Spatial prediction of dynamic interactions in rats
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39999096
PubMed Central
PMC11856586
DOI
10.1371/journal.pone.0319101
PII: PONE-D-24-47935
Knihovny.cz E-zdroje
- MeSH
- chování zvířat fyziologie MeSH
- krysa rodu Rattus MeSH
- potkani Long-Evans * MeSH
- vnímání prostoru * fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Animals and humans receive the most critical information from parts of the environment that are immediately inaccessible and highly dynamic. The brain must effectively process potential interactions between elements in such an environment to make appropriate decisions in critical situations. We trained male Long-Evans rats to discriminate static and dynamic spatial stimuli and to generalize novel dynamic spatial stimuli displayed on an inaccessible computer screen. We provide behavioral evidence indicating that rats encode dynamic visuospatial situations by constructing internal static representations that capture meaningful future interactions between objects. These observations support previous findings in humans that such internal static representations can encapsulate relevant spatiotemporal information of dynamic environments. This mechanism would allow animals and humans to process complex time-changing situations neatly.
Zobrazit více v PubMed
Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948;55(4):189–208. doi: 10.1037/h0061626 PubMed DOI
O’Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford, UK: Oxford University Press; 1978.
Schiller D, Eichenbaum H, Buffalo EA, Davachi L, Foster DJ, Leutgeb S, et al.. Memory and Space: Towards an Understanding of the Cognitive Map. J Neurosci. 2015;35(41):13904–11. doi: 10.1523/JNEUROSCI.2618-15.2015 ; PMCID: PMCPMC6608181 PubMed DOI PMC
Olton DS, Samuelson RJ. Remembrance of places passed - spatial memory in rats. J Exp Psychol Anim Behav Process. 1976;2(2):97–116. doi: 10.1037/0097-7403.2.2.97 DOI
Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297(5868):681–3. doi: 10.1038/297681a0 PubMed DOI
Dix SL, Aggleton JP. Extending the spontaneous preference test of recognition: evidence of object-location and object-context recognition. Behav Brain Res. 1999;99(2):191–200. doi: 10.1016/s0166-4328(98)00079-5 PubMed DOI
Gilbert PE, Kesner RP. Memory for objects and their locations: the role of the hippocampus in retention of object-place associations. Neurobiol Learn Mem. 2004;81(1):39–45. doi: 10.1016/s1074-7427(03)00069-8 PubMed DOI
Gothard KM, Skaggs WE, Moore KM, McNaughton BL. Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J Neurosci. 1996;16(2):823–35. doi: 10.1523/JNEUROSCI.16-02-00823.1996 PubMed DOI PMC
Chan E, Baumann O, Bellgrove MA, Mattingley JB. From objects to landmarks: the function of visual location information in spatial navigation. Front Psychol. 2012;3:304. Epub 20120827. doi: 10.3389/fpsyg.2012.00304 ; PMCID: PMCPMC3427909 PubMed DOI PMC
Klement D, Levcik D, Duskova L, Nekovarova T. Spatial task for rats testing position recognition of an object displayed on a computer screen. Behav Brain Res. 2010;207(2):480–9. doi: 10.1016/j.bbr.2009.10.041 PubMed DOI
Levcik D, Stuchlik A, Klement D. Effect of Block of alpha(1)-adrenoceptors on overall motor activity but not on spatial cognition in the object-position recognition task. Physiol Res. 2013;62(5):561–7. doi: 10.33549/physiolres.932570 PubMed DOI
Levcik D, Nekovarova T, Stuchlik A, Klement D. Rats use hippocampus to recognize positions of objects located in an inaccessible space. Hippocampus. 2013;23(2):153–61. doi: 10.1002/hipo.22076 PubMed DOI
Telensky P, Svoboda J, Blahna K, Bures J, Kubik S, Stuchlik A. Functional inactivation of the rat hippocampus disrupts avoidance of a moving object. Proc Natl Acad Sci USA. 2011;108(13):5414–8. Epub 20110314. doi: 10.1073/pnas.1102525108 ; PMCID: PMCPMC3069198 PubMed DOI PMC
Tulving E. Elements of episodic memory. Oxford University Press; 1983.
