The human mind, trying to perceive events coherently, creates the illusion of continuous time passage. Empirical evidence suggests distortions in subjectively perceived time flow associated with well-studied neural responses to sensory stimuli. This study aimed to investigate whether visually uncomfortable patterns, causing exceptionally strong brain activation, affect short time estimates and whether these estimates vary based on the overall reported sensory sensitivity and cortical excitability of individuals. Two experiments in virtual reality testing our assumptions at different levels of complexity of timed stimuli provided initial insight into the studied processes in highly controlled and realistic conditions. Data analysis results did not support our hypotheses, but showed that subjectively most visually uncomfortable simple patterns, i.e., achromatic gratings, cause more variable temporal judgments. Supposedly, this inaccuracy depends on the currently perceived visual comfort and thus the current visual system sensitivity, which cannot be satisfactorily derived from trait-based measures. The exploration of the effect of complex stimuli, i.e., virtual exteriors, suggested that their visual comfort does not affect time perception at all. Biological sex was an important variable across experiments, as males experienced temporal compression of stimuli compared to females. Neuroimaging research is needed for a deeper investigation of the origin of these results.Protocol registration: The Stage 1 manuscript associated with this Registered Report was in-principle accepted on 4 March 2024 prior to data collection for hypothesis testing. The accepted version of the manuscript can be found in the publicly available OSF repository at https://doi.org/ https://doi.org/10.17605/OSF.IO/K3YZE .
- MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek fyziologie diagnostické zobrazování MeSH
- světelná stimulace metody MeSH
- virtuální realita MeSH
- vnímání času * fyziologie MeSH
- zraková percepce * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Many university-taught courses moved to online form since the outbreak of the global pandemic of coronavirus disease (COVID-19). Distance learning has become broadly used as a result of the widely applied lockdowns, however, many students lack personal contact in the learning process. A classical web-based distance learning does not provide means for natural interpersonal interaction. The technology of immersive virtual reality (iVR) may mitigate this problem. Current research has been aimed mainly at specific instances of collaborative immersive virtual environment (CIVE) applications for learning. The fields utilizing iVR for knowledge construction and skills training with the use of spatial visualizations show promising results. The objective of this study was to assess the effectiveness of collaborative and individual use of iVR for learning geography, specifically training in hypsography. Furthermore, the study's goals were to determine whether collaborative learning would be more effective and to investigate the key elements in which collaborative and individual learning were expected to differ-motivation and use of cognitive resources. The CIVE application developed at Masaryk University was utilized to train 80 participants in inferring conclusions from cartographic visualizations. The collaborative and individual experimental group underwent a research procedure consisting of a pretest, training in iVR, posttest, and questionnaires. A statistical comparison between the geography pretest and posttest for the individual learning showed a significant increase in the score (p = 0.024, ES = 0.128) and speed (p = 0.027, ES = 0.123), while for the collaborative learning, there was a significant increase in the score (p<0.001, ES = 0.333) but not in speed (p = 1.000, ES = 0.000). Thus, iVR as a medium proved to be an effective tool for learning geography. However, comparing the collaborative and individual learning showed no significant difference in the learning gain (p = 0.303, ES = 0.115), speed gain (p = 0.098, ES = 0.185), or performance motivation (p = 0.368, ES = 0.101). Nevertheless, the collaborative learning group had significantly higher use of cognitive resources (p = 0.046, ES = 0.223) than the individual learning group. The results were discussed in relation to the cognitive load theories, and future research directions for iVR learning were proposed.
- MeSH
- COVID-19 * epidemiologie prevence a kontrola MeSH
- kontrola infekčních nemocí MeSH
- lidé MeSH
- učení MeSH
- virtuální realita * MeSH
- zeměpis MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH