. & Izaute, M. The conscious awareness of time distortions regulates the effect of emotion on the perception of time. Conscious. Cogn.38, 155–164 (2015). PubMed
Droit-Volet, S., Fayolle, S. & Gil, S. Emotion and time perception in children and adults: The effect of task difficulty. Timing Time Percept.4, 7–29 (2016).
Droit-Volet, S. & Gil, S. The emotional body and time perception. Cogn. Emot.30, 687–699 (2016). PubMed
Grommet, E. K., Hemmes, N. S. & Brown, B. L. The role of clock and memory processes in the timing of fear cues by humans in the temporal bisection task. Behav. Processes164, 217–229 (2019). PubMed
Kliegl, K. M., Watrin, L. & Huckauf, A. Duration perception of emotional stimuli: Using evaluative conditioning to avoid sensory confounds. Cogn. Emot.29, 1350–1367 (2015). PubMed
Tipples, J. When time stands still: Fear-specific modulation of temporal bias due to threat. Emotion11, 74–80 (2011). PubMed
R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2023). http://www.R-project.org/
Linares, D. & López-Moliner, J. quickpsy: An R package to fit psychometric functions for multiple groups. R J.8, 122–131 (2016).
Kellen, H. S., David. An introduction to mixed models for experimental psychology. In New Methods in Cognitive Psychology (Routledge, 2019).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. (2014). https://arxiv.org/abs/1406.5823
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw.82, 1–26 (2017).
Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike (eds Parzen, E. et al.) 199–213 (Springer, 1998).
Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw.6, 3139 (2021).
O’Hare, L. Visual discomfort from flash afterimages of riloid patterns. Perception46, 709–727 (2017). PubMed
Jurkovičová, L. et al. Subjective visual sensitivity in neurotypical adults: Insights from a magnetic resonance spectroscopy study. Front. Neurosci.18, 1417996 (2024). PubMed PMC
Evans, B. J. W. & Stevenson, S. J. The pattern glare test: A review and determination of normative values. Ophthalmic Physiol. Opt.28, 295–309 (2008). PubMed
Lake, J. I., LaBar, K. S. & Meck, W. H. Emotional modulation of interval timing and time perception. Neurosci. Biobehav. Rev.64, 403–420 (2016). PubMed PMC
Schirmer, A. How emotions change time. Front. Integr. Neurosci.5, 58 (2011). PubMed PMC
Bratman, G. N., Daily, G. C., Levy, B. J. & Gross, J. J. The benefits of nature experience: Improved affect and cognition. Landsc. Urban Plan.138, 41–50 (2015).
González-Espinar, J., Ortells, J. J., Sánchez-García, L., Montoro, P. R. & Hutchison, K. Exposure to natural environments consistently improves visuospatial working memory performance. J. Environ. Psychol.91, 102138 (2023).
Ojala, A., Korpela, K., Tyrväinen, L., Tiittanen, P. & Lanki, T. Restorative effects of urban green environments and the role of urban-nature orientedness and noise sensitivity: A field experiment. Health Place55, 59–70 (2019). PubMed
Van den Berg, A. E., Joye, Y. & Koole, S. L. Why viewing nature is more fascinating and restorative than viewing buildings: A closer look at perceived complexity. Urban For. Urban Green.20, 397–401 (2016).
Romei, V. et al. Spontaneous fluctuations in posterior α-band EEG activity reflect variability in excitability of human visual areas. Cereb. Cortex18, 2010–2018 (2008). PubMed PMC
Hancock, P. A. & Rausch, R. The effects of sex, age, and interval duration on the perception of time. Acta Psychol. (Amst.)133, 170–179 (2010). PubMed
Williams, C. L. Sex differences in counting and timing. Front. Integr. Neurosci.5, 88 (2012). PubMed PMC
Wittmann, M. & Szelag, E. Sex differences in perception of temporal order. Percept. Mot. Skills96, 105–112 (2003). PubMed
Morofushi, M., Shinohara, K. & Kimura, F. Menstrual and circadian variations in time perception in healthy women and women with premenstrual syndrome. Neurosci. Res.41, 339–344 (2001). PubMed
O’Hare, L., Clarke, A. D. & Hibbard, P. B. Visual search and visual discomfort. Perception42, 1–15 (2013). PubMed
Wilkins, A., Allen, P. M., Monger, L. J. & Gilchrist, J. M. Visual stress and dyslexia for the practicing optometrist. Optom. Pract.17, (2016).