Eichenbaum H. On the integration of space, time, and Memory. Neuron. 2017;95(5):1007–18. doi: 10.1016/j.neuron.2017.06.036 ; PMCID: PMCPMC5662113 PubMed DOI PMC
Kesner RP, Hunsaker MR. The temporal attributes of episodic memory. Behav Brain Res. 2010;215(2):299–309. Epub 20091229. doi: 10.1016/j.bbr.2009.12.029 PubMed DOI
Talpos JC, McTighe SM, Dias R, Saksida LM, Bussey TJ. Trial-unique, delayed nonmatching-to-location (TUNL): a novel, highly hippocampus-dependent automated touchscreen test of location memory and pattern separation. Neurobiol Learn Mem. 2010;94(3):341–52. doi: 10.1016/j.nlm.2010.07.006 PubMed DOI PMC
Villacorta-Atienza JA, Velarde MG, Makarov VA. Compact internal representation of dynamic situations: neural network implementing the causality principle. Biol Cybern. 2010;103(4):285–97. doi: 10.1007/s00422-010-0398-2 PubMed DOI
Villacorta-Atienza JA, Makarov VA. Neural network architecture for cognitive navigation in dynamic environments. IEEE Trans Neural Netw Learn Syst. 2013;24(12):2075–87. doi: 10.1109/TNNLS.2013.2271645 PubMed DOI
Villacorta-Atienza JA, Tapia CC, Diez-Hermano S, Sanchez-Jimenez A, Lobov S, Krilova N, et al.. Static internal representation of dynamic situations reveals time compaction in human cognition. J Adv Res. 2021;28:111–25. doi: 10.1016/j.jare.2020.08.008 PubMed DOI PMC
Levcik D, Nekovarova T, Antosova E, Stuchlik A, Klement D. The role of the hippocampus in object discrimination based on visual features. Neurobiol Learn Mem. 2018;155:127–35. doi: 10.1016/j.nlm.2018.06.003 PubMed DOI
R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.
RStudio Team. RStudio: Integrated Development Environment for R. Boston, MA: RStudio, PBC; 2022.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):48. doi: 10.18637/jss.v067.i01 DOI
Lenth RV. emmeans: Estimated Marginal Means, aka Least-Squares Means. 2022.
Therneau TM. A Package for Survival Analysis in R. 2022.
Therneau TM. coxme: Mixed Effects Cox Models. 2022.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York, USA: Springer-Verlag; 2016.
Kim J, Castro L, Wasserman EA, Freeman JH. Dorsal hippocampus is necessary for visual categorization in rats. Hippocampus. 2018;28(6):392–405. Epub 20180307. doi: 10.1002/hipo.22839 ; PMCID: PMCPMC5992064 PubMed DOI PMC
Schnell AE, Van den Bergh G, Vermaercke B, Gijbels K, Bossens C, de Beeck HO. Face categorization and behavioral templates in rats. J Vis. 2019;19(14):9. doi: 10.1167/19.14.9 PubMed DOI
Dotson NM, Yartsev MM. Nonlocal spatiotemporal representation in the hippocampus of freely flying bats. Science. 2021;373(6551):242–7. doi: 10.1126/science.abg1278 PubMed DOI PMC
Eichenbaum H, Sauvage M, Fortin N, Komorowski R, Lipton P. Towards a functional organization of episodic memory in the medial temporal lobe. Neurosci Biobehav Rev. 2012;36(7):1597–608. doi: 10.1016/j.neubiorev.2011.07.006 PubMed DOI PMC
Fajnerova I, Rodriguez M, Levcik D, Konradova L, Mikolas P, Brom C, et al.. A virtual reality task based on animal research - spatial learning and memory in patients after the first episode of schizophrenia. Front Behav Neurosci. 2014;8:157. Epub 20140527. doi: 10.3389/fnbeh.2014.00157 ; PMCID: PMCPMC4034703 PubMed DOI PMC
Mokrisova I, Laczo J, Andel R, Gazova I, Vyhnalek M, Nedelska Z, et al.. Real-space path integration is impaired in Alzheimer’s disease and mild cognitive impairment. Behav Brain Res. 2016;307:150–8. Epub 20160330. doi: 10.1016/j.bbr.2016.03.052 PubMed DOI
Coughlan G, Laczo J, Hort J, Minihane AM, Hornberger M. Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nat Rev Neurol. 2018;14(8):496–506. doi: 10.1038/s41582-018-0031-x PubMed DOI
Levine TF, Allison SL, Stojanovic M, Fagan AM, Morris JC, Head D. Spatial navigation ability predicts progression of dementia symptomatology. Alzheimers Dement. 2020;16(3):491–500. Epub 20200211. doi: 10.1002/alz.12031 ; PMCID: PMCPMC7067640 PubMed DOI PMC
Villacorta-Atienza JA, Calvo C, Makarov VA. Prediction-for-CompAction: navigation in social environments using generalized cognitive maps. Biol Cybern. 2015;109(3):307–20. Epub 20150213. doi: 10.1007/s00422-015-0644-8 PubMed DOI
Calvo Tapia C, Villacorta-Atienza JA, Diez-Hermano S, Khoruzhko M, Lobov S, Potapov I, et al.. Semantic knowledge representation for strategic interactions in dynamic situations. Front Neurorobot. 2020;14:4. Epub 20200213. doi: 10.3389/fnbot.2020.00004 ; PMCID: PMCPMC7031254 PubMed DOI PMC
Wang YC, Frost BJ. Time to collision is signaled by neurons in the nucleus rotundus of pigeons. Nature. 1992;356(6366):236–8. doi: 10.1038/356236a0 PubMed DOI
Rind EC, Simmons PJ. Seeing what is coming: building collision-sensitive neurones. Trends Neurosci. 1999;22(5):215–20. doi: 10.1016/S0166-2236(98)01332-0 PubMed DOI
Liu RF, Niu YQ, Wang SR. Thalamic neurons in the pigeon compute distance-to-collision of an approaching surface. Brain Behav Evol. 2008;72(1):37–47. doi: 10.1159/000145716 PubMed DOI
O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5. doi: 10.1016/0006-8993(71)90358-1 PubMed DOI
Huxter JR, Senior TJ, Allen K, Csicsvari J. Theta phase-specific codes for two-dimensional position, trajectory and heading in the hippocampus. Nat Neurosci. 2008;11(5):587–94. doi: 10.1038/nn.2106 PubMed DOI
Pfeiffer BE, Foster DJ. Hippocampal place-cell sequences depict future paths to remembered goals. Nature. 2013;497(7447):74–9. doi: 10.1038/nature12112 PubMed DOI PMC
Widloski J, Foster DJ. Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping. Neuron. 2022;110(9):1547–58.e8. doi: 10.1016/j.neuron.2022.02.002 PubMed DOI PMC
Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440(7084):680–3. Epub 20060212. doi: 10.1038/nature04587 PubMed DOI
Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14(2):147–53. doi: 10.1038/nn.2732 ; PMCID: PMCPMC3215304 PubMed DOI PMC
Schmidt B, Redish AD. Neuroscience: Navigation with a cognitive map. Nature. 2013;497(7447):42–3. Epub 20130417. doi: 10.1038/nature12095 ; PMCID: PMCPMC5029279 PubMed DOI PMC
Hoydal OA, Skytoen ER, Andersson SO, Moser MB, Moser EI. Object-vector coding in the medial entorhinal cortex. Nature. 2019;568(7752):400–4. doi: 10.1038/s41586-019-1077-7 PubMed DOI
Stachenfeld KL, Botvinick MM, Gershman SJ. The hippocampus as a predictive map. Nat Neurosci. 2017;20(11):1643–53. doi: 10.1038/nn.4650 PubMed DOI
Dayan P. Improving generalization for temporal difference learning - the successor representation. Neural Comput. 1993;5(4):613–24. doi: 10.1162/neco.1993.5.4.613 DOI
de Cothi W, Nyberg N, Griesbauer EM, Ghaname C, Zisch F, Lefort JM, et al.. Predictive maps in rats and humans for spatial navigation. Curr Biol. 2022;32(17):3676–89.e5. doi: 10.1016/j.cub.2022.06.090 PubMed DOI PMC
Ennaceur A, Delacour J. A New one-trial test for neurobiological studies of memory in rats.1. behavioral-data. Behav Brain Res. 1988;31(1):47–59. doi: 10.1016/0166-4328(88)90157-x PubMed DOI
Dere E, Huston JP, De Souza Silva MA. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev. 2007;31(5):673–704. doi: 10.1016/j.neubiorev.2007.01.005 PubMed DOI
Vuong QC, Hof AF, Bulthoff HH, Thornton IM. An advantage for detecting dynamic targets in natural scenes. J Vis. 2006;6(1):87–96. doi: 10.1167/6.1.8 PubMed DOI
Gibbons RB, Edwards CJ, Bhagavathula R, Carlson P, Owens DA. Development of visual model for exploring relationship between nighttime driving behavior and roadway visibility features. Transp Res Rec. 2012;2298(1):96–103. doi: 10.3141/2298-11 DOI
Mckenzie BE, Day RH. Infants attention to stationary and moving-objects at different distances. Aust J Psychol. 1976;28(1):45–51. doi: 10.1080/00049537608255262 DOI
Abrams RA, Christ SE. Motion onset captures attention. Psychol Sci. 2003;14(5):427–32. doi: 10.1111/1467-9280.01458 PubMed DOI
Franconeri SL, Simons DJ. Moving and looming stimuli capture attention. Percept Psychophys. 2003;65(7):999–1010. doi: 10.3758/bf03194829 PubMed DOI
Braida D, Donzelli A, Martucci R, Ponzoni L, Pauletti A, Langus A, et al.. Mice discriminate between stationary and moving 2D shapes: application to the object recognition task to increase attention. Behav Brain Res. 2013;242:95–101. doi: 10.1016/j.bbr.2012.12.040 PubMed DOI
Smith KC, Abrams RA. Motion onset really does capture attention. Atten Percept Psychophys. 2018;80(7):1775–84. doi: 10.3758/s13414-018-1548-1 PubMed DOI
Gaffan EA, Eacott MJ. A computer-controlled maze environment for testing visual memory in the rat. J Neurosci Methods. 1995;60(1-2):23–37. doi: 10.1016/0165-0270(94)00216-4 PubMed DOI