Dinuclear Copper(II) Complexes of 2,6-Bis[(N-Methylpiperazine-1-yl)methyl]-4-Formyl Phenol Ligand: Promising Biomimetic Catalysts for Dye Residue Degradation and Drug Synthesis

. 2025 Feb 13 ; 26 (4) : . [epub] 20250213

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40004069

Grantová podpora
SGS_025_001 Faculty of Chemical Technology, University of Pardubice
ID: 90254 e-INFRA CZ project
23-06465S Czech Science Foundation

In this study, three dinuclear copper(II) complexes of ligand 2,6-bis[(N-methyl-piperazine-1-yl)methyl]-4-formyl phenol (L1) and one of 2,6-bis[(N-methylpiperazine-1-yl)methyl]-4-formyl phenol dimethylacetal (L2) with copper(II) ions have been investigated as new types of biomimetic catalysts for the oxidative transformation of different aminophenols and phenyldiamines. All the complexes of interest were newly synthesized and further characterized by IR spectroscopy, UV-Vis and mass spectrometry, X-ray diffraction, and selected electrochemical measurements. Crystal structures of these dinuclear copper(II) complexes have revealed that the coordination-shell geometry of copper atoms is close to a tetragonal pyramid. Catecholase, phenoxazinone synthase, and horseradish peroxidase-like activities were observed in pure methanol and water-methanol mixtures in the presence of molecular oxygen. The potential applicability of the complexes under study is discussed with respect to their possibilities and limitations in the replacement of natural copper-containing oxidoreductases in the oxidative degradation of water-insoluble chlorinated aminophenols in the dye industry or in the production of phenoxazine-based drugs.

Zobrazit více v PubMed

Souza J.C., Silva B.F., Morales D.A., Umbuzeiro G.D.A., Zanoni M.V.B. Assessment of the compounds formed by oxidative reaction between p-toluenediamine and p-aminophenol in hair dyeing processes: Detection, mutagenic and toxicological properties. Sci. Total Environ. 2021;795:148806. doi: 10.1016/j.scitotenv.2021.148806. PubMed DOI

Souza J.C., Silva B.F., Morales D.A., Umbuzeiro G.D.A., Zanoni M.V.B. Assessment of p-aminophenol oxidation by simulating the process of hair dyeing and occurrence in hair salon wastewater and drinking water from treatment plant. J. Hazard. Mater. 2020;387:122000. doi: 10.1016/j.jhazmat.2019.122000. PubMed DOI

He L., Michailidou F., Gahlon H.L., Zeng W. Hair dye ingredients and potential health risks from exposure to hair dyeing. Chem. Res. Toxicol. 2022;35:901–915. doi: 10.1021/acs.chemrestox.1c00427. PubMed DOI PMC

Babenysheva A.V., Lisovskaya N.A., Belevich I.O., Lisovenko N.Y. Synthesis and antimicrobial activity of substituted benzoxazines and quinoxalines. Pharm. Chem. J. 2006;40:611–613. doi: 10.1007/s11094-006-0204-6. DOI

Sabaa M.W., Sanad M.A., Abd El-Ghaffar M.A., Abdelwahab N.A., Sayed S.M., Soliman S.M. Synthesis, characterization, and application of polyanisidines as efficient photostabilizers for poly(vinyl chloride) films. J. Elastomers Plast. 2019;52:537–547. doi: 10.1177/0095244319877668. DOI

Nohynek G.J., Fautz R., Benech-Kieffer F., Toutain H. Toxicity and human health risk of hair dyes. Food Chem. Toxicol. 2004;42:517–543. doi: 10.1016/j.fct.2003.11.003. PubMed DOI

Mukkanna K.S., Stone N.M., Ingram J.R. Para-phenylenediamine allergy: Current perspectives on diagnosis and management. J. Asthma Allergy. 2017;10:9–15. doi: 10.2147/JAA.S90265. PubMed DOI PMC

Zhang X., Peng Z., Hou S., Sun Q., Yuan H., Yin D., Zhang W., Zhang Y., Tang J., Zhang S., et al. Ubiquitous occurrence of p-phenylenediamine (PPD) antioxidants and PPD-quinones in fresh atmospheric snow and their amplification effects on associated aqueous contamination. J. Hazard. Mater. 2024;465:133409. doi: 10.1016/j.jhazmat.2023.133409. PubMed DOI

Hahn V. Potential of the enzyme laccase for the synthesis and derivatization of antimicrobial compounds. World J. Microbiol. Biotechnol. 2023;39:107. doi: 10.1007/s11274-023-03539-x. PubMed DOI PMC

Chaurasia K.P., Bharati S.L., Sarma C. Laccases in pharmaceutical chemistry: A comprehensive appraisal. Mini-Rev. Org. Chem. 2016;13:430–451. doi: 10.2174/1570193X13666161019124854. DOI

Maiti S., Sinha S.S., Singh M. Microbial decolorization and detoxification of emerging environmental pollutant: Cosmetic hair dyes. J. Hazard. Mater. 2017;338:356–363. doi: 10.1016/j.jhazmat.2017.05.034. PubMed DOI

Mishra V., Sharma U., Rawat D., Benson D., Singh M., Sharma R.S. Fast-changing life-styles and ecotoxicity of hair dyes drive the emergence of hidden toxicants threatening environmental sustainability in Asia. Environ. Res. 2020;184:109253. doi: 10.1016/j.envres.2020.109253. PubMed DOI

Chen C.Y., Huang Y.C., Wei C.M., Meng M., Liu W.-H., Yang C.-H. Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express. 2013;3:49. doi: 10.1186/2191-0855-3-49. PubMed DOI PMC

Santo M., Weitsman R., Sivan A. The role of the copper-binding enzyme—Laccase—In the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeter. Biodegr. 2013;84:204–210. doi: 10.1016/j.ibiod.2012.03.001. DOI

Gałązka A., Jankiewicz U., Szczepkowski A. Biochemical characteristics of laccases and their practical application in the removal of xenobiotics from water. Appl. Sci. 2023;13:4394. doi: 10.3390/app13074394. DOI

Park H., Kwon O., Ryu K. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase. Korean J. Chem. Eng. 2015;32:1847–1852. doi: 10.1007/s11814-015-0011-4. DOI

Benavente R., Lopez-Tejedor D., Perez-Rizquez C., Palomo J.M. Ultra-fast degradation of p-aminophenol by a nanostructured iron catalyst. Molecules. 2018;23:2166. doi: 10.3390/molecules23092166. PubMed DOI PMC

Lin Y., Cao Y., Yao O., Chai O.J.H., Xie J. Engineering noble metal nanomaterials for pollutant decomposition. Ind. Eng. Chem. Res. 2022;59:20561–20581. doi: 10.1021/acs.iecr.0c04258. DOI

Zhang L., Li B., Meng X., Huang L., Wang D. Degradation of four organophosphorous pesticides catalyzed by chitosan-metal coordination complexes. Environ. Sci. Pollut. Res. Int. 2015;22:15104–15112. doi: 10.1007/s11356-015-4669-2. PubMed DOI

Jain M., Yadav S., Mansi, Misra N., Khanna P., Khanna L. Copper-bisbenzimidazole complexes as biomimetic catalysts in organic transformations. Mini-Rev. Org. Chem. 2004;21:216–228. doi: 10.2174/1570193X20666230102105854. DOI

Reja S., Kejriwal A., Das R.K. Copper based biomimetic catalysts of catechol oxidase: An overview on recent trends. Catal. Ind. 2023;15:108–124. doi: 10.1134/S2070050423010063. DOI

Rajesh K., Rahiman A.K., Bharathi K.S., Sreedaran S., Gangadevi V., Narayanan V. Synthesis, characterization and bioactive evaluation of copper(II) 5,10,15,20-tetrakis[α,α,α,α-2-(2,6-bis(4-methylpiperazine-1-yl-methyl)-4-iminomethyl phenol)phenyl] porphyrin: A picket-fence porphyrin. Spectrochim. Acta A. 2010;77:652–660. doi: 10.1016/j.saa.2010.07.005. PubMed DOI

Reim J., Krebs B. Synthesis, structure and catecholase activity study of dinuclear copper(II) complexes. J. Chem. Soc., Dalton Trans. 1997;20:3793–3804. doi: 10.1039/a704245k. DOI

Sýs M., Kocábová J., Klikarová J., Novák M., Jirásko R., Obluková M., Mikysek T., Sokolová R. Comparison of mononuclear and dinuclear copper(II) biomimetic complexes: Spectroelectrochemical mechanistic study of their catalytic pathways. Dalton Trans. 2022;51:13703–13715. doi: 10.1039/D2DT01610A. PubMed DOI

Wu M.H., Lin M.C., Lee C.C., Yu S.M., Wang A.H., Ho T.D. Enhancement of laccase activity by pre-incubation with organic solvents. Sci. Rep. 2019;9:9754. doi: 10.1038/s41598-019-45118-x. PubMed DOI PMC

Addison A.W., Nageswara Rao T., Reedijk J., van Rijn J., Verschoor G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984;7:1349–1356. doi: 10.1039/DT9840001349. DOI

Holló B.B., Petruševski V.M., Kovács G.B., Franguelli F.P., Farkas A., Menyhárd A., Lendvay G., Sajó I.E., Nagy-Bereczki L., Pawar R.P., et al. Thermal and spectroscopic studies on a double-salt-type pyridine–silver perchlorate complex having κ1-O coordinated perchlorate ions. J. Therm. Anal. Calorim. 2019;138:1193–1205. doi: 10.1007/s10973-019-08663-1. DOI

Sýs M., Bártová M., Mikysek T., Švancara I. Electrodeposited carbonyl functional polymers as suitable supports for preparation of the first-generation biosensors. Sensors. 2023;23:3724. doi: 10.3390/s23073724. PubMed DOI PMC

Nakamoto K. Part A, Theory and Applications in Inorganic Chemistry. 6th ed. Wiley; Hoboken, NJ, USA: 2009. Infrared and raman spectra of inorganic and coordination compounds. DOI

Fruk L., Kuo C.-H., Torres E., Niemeyer C.M. Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology. Angew. Chem. Int. Ed. 2009;48:1550–1574. doi: 10.1002/anie.200803098. PubMed DOI

Pàmies O., Diéguez M., Bäckvall J.-E. Artificial metalloenzymes in asymmetric catalysis: Key developments and future directions. Adv. Synth. Catal. 2015;357:1567–1586. doi: 10.1002/adsc.201500290. DOI

Chowdhury B., Maji M., Biswas B. Catalytic aspects of a copper(II) complex: Biological oxidase to oxygenase activity. J. Chem. Sci. 2017;129:1627–1637. doi: 10.1007/s12039-017-1379-y. DOI

Podder N., Mandal S. Aerobic oxidation of 2-aminophenol catalysed by a series of mononuclear copper(II) complexes: Phenoxazinone synthase-like activity and mechanistic study. New J. Chem. 2020;44:12793–12805. doi: 10.1039/D0NJ02558E. DOI

Roy S., Dutta T., Drew M.G.B., Chattopadhyay S. Phenoxazinone synthase mimicking activity of a dinuclear copper(II) complex with a half salen type Schiff base ligand. Polyhedron. 2020;178:114311. doi: 10.1016/j.poly.2019.114311. DOI

Oloyede H.O., Orighomisan Woods J.A., Görls H., Plass W., Eseola A.O. Influence of structural and thermal factors on phenoxazinone synthase activities catalysed by coordinatively saturated cobalt(III) octahedral complexes bearing diazene–disulfonamide NˆNˆN chelators. C. R. Chim. 2020;23:169–183. doi: 10.5802/crchim.15. DOI

Lerner L. Identity of a purple dye formed by peroxidic oxidation of p-aminophenol at low pH. J. Phys. Chem. A. 2011;115:2011–9901. doi: 10.1021/jp2045806. PubMed DOI

Quaranta M., Murkovic M., Klimant I. A new method to measure oxygen solubility in organic solvents through optical oxygen sensing. Analyst. 2013;138:6243–6245. doi: 10.1039/c3an36782g. PubMed DOI

Quaranta M., Murkovic M., Klimant I., Zhou P., Liu H., Chen S., Lucia L., Zhan H., Fu S. 2,3-Diaminophenazine. Molbank. 2011;2011:M730. doi: 10.3390/m730. DOI

Tyagi N., Mathur P. Iron(III) complexes of bis (benzimidazol-2-yl) methyl) thiophene-2,5-dicarboxamide: Synthesis, spectral and oxidation of o-phenylenediamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;96:759–767. doi: 10.1016/j.saa.2012.07.004. PubMed DOI

Khattar R., Yadav A., Mathur P. Copper(II) complexes as catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;142:375–381. doi: 10.1016/j.saa.2015.01.115. PubMed DOI

Cheng L., Wu F., Bao H., Li F., Xu G., Zhang Y., Niu W. Unveiling the actual catalytic sites in nanozyme-catalyzed oxidation of o-phenylenediamine. Small. 2021;17:2104083. doi: 10.1002/smll.202104083. PubMed DOI

Bystryak S., Acharya C. Detection of HIV-1 p24 antigen in patients with varying degrees of viremia using an ELISA with a photochemical signal amplification system. Clin. Chim. Acta. 2016;456:128–136. doi: 10.1016/j.cca.2016.02.022. PubMed DOI PMC

Li Y., Li G., Peng H., Qin Y., Chen K. Facile synthesis of high-quality ultralong poly(aniline-co-p-phenylenediamine) nanofibers. Synth. Met. 2013;164:42–46. doi: 10.1016/j.synthmet.2012.12.024. DOI

Amer I., Mokrani T., Jewell L., Young D.A., Vosloo H.C.N. Oxidative copolymerization of p-phenylenediamine and 3-aminobenzenesulfonic acid. Tetrahedron Lett. 2016;57:426–430. doi: 10.1016/j.tetlet.2015.12.056. DOI

Samanta S., Roy P., Kar P. Sensing of ethanol and other alcohol contaminated ethanol by conducting functional poly(o-phenylenediamine) Mater. Sci. Eng. B. 2020;256:114541. doi: 10.1016/j.mseb.2020.114541. DOI

Mikysek T., Frühbauerová M., Švancara I., Novák M., Sýs M. A new voltammetric approach for the determination of biomimetic catalyst kinetic constants based on substrate consumption. Electroanalysis. 2023;35:e202200269. doi: 10.1002/elan.202200269. DOI

Meyer A., Fischer K. Oxidative transformation processes and products of para-phenylenediamine (PPD) and para-toluenediamine (PTD)—A review. Environ. Sci. Eur. 2015;27:11. doi: 10.1186/s12302-015-0044-7. DOI

Shanmuga Bharathi K., Kalilur Rahiman A., Rajesh K., Sreedaran S., Aravindan P.G., Velmurugan D., Narayanan V. Synthesis of new ‘end-off’ μ-phenoxo and bis-μ-acetato tri-bridged copper(II), nickel(II) and zinc(II) complexes: Spectral, magnetic, electrochemical, and catalytic studies. Polyhedron. 2006;25:2859–2868. doi: 10.1016/j.poly.2006.04.022. DOI

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015;C71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Spek A.L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003;36:7–13. doi: 10.1107/S0021889802022112. DOI

Ganguly S., Kar P., Chakraborty M., Sarkard K., Ghosh A. Synthesis, structure and phenoxazinone synthase-like activity of three unprecedented alternating CoII–CoIII 1D chains. New J. Chem. 2019;43:18780. doi: 10.1039/C9NJ03236C. DOI

Liu M., Ye Y., Xu L., Gao T., Zhong A., Song Z. Recent Advances in Nanoscale Zero-Valent Iron (nZVI)-Based Advanced Oxidation Processes (AOPs): Applications, Mechanisms, and Future Prospects. Nanomaterials. 2023;13:2830. doi: 10.3390/nano13212830. PubMed DOI PMC

Liu M., Wan Y., Wang Y., Xu J., Li X. Robust photoelectrocatalytic degradation of antibiotics by organic-inorganic PDISA/Bi2WO6 S-scheme heterojunction membrane. J. Environ. Chem. Eng. 2024;12:112328. doi: 10.1016/j.jece.2024.112328. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...