Botanical Antifeedants: An Alternative Approach to Pest Control
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40003768
PubMed Central
PMC11855740
DOI
10.3390/insects16020136
PII: insects16020136
Knihovny.cz E-zdroje
- Klíčová slova
- antifeedant activity, compounds, essential oils, pests, phytophagous, plant extracts,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plant protection against phytophagous pests still largely relies on the application of synthetic insecticides, which can lead to environmental and health risks that are further exacerbated by the development of resistant pest populations. These are the driving forces behind the current trend of research and the development of new ecological insecticides. The mode of action does not have to rely exclusively on acute or chronic toxicity. Another promising approach is the use of plant antifeedants, which can significantly reduce the food intake of phytophagous insects. However, the information on antifeedant substances has not yet been sufficiently evaluated. The aim of this review was to find the most promising plants that provide potent extracts, essential oils (EOs), or isolated compounds with antifeedant properties. The selection was based on a comparison of effective concentrations or doses. Effective extracts were obtained from 85 plant species belonging to 35 families and the EOs came from 38 aromatic plant species from 11 families. Based on the results, Angelica archangelica, Caesalpinia bonduc, Grindelia camporum, Inula auriculata, Lavandula luisieri, Mentha pulegium, Piper hispidinervum, and Vitis vinifera were selected as promising plants with antifeedant potential. These plants are potent antifeedants, and at the same time provide sufficient biomass for industrial use in the development and production of botanical antifeedants.
Zobrazit více v PubMed
Yordanov I., Velikova V., Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica. 2000;38:171–186. doi: 10.1023/A:1007201411474. DOI
Shinozaki K., Yamaguchi-Shinozaki K., Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 2003;6:410–417. doi: 10.1016/S1369-5266(03)00092-X. PubMed DOI
King B.H., Gunathunga P.B. Gustation in insects: Taste qualities and types of evidence used to show taste function of specific body parts. J. Insect Sci. 2023;23:11. doi: 10.1093/jisesa/iead018. PubMed DOI PMC
Smith C.M. Plant Resistance to Arthropods. Molecular and Conventional Approaches. 1st ed. Springer; Dordrecht, The Netherlands: 2005. p. 423.
Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry. 2003;64:3–19. doi: 10.1016/S0031-9422(03)00300-5. PubMed DOI
Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines. 2015;2:251–286. doi: 10.3390/medicines2030251. PubMed DOI PMC
Pavela R. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 2015;114:3835–3853. doi: 10.1007/s00436-015-4614-9. PubMed DOI
Sharma A., Kumar V., Shahzad B., Tanveer M., Sidhu G.P.S., Handa N., Kohli S.K., Yadav P., Bali A.S., Parihar R.D., et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019;1:1446. doi: 10.1007/s42452-019-1485-1. DOI
Gensch L., Jantke K., Rasche L., Schneider U.A. Pesticide risk assessment in European agriculture: Distribution patterns, ban-substitution effects and regulatory implications. Environ. Poll. 2024;348:123836. doi: 10.1016/j.envpol.2024.123836. PubMed DOI
Lu X.P., Xu L., Wang J.J. Mode of inheritance for pesticide resistance, importance and prevalence: A review. Pestic Biochem Physiol. 2024;202:105964. doi: 10.1016/j.pestbp.2024.105964. PubMed DOI
Ayilara M.S., Adeleke B.S., Akinola S.A., Fayose C.A., Adeyemi U.T., Gbadegesin L.A., Omole R.K., Johnson R.M., Uthman Q.O., Babalola O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023;14:1040901. doi: 10.3389/fmicb.2023.1040901. PubMed DOI PMC
Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant Protect. Sci. 2016;52:229–241. doi: 10.17221/31/2016-PPS. DOI
Reiter S., Campillo R.C., Sun K., Stopfer M. Spatiotemporal coding of individual chemicals by the gustatory system. J. Neurosci. 2015;35:12309–12321. doi: 10.1523/JNEUROSCI.3802-14.2015. PubMed DOI PMC
Amer A., Mehlhorn H. The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol. Res. 2006;99:491–499. doi: 10.1007/s00436-006-0185-0. PubMed DOI
Pavela R., Canale A., Mehlhorn H., Benelli G. Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: A review. Res. Vet. Sci. 2016;109:1–9. doi: 10.1016/j.rvsc.2016.09.001. PubMed DOI
Gahukar R.T. Plant-derived products in crop protection: Effects of various application methods on pests and diseases. Phytoparasitica. 2016;44:379–391. doi: 10.1007/s12600-016-0524-3. DOI
Pavela R., Guedes R.N.C., Maggi F., Desneux N., Benelli G. Essential oil antifeedants against armyworms: Promises and challenges. Entomol. Gen. 2023;43:689–704. doi: 10.1127/entomologia/2023/1887. DOI
Schoonhoven L.M. Biological aspects of antifeedants. Entomol. Exp. Appl. 1982;31:57–69. doi: 10.1111/j.1570-7458.1982.tb03119.x. DOI
Minnich D.E. An experimental study of the tarsal chemoreceptors of two nymphalid butterflies. J. Exp. Zool. 1921;33:172–203. doi: 10.1002/jez.1400330105. DOI
Liman E.R., Zhang Y.V., Montell C. Peripheral coding of taste. Neuron. 2014;81:984–1000. doi: 10.1016/j.neuron.2014.02.022. PubMed DOI PMC
King B.H., Gunathunga P.B. Gustation across the class Insecta: Body locations. Ann. Entomol. Soc. Am. 2023;116:76–82. doi: 10.1093/aesa/saac027. DOI
Popescu A., Couton L., Almaas T.-J., Rospars J.-P., Wright G.A., Marion-Poll F., Anton S. Function and central projections of gustatory receptor neurons on the antenna of the noctuid moth Spodoptera littoralis. J. Comp. Physiol. A. 2013;199:403–416. doi: 10.1007/s00359-013-0803-0. PubMed DOI
Tsuneto K., Takada T., Kasubuchi M., Yamagishi T., Adegawa S., Sato R. BmGr10 is a putative functional gustatory receptor in the myo-inositol neuron in the epipharyngeal sensillum. J. Insect Biotechnol. Sericol. 2019;88:1_007–1_015. doi: 10.11416/jibs.88.1_007. DOI
Zhou D.S., Teng T., Liu J.H., Long J.M. Cross-habituation to deterrents correlates with desensitisation of the corresponding deterrent neuron in the larva of the black cutworm, Agrotis ipsilon. Entomol. Exp. Appl. 2021;169:1039–1048. doi: 10.1111/eea.13091. DOI
King B.H., Taylor E.E., Burgess E.R. Feeding response to select monosaccharides, sugar alcohols, and artificial sweeteners relative to sucrose in adult house flies, Musca domestica (Diptera: Muscidae) J. Med. Entomol. 2019;57:511–518. doi: 10.1093/jme/tjz195. PubMed DOI
Hostachy C., Couzi P., Hanafi-Portier M., Portemer G., Halleguen A., Murmu M., Deisig N., Dacher M. Responsiveness to sugar solutions in the moth Agrotis ipsilon: Parameters affecting proboscis extension. Front. Physiol. 2019;10:1423. doi: 10.3389/fphys.2019.01423. PubMed DOI PMC
Ruedenauer F.A., Leonhardt S.D., Lunau K., Spaethe J. Bumblebees are able to perceive amino acids via chemotactile antennal stimulation. J. Comp. Physiol. A. 2019;205:321–331. doi: 10.1007/s00359-019-01321-9. PubMed DOI
Ali H., Iqbal J., Raweh H.S., Alqarni A.S. Proboscis behavioral response of four honey bee Apis species towards different concentrations of sucrose, glucose, and fructose. Saudi J. Biol. Sci. 2021;28:3275–3283. doi: 10.1016/j.sjbs.2021.02.069. PubMed DOI PMC
Guerrieri F.J., d’Ettorre P. Associative learning in ants: Conditioning of the maxilla-labium extension response in Camponotus aethiops. J. Insect Physiol. 2010;56:88–92. doi: 10.1016/j.jinsphys.2009.09.007. PubMed DOI
Sun L., Hou W., Zhang J., Dang Y., Yang Q., Zhao X., Ma Y., Tang Q. Plant metabolites drive different responses in caterpillars of two closely related Helicoverpa species. Front Physiol. 2021;12:662978. doi: 10.3389/fphys.2021.662978. PubMed DOI PMC
Devineni A.V., Sun B., Zhukovskaya A., Axel R. Acetic acid activates distinct taste pathways in Drosophila to elicit opposing, state-dependent feeding responses. eLife. 2019;8:e47677. doi: 10.7554/eLife.47677. PubMed DOI PMC
Hopkins R.J., van Dam N.M., van Loon J.J.A. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 2008;54:57–83. doi: 10.1146/annurev.ento.54.110807.090623. PubMed DOI
Nataraj N., Hansson B.S., Knaden M. Learning-based oviposition constancy in insects. Front. Ecol. Evol. 2024;12:1351400. doi: 10.3389/fevo.2024.1351400. DOI
Rizvi S.A.H., Xie F., Ling S., Zeng X. Development and evaluation of emulsifiable concentrate formulation containing Sophora alopecuroides L. extract for the novel management of Asian citrus psyllid. Environ. Sci. Pollut. Res. 2019;26:21871–21881. doi: 10.1007/s11356-019-05418-1. PubMed DOI
Ahmadi Z., Saber M., Bagheri M., Mahdavinia G.R. Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticae. J. Pest Sci. 2018;91:837–848. doi: 10.1007/s10340-017-0912-6. DOI
Koul O. Insect Antifeedants. 1st ed. CRC Press; Boca Raton, FL, USA: 2005. p. 1005.
Carpinella C., Ferrayoli C., Valladares G., Defego M., Palacios S. Potent limonoid insect antifeedant from Melia azedarach. Biosci. Biotechnol. Biochem. 2002;66:1731–1736. doi: 10.1271/bbb.66.1731. PubMed DOI
Schoonhoven L.M., van Loon J.J.A., Dicke M. Insect-Plant Biology. 2nd ed. Oxford University Press; Oxford, UK: 2005.
Roessingh P., Xu S., Menken S.B.J. Olfactory receptors on the maxillary palps of small ermine moth larvae: Evolutionary history of benzaldehyde sensitivity. J. Comp. Physiol. A. 2007;193:635–647. doi: 10.1007/s00359-007-0218-x. PubMed DOI PMC
Isman M.B., Koul O., Luczynski A., Kaminski A. Insecticidal and antifeedant bioactivity of neem oils and their relationship to azadirachtin content. J. Agric. Food Chem. 1990;38:1406–1411. doi: 10.1021/jf00096a024. DOI
Nyirenda J., Kadango Z., Funjika E., Chipabika G. Larvicidal, ovicidal and antifeedant activity of crude cashew nutshell liquid against fall armyworm, Spodoptera frugiperda (J.E. smith), (lepidoptera, Noctuidae) Crop Prot. 2024;179:106619. doi: 10.1016/j.cropro.2024.106619. DOI
Seffrin R.C., Shikano I., Akhtar Y., Isman M.B. Effects of crude seed extracts of Annona atemoya and Annona squamosal L. against the cabbage looper, Trichoplusia ni in the laboratory and greenhouse. Crop Prot. 2010;29:20–24. doi: 10.1016/j.cropro.2009.09.003. DOI
Arora S., Mogha N., Bhardwaj T., Srivastava C. Antifeedant and insecticidal activity of plant extracts against Spodoptera litura (Fab.) and Lipaphis erysimi. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017;87:1229–1236. doi: 10.1007/s40011-015-0697-4. DOI
Pavela R. Antifeedant activity of plant extracts on Leptinotarsa decemlineata Say. and Spodoptera littoralis Bois. larvae. Ind. Crops Prod. 2010;32:213–219. doi: 10.1016/j.indcrop.2010.04.010. DOI
Pavela R., Vrchotová N. Insecticidal effect of furanocoumarins from fruits of Angelica archangelica L. against larvae Spodoptera littoralis Boisd. Ind. Crops Prod. 2013;43:33–39. doi: 10.1016/j.indcrop.2012.06.044. DOI
Kathuria V., Kaushik N. Evaluation of bioactivity of some plant species against Spodoptera litura Fabricius (Noctuidae: Lepidoptera) Afr. Entomol. 2006;14:45–52.
Yang H., Piao X., Zhang L., Song S., Xu Y. Ginsenosides from the stems and leaves of Panax ginseng show antifeedant activity against Plutella xylostella (Linnaeus) Ind. Crops Prod. 2018;124:412–417. doi: 10.1016/j.indcrop.2018.07.054. DOI
Ruiz-Vásquez L., Reina M., Fajardo V., López M., González-Coloma A. Insect antifeedant components of Senecio fistulosus var. fistulosus—Hualtata. Plants. 2019;8:176. doi: 10.3390/plants8060176. PubMed DOI PMC
Ruiz-Vásquez L., Reina M., López-Rodríguez M., Giménez C., Cabrera R., Cuadra P., Fajardo V., González-Coloma A. Sesquiterpenes, flavonoids, shikimic acid derivatives and pyrrolizidine alkaloids from Senecio kingii Hook. Phytochemistry. 2015;117:245–253. doi: 10.1016/j.phytochem.2015.06.019. PubMed DOI
Santana O., Reina M., Fraga B.M., Sanz J., González-Coloma A. Antifeedant activity of fatty acid esters and phytosterols from Echium wildpretii. Chem. Biodivers. 2012;9:567–576. doi: 10.1002/cbdv.201100083. PubMed DOI
Baskar K., Maheswaran R., Pavunraj M., Pacikam S.M., Ignacimuthu S., Duraipandiyan V., Benelli G. Toxicity and antifeedant activity of Caesalpinia bonduc (L.) Roxb. (Caesalpiniaceae) extracts and fractions against the cotton bollworm Helicoverpa armigera Hub. (Lepidoptera: Noctuidae) Physiol. Mol. Plant Pathol. 2017;101:69–74. doi: 10.1016/j.pmpp.2017.01.006. DOI
Ningombam A., Ahluwalia V., Srivastava C., Walia S. Antifeedant activity and phytochemical investigation of Millettia pachycarpa extracts against Tobacco Leaf Eating Caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) J. Asia-Pac. Entomol. 2017;20:381–385. doi: 10.1016/j.aspen.2017.01.012. DOI
Gonzalez-Coloma A., Andrés M.F., Contreras R., Zúñiga G.E., Díaz C.E. Sustainable Production of Insecticidal Compounds from Persea indica. Plants. 2022;11:418. doi: 10.3390/plants11030418. PubMed DOI PMC
Akhtar Y., Isman M.B. Comparative growth inhibitory and antifeedant effects of plant extracts and pure allelochemicals on four phytophagous insect species. J. Appl. Ent. 2004;128:32–38. doi: 10.1046/j.1439-0418.2003.00806.x. DOI
Pitan O.O.R., Ayelaagbe O.O., Wang H.-L., Wang C.-Z. Identification, isolation and characterization of the antifeedant constituent of Clausena anisata against Helicoverpa armigera (Lepidoptera: Noctuidae) Insect Sci. 2009;16:247–253. doi: 10.1111/j.1744-7917.2009.01255.x. DOI
Baskar K., Ananthi J., Ignacimuthu S. Toxic effects of Solanum xanthocarpum Sch &Wendle against Helicoverpa armigera (Hub.), Culex quinquefasciatus (Say.) and Eisenia fetida (Savigny, 1826) Environ. Sci. Pollut. Res. 2018;25:2774–2782. doi: 10.1007/s11356-017-0655-1. PubMed DOI
Sánchez-Gómez R., Sánchez-Vioque R., Santana-Méridas O., Martín-Bejerano M., Alonso G.L., Salinas M.R., Zalacain A. A potential use of vine-shoot wastes: The antioxidant, antifeedant andphytotoxic activities of their aqueous extracts. Ind. Crops Prod. 2017;97:120–127. doi: 10.1016/j.indcrop.2016.12.009. DOI
Koul O., Smirle M.J., Isman M.B. Asarones from Acorus calamus L. oil. Their effect on feeding behavior and dietary utilization Peridroma saucia. J. Chem. Ecol. 1990;16:1911–1920. doi: 10.1007/BF01020504. PubMed DOI
Liu J., Hua J., Qu B., Guo X., Wang Y., Shao M., Luo S. Insecticidal terpenes from the essential oils of Artemisia nakaii and their inhibitory effects on acetylcholinesterase. Front. Plant Sci. 2021;12:720816. doi: 10.3389/fpls.2021.720816. PubMed DOI PMC
Julio L.F., Martín L., Muñoz R., Mainar A.M., Urieta J.S., Sanz J., Burillo J., González-Coloma A. Comparative chemistry and insect antifeedant effects of conventional (Clevenger and Soxhlet) and supercritical extracts (CO2) of two Lavandula luisieri populations. Ind. Crops Prod. 2014;58:25–30. doi: 10.1016/j.indcrop.2014.03.021. DOI
Santana O., Andrés M.F., Sanz J., Errahmani N., Abdeslam L., González-Coloma A. Valorization of essential oils from Moroccan aromatic plants. Nat. Prod. Commun. 2014;9:1109–1114. doi: 10.1177/1934578X1400900812. PubMed DOI
Andrés M.F., Rossa G.E., Cassel E., Vargas R.M.F., Santana O., Díaz C.E. Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food Chem. Toxicol. 2017;109:1086–1092. doi: 10.1016/j.fct.2017.04.017. PubMed DOI
Jaramillo-Colorado B.E., Pino-Benitez N., González-Coloma A. Volatile composition and biocidal (antifeedant and phytotoxic) activity of the essential oils of four Piperaceae species from Choco-Colombia. Ind. Crops Prod. 2019;138:111463. doi: 10.1016/j.indcrop.2019.06.026. DOI
de Melo J.P.R., da Câmara C.A.G., de Moraes M.M. Management of the diamondback moth via citrus oil. Biocatal. Agric. Biotechnol. 2023;51:102775. doi: 10.1016/j.bcab.2023.102775. DOI
Wu H., Wu H., Wang W., Liu T., Qi M., Feng J., Li X., Liu Y. Insecticidal activity of sesquiterpene lactones and monoterpenoidfrom the fruits of Carpesium abrotanoides. Ind. Crops Prod. 2016;92:77–83. doi: 10.1016/j.indcrop.2016.07.046. DOI
Shi W., Shihong L., Shenghong L. Defensive sesquiterpenoids from leaves of Eupatorium adenophorum. Chin. J. Chem. 2012;30:1331–1334. doi: 10.1002/cjoc.201200279. DOI
Díaz Napal G.N.D., Defagó M.T., Valladares G.R., Palacios S.M. Response of Epilachna paenulata to two flavonoids, pinocembrin and quercetin, in a comparative study. J. Chem. Ecol. 2010;36:898–904. doi: 10.1007/s10886-010-9823-1. PubMed DOI
Díaz C.E., Fraga B.M., Portero A.G., Brito I., López-Balboa C., Ruiz-Vásquez L., González-Coloma A. Insect antifeedant benzofurans from Pericallis species. Molecules. 2023;28:975. doi: 10.3390/molecules28030975. PubMed DOI PMC
Ruiz-Vásquez L., Olmeda A.S., Zúñiga G., Villarroel L., Echeverri L.F., González-Coloma A., Reina M. Insect antifeedant and ixodicidal compounds from Senecio adenotrichius. Chem. Biodiversity. 2017;14:e1600155. doi: 10.1002/cbdv.201600155. PubMed DOI
González-Coloma A., Gutiérrez C., Cabrera R., Reina M. silphinene derivatives: Their effects and modes of action on Colorado potato beetle. J. Agric. Food Chem. 1997;45:946–950. doi: 10.1021/jf960574g. DOI
Tsunaki K., Morimoto M. Chemical defense of yacón (Smallanthus sonchifolius) leaves against phytophagous insects: Insect antifeedants from yacón leaf trichomes. Plants. 2020;9:848. doi: 10.3390/plants9070848. PubMed DOI PMC
Nebapure S.M., Srivastava C., Walia S. Antifeedant activity of Gloriosa superba Linn. tuber extracts against Spodoptera litura (Fabricius) Natl. Acad. Sci. Lett. 2016;39:333–336. doi: 10.1007/s40009-016-0492-7. DOI
Ponsankar A., Sahayaraj K., Senthil-Nathan S., Vasantha-Srinivasan P., Karthi S., Thanigaivel A., Petchidurai G., Madasamy M., Hunter W.B. Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Environ. Sci. Pollut. Res. 2020;27:23390–23401. doi: 10.1007/s11356-019-04438-1. PubMed DOI
Gao R., Gao C., Tian X., Yu X., Di X., Xiao H., Zhang X. Insecticidal activity of deoxypodophyllotoxin, isolated from Juniperus sabina L., and related lignans against larvae of Pieris rapae L. Pest Manag. Sci. 2004;60:1131–1136. doi: 10.1002/ps.922. PubMed DOI
Li C.H., Luo S.H., Li S.H., Gao J.M. New antifeedant grayanane diterpenoids from the flowers of Pieris formosa. Molecules. 2017;22:1431. doi: 10.3390/molecules22091431. PubMed DOI PMC
Li Y.P., Li X.N., Gao L.H., Li H.Z., Wu G.X., Li R.T. Neopierisoids A and B, two new chlorinated 3,4-seco-grayanane diterpenoids with antifeedant activity from flowers of Pieris japonica. J. Agric. Food Chem. 2013;61:7219–7224. doi: 10.1021/jf401921x. PubMed DOI
Chen L., Wang Q., Huang S., Shan L., Gao F., Zhou X. Diterpenoid alkaloids from Aconitum leucostomum and their antifeedant activity. Chin. J. Org. Chem. 2017;37:1839–1843. doi: 10.6023/cjoc201702021. DOI
Zhong G., Liu J., Weng Q., Hu M., Luo J. Laboratory and field evaluations of rhodojaponin-III against the imported cabbage worm Pieris rapae (L.) (Lepidoptera: Pieridae) Pest Manag. Sci. 2006;62:976–981. doi: 10.1002/ps.1267. PubMed DOI
Nihei K.I., Asaka Y., Mine Y., Ito C., Furukawa H., Ju-Ichi M., Kubo I. Insect antifeedants from tropical plants: Structures of dumnin and dumsenin. J. Agric. Food Chem. 2004;52:3325–3328. doi: 10.1021/jf049819c. PubMed DOI
Nihei K.I., Asaka Y., Mine Y., Yamada Y., Iigo M., Yanagisawa T., Kubo I. Musidunin and musiduol, insect antifeedants from Croton jatrophoides. J. Nat. Prod. 2006;69:975–977. doi: 10.1021/np060068d. PubMed DOI
González-Coloma A., López-Balboa C., Santana O., Reina M., Fraga B.M. Triterpene-based plant defenses. Phytochem. Rev. 2011;10:245–260. doi: 10.1007/s11101-010-9187-8. DOI
Morimoto M., Fukumoto H., Hiratani M., Chavasiri W., Komai K. Insect antifeedants, pterocarpans and pterocarpol, in heartwood of Pterocarpus macrocarpus Kruz. Biosci. Biotech. Bioch. 2006;70:1864–1868. doi: 10.1271/bbb.60017. PubMed DOI
Abbaszadeh G., Srivastava C., Walia S. Insecticidal and antifeedant activities of clerodane diterpenoids isolated from the Indian bhant tree, Clerodendron infortunatum, against the cotton bollworm, Helicoverpa armigera. J. Insect Sci. 2014;14:29. doi: 10.1093/jis/14.1.29. PubMed DOI PMC
Fraga B.M., Díaz C.E., Bailén M., González-Coloma A. Sesquiterpene lactones from Artemisia absinthium. Biotransformation and rearrangement of the insect antifeedant 3α-hydroxypelenolide. Plants. 2021;10:891. doi: 10.3390/plants10050891. PubMed DOI PMC
González-Coloma A., Gutiérrez C., Hübner H., Achenbach H., Terrero D., Fraga B.M. Selective insect antifeedant and toxic action of ryanoid diterpenes. J. Agric. Food Chem. 1999;47:4419–4424. doi: 10.1021/jf990359a. PubMed DOI
Satasook C., Isman M.B., Wiriyachitra P. Activity of rocaglamide, an insecticidal natural product, against the variegated cutworm, Peridroma saucia (lepidoptera: Noctuidae) Pestic. Sci. 1992;36:53–58. doi: 10.1002/ps.2780360109. DOI
Arnason J.T., Philogène B.J.R., Donskov N., Hudon M., McDougall C., Fortier G., Morand P., Gardner D., Lambert J., Morris C., et al. Antifeedant and insecticidal properties of azadirachtin to the European Corn Borer, Ostrinia nubilalis. Entomol. Exp. Appl. 1985;38:29–34. doi: 10.1111/j.1570-7458.1985.tb03494.x. DOI
Rajab M.S., Bentley M.D., Alford A.R., Mendel M.J. A new limonoid insect antifeedant from the fruit of Melia volkensii. J. Nat. Prod. 1988;51:168–171. doi: 10.1021/np50055a030. DOI
Chen W., Isman M.B., Chiu S.-F. Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia (Lep., Noctuidae) J. Appl. Entomol. 1995;119:367–370. doi: 10.1111/j.1439-0418.1995.tb01302.x. DOI
Kitayama T., Yasuda K., Kihara T., Ito M., Fukumoto H., Morimoto M. Piperine analogs in a hydrophobic fraction from Piper ribersoides (Piperaceae) and its insect antifeedant activity. Appl. Entomol. Zool. 2013;48:455–459. doi: 10.1007/s13355-013-0204-4. DOI
Gonzalez-Coloma A., Gutierrez C., Miguel del Corral J.M., Gordaliza M., de la Puente M.L., San Feliciano A. Structure- and species-dependent insecticidal effects of neo-Clerodane diterpenes. J. Agric. Food Chem. 2000;48:3677–3681. doi: 10.1021/jf990843d. PubMed DOI
de Melo J.P.R., da Câmara C.A.G., de Moraes M.M. Bioactivity of formulas containing essential oils from the family Myrtaceae for the management of deltamethrin-resistant Plutella xylostella (L.) (Lepidoptera: Plutellidae) Phytoparasitica. 2023;51:305–321. doi: 10.1007/s12600-022-01043-w. DOI
Shao X., Lai D., Xiao W., Yang W., Yan Y., Kuang S. The botanical eurycomanone is a potent growth regulator of the diamondback moth. Ecotoxicol. Environ. Saf. 2021;208:111647. doi: 10.1016/j.ecoenv.2020.111647. PubMed DOI
Montenegro I.J., del Corral S., Diaz Napal G.N., Carpinella M.C., Mellado M., Madrid A.M., Villena J., Palacios S.M., Cuellar M.A. Antifeedant effect of polygodial and drimenol derivatives against Spodoptera frugiperda and Epilachna paenulata and quantitative structure-activity analysis. Pest Manag. Sci. 2018;74:1623–1629. doi: 10.1002/ps.4853. PubMed DOI
Rani P.U., Devanand P. Bioactivities of caffeic acid methyl ester (methyl-(E)-3-(3,4-dihydroxyphenyl)prop-2-enoate): A hydroxycinnamic acid derivative from Solanum melongena L. fruits. J. Pest Sci. 2013;86:579–589. doi: 10.1007/s10340-013-0516-8. DOI
Mullin C.A., Gonzalez-Coloma A., Gutierrez C., Reina M., Eichenseer H., Hollister B., Chyb S. Antifeedant effects of some novel terpenoids on chrysomelidae beetles: Comparisons with alkaloids on an alkaloid-adapted and nonadapted species. J. Chem. Ecol. 1997;23:1851–1866. doi: 10.1023/B:JOEC.0000006455.72602.3f. DOI
da Camara C.A.G., Doboszewski B., de Melo J.P.R., Nazarenko A.Y., dos Santos R.B., Moraes M.M. Novel insecticides from alkylated and acylated derivatives of thymol and eugenol for the control of Plutella xylostella (Lepidoptera: Plutellidae) J. Braz. Chem. Soc. 2022;33:196–204. doi: 10.21577/0103-5053.20210137. DOI
Navarro-Rocha J., Barrero A.F., Burillo J., Olmeda A.S., González-Coloma A. Valorization of essential oils from two populations (wild and commercial) of Geranium macrorrhizum L. Ind. Crops Prod. 2018;116:41–45. doi: 10.1016/j.indcrop.2018.02.046. DOI
Kimbaris A.C., González-Coloma A., Andrés M.F., Vidali V.P., Polissiou M.G., Santana-Méridas O. Biocidal compounds from Mentha sp. essential oils and their structure–activity relationships. Chem. Biodivers. 2017;14:e1600270. doi: 10.1002/cbdv.201600270. PubMed DOI
Rodilla J.M., Tinoco M.T., Morais J.C., Gimenez C., Cabrera R., Martín-Benito D., Castillo L., Gonzalez-Coloma A. Laurus novocanariensis essential oil: Seasonal variation and valorization. Biochem. Syst. Ecol. 2008;36:167–176. doi: 10.1016/j.bse.2007.09.001. DOI
Pavela R., Žabka M., Bednář J., Tříska J., Vrchotová N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Ind. Crops Prod. 2016;83:275–282. doi: 10.1016/j.indcrop.2015.11.090. DOI
Nguemtchouin M., Ngassoum M., Ngamo L., Mapongmetsem P., Sieliechi J., Malaisse F., Lognay G.C., Haubruge E., Hance T. Adsorption of essential oil components of Xylopia aethiopica (Annonaceae) by kaolin from Wak, Adamawa province (Cameroon) Appl. Clay Sci. 2009;44:1–6. doi: 10.1016/j.clay.2008.10.010. DOI
Maes C., Bouquillon S., Fauconnier M.L. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules. 2019;24:2539. doi: 10.3390/molecules24142539. PubMed DOI PMC
Pavela R., Vrchotová N., Šerá B. Growth inhibitory effect of extracts from Reynoutria sp plants against Spodoptera littoralis larvae. Agrociencia. 2008;42:573–584.
Sadek M.M. Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis (Lep., Noctuidae) J. Appl. Entomol. 2003;127:396–404. doi: 10.1046/j.1439-0418.2003.00775.x. DOI
Pavunraj M., Muthu C., Ignacimuthu S., Janarthanan S., Duraipandiyan V., Raja N., Vimalraj S. Antifeedant activity of a novel 6-(4,7-hydroxy-heptyl) quinone® from the leaves of the milkweed Pergularia daemia on the cotton bollworm Helicoverpa armigera (Hub.) and the tobacco armyworm Spodoptera litura (Fab.) Phytoparasitica. 2011;39:145–150. doi: 10.1007/s12600-010-0141-5. DOI
Mayanglambam S., Raghavendra A., Rajashekar Y. Use of Ageratina adenophora (Spreng.) essential oil as insecticidal and antifeedant agents against diamondback moth, Plutella xylostella (L.) J. Plant Dis. Protect. 2022;129:439–448. doi: 10.1007/s41348-022-00573-z. DOI
Vats T.K., Rawal V., Mullick S., Devi M.R., Singh P., Singh A.K. Bioactivity of Ageratum conyzoides (L.) (Asteraceae) on feeding and oviposition behaviour of diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) Int. J. Trop. Insect Sc. 2019;39:311–318. doi: 10.1007/s42690-019-00042-5. DOI
Yano K., Tanaka N. Antifeedant activity toward larvae of Pieris rapae crucivora of aromatic carbonyl compounds related to capillin isolated from Artemisia capillaris. Biosci. Biotech. Bioch. 1995;59:1130–1132. doi: 10.1271/bbb.59.1130. PubMed DOI
Yano K., Kamimura H. Antifeedant activity toward larvae of Pieris rapae crucivora of phenolethers related to methyleugenol isolated from Artemisia capillaris. Biosci. Biotech. Bioch. 1993;57:129–130. doi: 10.1271/bbb.57.129. PubMed DOI
Wagner L.S., Fernández E.N., Campos-Soldini M.P. Antifeedant and contact repellent activity of thyme, tarragon, marigold and lavender crude extracts against Epicauta atomaria (Coleoptera: Meloidae) Rev. Soc. Entomol. Arg. 2023;82:56–64. doi: 10.25085/rsea.820405. DOI
Haouas D., Flamini G., ben Halima-Kamel M., ben Hamouda M.H. Feeding perturbation and toxic activity of five Chrysanthemum species crude extracts against Spodoptera littoralis (Boisduval) (Lepidoptera; Noctuidae) Crop Prot. 2010;29:992–997. doi: 10.1016/j.cropro.2010.05.002. DOI
Henagamage A.P., Ranaweera M.N., Peries C.M., Premetilake M.M.S.N. Repellent, antifeedant and toxic effects of plants-extracts against Spodoptera frugiperda larvae (fall armyworm) Biocatal. Agric. Biotechnol. 2023;48:102636. doi: 10.1016/j.bcab.2023.102636. DOI
da Costa Inácio G., Alves J.V.B., Santos M.F.C., Vacari A.M., Figueiredo G.P., Bernardes W.A., Veneziani R.C.S., Ambrósio S.R. Feeding deterrence towards Helicoverpa armigera by Tithonia diversifolia tagitinin C-enriched extract. Arab. J. Chem. 2020;13:5292–5298. doi: 10.1016/j.arabjc.2020.03.008. DOI
Jayasinghe U.L.B., Kumarihamy B.M.M., Bandara A.G.D., Waiblinger J., Kraus W. Antifeedant activity of some Sri Lankan plants. Nat. Prod. Res. 2003;17:5–8. doi: 10.1080/10575630290034285. PubMed DOI
Rahayu S.E., Leksono A.S., Gama Z.P., Tarno H. The active compounds composition and antifeedant activity of leaf extract of two cultivar Carica papaya L. on Spodoptera litura F. larvae. AIP Conf. Proc. 2020;2231:040085. doi: 10.1063/5.0002677. DOI
Hidayati D., Darmanto Y., Nurhidayati T., Abdulgani N. Short Communication: Larvicidal and antifeedant activities of Kalanchoe daigremontiana against Plutella xylostella larvae. Nusant. Bioscie. 2016;8:312–315. doi: 10.13057/nusbiosci/n080229. DOI
Koul O., Shankar J.S., Mehta N., Taneja S.C., Tripathi A.K., Dhar K.L. Bioefficacy of crude extracts of Aglaia species (Meliaceae) and some active fractions against lepidopteran larvae. J. Appl. Entomol. 1997;121:245–248. doi: 10.1111/j.1439-0418.1997.tb01400.x. DOI
Smirle M.J., Wei S.G. Effects of neem oil on feeding behaviour and development of the pear sawfly, Caliroa cerasi. Entomol. Exp. Appl. 1996;80:403–407. doi: 10.1111/j.1570-7458.1996.tb00952.x. DOI
Wheeler D.A., Isman M.B. Effect of Trichilia americana extract on feeding behavior of asian armyworm, Spodoptera litura. J. Chem. Ecol. 2000;26:2791–2800. doi: 10.1023/A:1026441910784. DOI
Mehboob A., Zaka S.M., Sarmad M., Bajwa M. Feeding and oviposition deterrence of Murraya paniculata, Piper nigrum and Moringa oleifera extracts against Spodoptera litura (F) Pak. J. Zool. 2019;51:567–574. doi: 10.17582/journal.pjz/2019.51.2.567.574. DOI
Martínez M.L., von Poser G., Henriques A., Gattuso M., Rossini C. Simaroubaceae and Picramniaceae as potential sources of botanical pesticides. Ind. Crops Prod. 2013;44:600–602. doi: 10.1016/j.indcrop.2012.09.015. DOI
Pengsook A., Bullangpoti V., Koul O., Nobsathian S., Saiyaitong C., Yooboon T., Phankaen P., Pluempanupat W., Kumrungsee N. Antifeedant activity and biochemical responses in Spodoptera exigua Hübner (Lepidoptera: Noctuidae) infesting broccoli, Brassica oleracea var. alboglabra exposed to Piper ribesioides Wall extracts and allelochemicals. Chem. Biol. Technol. Agric. 2022;9:17. doi: 10.1186/s40538-021-00270-3. DOI
Peng J., Chen Z., Chen X., Zheng R., Lu S., Seyab M., Yang F., Li Q., Tang Q. Insecticidal potential of a Consolida ajacis extract and its major compound (ethyl linoleate) against the diamondback moth, Plutella xylostella. Pestic. Biochem. Phys. 2023;195:105557. doi: 10.1016/j.pestbp.2023.105557. PubMed DOI
Yang K.D., Li Y.J., Ge L., Qin Z.Z. Isolation of triterpenoids from Catunaregam spinosa. Adv. Mater. Res. 2011;236–238:1731–1737. doi: 10.4028/www.scientific.net/AMR.236-238.1731. DOI
Baskar K., Kingsley S., Vendan S.E., Paulraj M.G., Duraipandiyan V., Ignacimuthu S. Antifeedant, larvicidal and pupicidal activities of Atalantia monophylla (L.) Correa against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) Chemosphere. 2009;75:355–359. doi: 10.1016/j.chemosphere.2008.12.034. PubMed DOI
Melanie M., Hermawan W., Kasmara H., Kholifa A.H., Rustama M.M., Panatarani C. Antifeedant properties of fractionation Lantana camara leaf extract on cabbage caterpillars (Crocidolomia pavonana Fabricius) larvae. IOP Conf. Ser. Earth Environ. Sci. 2020;457:012047. doi: 10.1088/1755-1315/457/1/012047. DOI
Biswas S., Kundu A., Suby S.B., Kushwah A.S., Patanjali N., Shasany A.K., Verma R., Saha S., Mandal A., Banerjee T., et al. Lippia alba—A potential bioresource for the management of Spodoptera frugiperda (Lepidoptera: Noctuidae) Front. Plant Sci. 2024;15:1422578. doi: 10.3389/fpls.2024.1422578. PubMed DOI PMC
Zapata N., Budia F., Viñuela E., Medina P. Antifeedant and growth inhibitory effects of extracts and drimanes of Drimys winteri stem bark against Spodoptera littoralis (Lep., Noctuidae) Ind. Crops Prod. 2009;30:119–125. doi: 10.1016/j.indcrop.2009.02.009. DOI
Song C., Zhao J., Zheng R., Hao C., Yan X. Chemical composition and bioactivities of thirteen non-host plant essential oils against Plutella xylostella L. (Lepidoptera: Plutellidae) J. Asia-Pac. Entomol. 2022;25:101881. doi: 10.1016/j.aspen.2022.101881. DOI
Bailen M., Julio L.F., Diaz C.E., Sanz J., Martínez-Díaz R.A., Cabrera R., Burillo J., Gonzalez-Coloma A. Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Ind. Crops Prod. 2013;49:102–107. doi: 10.1016/j.indcrop.2013.04.055. DOI
Malhotra A., Rawat A., Prakash O., Kumar R., Srivastava R.M., Kumar S. Chemical composition and pesticide activity of essential oils from Artemisia annua L. harvested in the rainy and winter seasons. Biochem. Syst. Ecol. 2023;107:104601. doi: 10.1016/j.bse.2023.104601. DOI
Sainz P., Fe Andrés M., Martínez-Díaz R.A., Bailén M., Navarro-Rocha J., Díaz C.E., González-Coloma A. Chemical composition and biological activities of Artemisia pedemontana subsp. assoana essential oils and hydrolate. Biomolecules. 2019;9:558. doi: 10.3390/biom9100558. PubMed DOI PMC
Devrani A., Kumar R., Bargali P., Karakoti H., Mahawer S.K., Prakash O., Kumar S., Rawat D.S., Srivastava R.M. Nematicidal and insecticidal activity of essential oils from Artemisia scoparia and Centratherum punctatum and their mixtures. Biochem. Syst. Ecol. 2024;116:104859. doi: 10.1016/j.bse.2024.104859. DOI
Thapa P., Prakash O., Rawat A., Kumar R., Srivastava R.M., Rawat D.S., Pant A.K. Essential oil composition, antioxidant, anti-inflammatory, insect antifeedant and sprout suppressant activity in essential oil from aerial parts of Cotinus coggygria Scop. J. Essent. Oil Bear. Plants. 2020;23:65–76. doi: 10.1080/0972060X.2020.1729246. DOI
Ortiz de Elguea-Culebras G., Sánchez-Vioque R., Berruga M.I., Herraiz-Peñalver D., González-Coloma A., Andrés M.F., Santana-Méridas O. Biocidal Potential and chemical composition of industrial essential oils from Hyssopus officinalis, Lavandula × intermedia var. Super, and Santolina chamaecyparissus. Chem. Biodivers. 2018;15:e1700313. doi: 10.1002/cbdv.201700313. PubMed DOI
González-Coloma A., Delgado F., Rodilla J.M., Silva L., Sanz J., Burillo J. Chemical and biological profiles of Lavandula luisieri essential oils from western Iberia Peninsula populations. Biochem. Syst. Ecol. 2011;39:1–8. doi: 10.1016/j.bse.2010.08.010. DOI
Akhtar Y., Pages E., Stevens A., Bradbury R., da Camara C.A.G., Isman M.B. Effect of chemical complexity of essential oils on feeding deterrence in larvae of the cabbage looper. Physiol. Entomol. 2012;37:81–91. doi: 10.1111/j.1365-3032.2011.00824.x. DOI
Karakoti H., Kabdal T., Kumar R., Prakash O., Rawat D.S., Srivastava R.M., Santana de Oliveira M. Chemical composition, biological activities and in silico evaluation of essential oils from the aerial, and root parts of Nepeta hindostana (B. Heyne ex Roth)-Haines grown in North India. Biochem. Syst. Ecol. 2022;105:104512. doi: 10.1016/j.bse.2022.104512. DOI
Kostić M., Popović Z., Brkić D., Milanović S., Sivčev I., Stanković S. Larvicidal and antifeedant activity of some plant-derived compounds to Lymantria dispar L. (Lepidoptera: Limantriidae) Bioresour. Technol. 2008;99:7897–7901. doi: 10.1016/j.biortech.2008.02.010. PubMed DOI
Manjesh K., Kundu A., Dutta A., Saha S., Neelakanthaiah B.S. Bio-insecticidal nanoemulsions of essential oil and lipid-soluble fractions of Pogostemon cablin. Front. Plant Sci. 2022;13:874221. doi: 10.3389/fpls.2022.874221. PubMed DOI PMC
Pavela R., Sajfrtová M., Sovová H., Karban J., Bárnet M. The effects of extracts obtained by supercritical fluid extraction and traditional extraction techniques on larvae Leptinotarsa decemlineata SAY. J. Essent. Oil Res. 2009;21:367–373. doi: 10.1080/10412905.2009.9700194. DOI
Valcárcel F., Olmeda A.S., González M.G., Andrés M.F., Navarro-Rocha J., González-Coloma A. Acaricidal and insect antifeedant effects of essential oils from selected aromatic plants and their main components. Front. Agron. 2021;3:662802. doi: 10.3389/fagro.2021.662802. DOI
Kabdal T., Himani, Kumar R., Prakash O., Nagarkoti K., Rawat D.S., Srivastava R.M., Kumar S., Dubey S.K. Seasonal variation in the essential oil composition and biological activities of Thymus linearis Benth. collected from the Kumaun region of Uttarakhand, India. Biochem. Syst. Ecol. 2022;103:104449. doi: 10.1016/j.bse.2022.104449. DOI
Liao M., Xiao J.J., Zhou L.J., Yao X., Tang F., Hua R.M., Wu X.W., Cao H.Q. Chemical composition, insecticidal and biochemical effects of Melaleuca alternifolia essential oil on the Helicoverpa armigera. J. Appl. Entomol. 2017;141:721–728. doi: 10.1111/jen.12397. DOI
Jaramillo-Colorado B., Julio-Torres J., Duarte-Restrepo E., Gonzalez-Coloma A., Julio-Torres L.F. Comparative study of volatile composition and biological activities of essential oil from Colombian Piper marginatum Jacq. Bol. Latinoam. Caribe Plantas Med. Aromat. 2015;14:343–354.
Jeon H., Tak J.H. Gustatory habituation to essential oil induces reduced feeding deterrence and neuronal desensitization in Spodoptera litura. J. Pest Sci. 2024;97:1–16. doi: 10.1007/s10340-024-01794-x. DOI
Sharaby A. Anti-insect properties of the essential oil of lemon grass, Cymbopogen citratus against the lesser cotton leafworm Spodoptera exigua (Hbn) Int. J. Trop. Insect Sci. 1988;9:77–80. doi: 10.1017/S1742758400010079. DOI
Javier A.M.J., Ocampo V.R., Ceballo F.A., Javier P.A. Insecticidal activities of essential oils from different plants against the cabbage worm, Crocidolomia pavonana Fabricius (Lepidoptera: Crambidae) Philipp. Agric. Sci. 2018;101:158–166.
Agarwal M., Walia S., Dhingra S., Khambay B.P.S. Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/ derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Manag. Sci. 2001;57:289–300. doi: 10.1002/ps.263. PubMed DOI
Zhang A., Liu Z., Lei F., Fu J., Zhang X., Ma W., Zhang L. Antifeedant and oviposition-deterring activity of total ginsenosides against Pieris rapae. Saudi J. Biol. Sci. 2017;24:1751–1753. doi: 10.1016/j.sjbs.2017.11.005. PubMed DOI PMC
Liu S., Wang X., Xu Y., Zhang R., Xiao S., Wang Y., Zhang L. Antifeedant and ovicidal activities of ginsenosides against Asian corn borer, Ostrinia furnacalis (Guenee) PLoS ONE. 2019;14:e0211905. doi: 10.1371/journal.pone.0211905. PubMed DOI PMC
Ding Y.H., Wang H.T., Shi S., Meng Y., Feng J.C., Wu H.B. Sesquiterpenoids from Artemisia vestita and their antifeedant and antifungal activities. Molecules. 2019;24:3671. doi: 10.3390/molecules24203671. PubMed DOI PMC
Sachdev-Gupta K., Radke C.D., Alan J., Renwick A. Antifeedant activity of cucurbitacins from Iberis amara against larvae of Pieris rapae. Phytochemistry. 1993;33:1385–1388. doi: 10.1016/0031-9422(93)85096-A. DOI
Morimoto M., Fukumoto H., Nozoe T., Hagiwara A., Komai K. Synthesis and insect antifeedant activity of aurones against Spodoptera litura larvae. J. Agric. Food Chem. 2007;55:700–705. doi: 10.1021/jf062562t. PubMed DOI
Tokunaga T., Dohmura A., Takada N., Ueda M. Cytotoxic antifeedant from Dionaea muscipula Ellis: A defensive mechanism of carnivorous plants against predators. Bull. Chem. Soc. Jpn. 2004;77:537–541. doi: 10.1246/bcsj.77.537. DOI
Deng Y.-Y., Qu B., Zhan Z.-L., Wang A.-Q., Zhou W., Jia M.-Y., Hua J., Luo S.-H. Bioactive tigliane diterpenoids from the latex of Euphorbia fischeriana. Nat. Prod. Res. 2019;35:179–187. doi: 10.1080/14786419.2019.1616728. PubMed DOI
Duraipandiyan V., Ignacimuthu S., Gabriel Paulraj M. Antifeedant and larvicidal activities of Rhein isolated from the flowers of Cassia fistula L. Saudi J. Biol. Sci. 2011;18:129–133. doi: 10.1016/j.sjbs.2010.12.009. PubMed DOI PMC
Fischer D.C., Kogan M., Paxton J. Effect of Glyceollin, a soybean phytoalexin, on feeding by three phytophagous beetles (Coleoptera: Coccinellidae and Chrysomelidae): Dose versus response. Environ. Entomol. 1990;19:1278–1282. doi: 10.1093/ee/19.5.1278. DOI
Wu H.-B., Liu T.-T., Lian Y.-X., Chen X., Wang W.-S. Antifeedant activities of secondary metabolites from Hyssopus cuspidatus against Plutella xylostella. Chem. Nat. Compnd. 2018;54:1088–1090. doi: 10.1007/s10600-018-2562-1. DOI
Luo S.H., Luo Q., Niu X.M., Xie M.J., Zhao X., Schneider B., Gershenzon J., Li S.H. Glandular trichomes of Leucosceptrum canum harbor defensive sesterterpenoids. Angew. Chem. Int. Ed. 2010;49:4471–4475. doi: 10.1002/anie.201000449. PubMed DOI
Morimoto M., Tanimoto K., Nakano S., Ozaki T., Nakano A., Komai K. Insect antifeedant activity of flavones and chromones against Spodoptera litura. J. Agric. Food Chem. 2003;51:389–393. doi: 10.1021/jf025627a. PubMed DOI
Bruno M., Piozzi F., Maggio A.M., Rosselli S., Simmonds J., Servettaz O. Antifeedant activity of neo-clerodane diterpenoids from Teucrium arduini. Biochem. Syst. Ecol. 2002;30:595–599. doi: 10.1016/S0305-1978(01)00111-9. DOI
Bruno M., Piozzi F., Roselli S. Natural and hemisynthetic neoclerodane diterpenoids from Scutellaria and their antifeedant activity. Nat. Prod. Rep. 2002;19:357–378. doi: 10.1039/b111150g. PubMed DOI
Caballero C., Castan P., Ortego F., Fontana G., Pierro P., Savona G., Rodríguez B. Effects of ajugarins and related neoclerodane diterpenoids on feeding behaviour of Leptinotarsa decemlineata and Spodoptera exigua larvae. Phytochemistry. 2001;58:249–256. doi: 10.1016/S0031-9422(01)00253-9. PubMed DOI
Cai J.Y., Chen D.Z., Luo S.H., Kong N.C., Zhang Y., Di Y.T., Zhang Q., Hua J., Jing S.X., Li S.L., et al. Limonoids from Aphanamixis polystachya and their antifeedant activity. J. Nat. Prod. 2014;77:472–482. doi: 10.1021/np400678h. PubMed DOI
Nathan S.S., Kalaivani K., Murugan K., Chung P.G. Efficacy of neem limonoids on Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) the rice leaffolder. Crop Prot. 2005;24:760–763. doi: 10.1016/j.cropro.2005.01.009. DOI
Lin-er L., van Loon J.J.A., Schoonhoven L.M. Behavioural and sensory responses to some neem compounds by Pieris brassicae larvae. Physiol. Entomol. 1995;20:134–140. doi: 10.1111/j.1365-3032.1995.tb00809.x. DOI
Koul O., Isman M.B. Toxicity of the limonoid allelochemical cedrelone to noctuid larvae. Entomol. Exp. Appl. 1992;64:281–287. doi: 10.1111/j.1570-7458.1992.tb01618.x. DOI
Mootoo B.S., Ali A., Motilal R., Pingal R., Ramlal A., Khan A., Reynolds W.F., McLean S. Limonoids from Swietenia macrophylla and S. aubrevilleana. J. Nat. Prod. 1999;62:1514–1517. doi: 10.1021/np990199x. PubMed DOI
Wang J., Xu J.-B., Yang H.B., Gao F., Zhou X.L., Chen L., Huang S. Diterpenoid alkaloids from Aconitum leucostomum and their antifeedant activity. Heterocycles. 2021;102:1579–1587. doi: 10.3987/COM-21-14482. DOI
Huang S., Feng Y., Ren J., Yang C., Chen L., Zhou X. Diterpenoid alkaloids from the roots of Aconitum rockii and their antifeedant activity. Chin. J. Org. Chem. 2022;42:18561862. doi: 10.6023/cjoc202111006. DOI
Zhang J.F., Chen L., Huang S., Shan L.H., Gao F., Zhou X.L. Diterpenoid alkaloids from two Aconitum species with antifeedant activity against Spodoptera exigua. J. Nat. Prod. 2017;80:3136–3142. doi: 10.1021/acs.jnatprod.7b00380. PubMed DOI
Tian X., Li Y., Hao N., Su X., Du J., Hu J., Tian X. The antifeedant, insecticidal and insect growth inhibitory activities of triterpenoid saponins from Clematis aethusifolia Turcz against Plutella xylostella (L.) Pest Manag. Sci. 2021;77:455–463. doi: 10.1002/ps.6038. PubMed DOI
Park I.K., Lee H.S., Lee S.G., Park J.D., Ahn Y.J. Antifeeding activity of isoquinoline alkaloids identified in Coptis japonica roots against Hyphantria cunea (Lepidoptera: Arctiidae) and Agelastica coerulea (Coleoptera: Galerucinae) J. Econ. Entomol. 2000;93:331–335. doi: 10.1603/0022-0493-93.2.331. PubMed DOI
Shan L., Chen L., Gao F., Zhou X. Diterpenoid alkaloids from Delphinium naviculare var. lasiocarpum with their antifeedant activity on Spodoptera exigua. Nat. Prod. Res. 2019;33:3254–3259. doi: 10.1080/14786419.2018.1475382. PubMed DOI
Gao G., Lu Z., Tao S., Zhang S., Wang F. Triterpenoid saponins with antifeedant activities from stem bark of Catunaregam spinosa (Rubiaceae) against Plutella xylostella (Plutellidae) Carbohydr. Res. 2011;346:2200–2205. doi: 10.1016/j.carres.2011.07.022. PubMed DOI
Morimoto M., Tanimoto K., Sakatani A., Komai K. Antifeedant activity of an anthraquinone aldehyde in Galium aparine L. against Spodoptera litura F. Phytochemistry. 2002;60:163–166. doi: 10.1016/S0031-9422(02)00095-X. PubMed DOI
Baskar K., Duraipandiyan V., Ignacimuthu S. Bioefficacy of the triterpenoid friedelin against Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) Pest Manag. Sci. 2014;70:1877–1883. doi: 10.1002/ps.3742. DOI
Yu H., Li J., Wu G., Tang Q., Duan X., Liu Q., Lan M., Zhao Y., Hao X., Qin X., et al. Antifeedant mechanism of Dodonaea viscosa saponin A isolated from the seeds of Dodonaea viscosa. Molecules. 2022;27:4464. doi: 10.3390/molecules27144464. PubMed DOI PMC
Saha S., Walia S., Kumar J., Dhingra S., Parmar B.S. Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi. J. Agric. Food Chem. 2010;58:434–440. doi: 10.1021/jf902439m. PubMed DOI
Shukla Y.N., Rani A., Tripathi A.K., Sharma S. Antifeedant activity of ursolic acid isolated from Duboisia myoporoides. Phytother. Res. 1996;10:359–360. doi: 10.1002/(SICI)1099-1573(199606)10:4<359::AID-PTR841>3.0.CO;2-C. DOI
Gabaston J., el Khawand T., Waffo-Teguo P., Decendit A., Richard T., Mérillon J.M., Pavela R. Stilbenes from grapevine root: A promising natural insecticide against Leptinotarsa decemlineata. J. Pest Sci. 2018;91:897–906. doi: 10.1007/s10340-018-0956-2. DOI
Rodilla J.M., Silva L.A., Martinez N., Lorenzo D., Davyt D., Castillo L., Giménez C., Cabrera R., González-Coloma A., Zrostíková J., et al. Advances in the identification and agrochemical importance of sesquiterpenoids from Bulnesia sarmientoi essential oil. Ind. Crops Prod. 2011;33:497–503. doi: 10.1016/j.indcrop.2010.10.020. DOI
Pavela R. Antifeedant and Larvicidal Effects of Some phenolic components of essential oils lasp lines of introduction against Spodoptera littoralis (Boisd.) J. Essent. Oil Bear. Plants. 2011;14:266–273. doi: 10.1080/0972060X.2011.10643932. DOI
Gols G.J.Z., van Loon J.J.A., Messchendorp L. Antifeedant and toxic effects of drimanes on Colorado potato beetle larvae. Entomol. Exp. Appl. 1996;79:69–76. doi: 10.1111/j.1570-7458.1996.tb00810.x. DOI
Eichenseer H., Mullin C.A. Antifeedant comparisons of gaba/ glycinergic antagonists for diabroticite leaf beetles (coleoptera: Chrysomelidae) J. Chem. Ecol. 1997;23:71–82. doi: 10.1023/B:JOEC.0000006346.94240.f9. DOI
Kiran S.R., Reddy A.S., Devi P.S., Reddy K.J. Insecticidal, antifeedant and oviposition deterrent effects of the essential oil and individual compounds from leaves of Chloroxylon swietenia DC. Pest Manag. Sci. 2006;62:1116–1121. doi: 10.1002/ps.1266. PubMed DOI
Diaz Napal G.N., Palacios S.M. Bioinsecticidal effect of the flavonoids pinocembrin and quercetin against Spodoptera frugiperda. J. Pest Sci. 2015;88:629–635. doi: 10.1007/s10340-014-0641-z. DOI
Abdelgaleil S.A.M., Abbassy M.A., Belal A.S.H., Abdel Rasoul M.A.A. Bioactivity of two major constituents isolated from the essential oil of Artemisia judaica L. Bioresour. Technol. 2008;99:5947–5950. doi: 10.1016/j.biortech.2007.10.043. PubMed DOI
Sreelatha T., Hymavathi A., Babu K.S., Murthy J.M., Pathipati U.R., Rao J.M. Synthesis and insect antifeedant activity of plumbagin derivatives with the amino acid moiety. J. Agric. Food Chem. 2009;57:6090–6094. doi: 10.1021/jf901760h. PubMed DOI
Vargas-Méndez L.Y., Sanabria-Flórez P.L., Saavedra-Reyes L.M., Merchan-Arenas D.R., Kouznetsov V.V. Bioactivity of semisynthetic eugenol derivatives against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae infesting maize in Colombia. Saudi J. Biol. Sci. 2019;26:1613–1620. doi: 10.1016/j.sjbs.2018.09.010. PubMed DOI PMC
Pour S.A., Shahriari M., Zibaee A., Mojarab-Mahboubkar M., Sahebzadeh N., Hoda H. Toxicity, antifeedant and physiological effects of trans-anethole against Hyphantria cunea Drury (Lep: Arctiidae) Pestic. Biochem. Physiol. 2022;185:105135. doi: 10.1016/j.pestbp.2022.105135. PubMed DOI