Electrodeposited Carbonyl Functional Polymers as Suitable Supports for Preparation of the First-Generation Biosensors

. 2023 Apr 04 ; 23 (7) : . [epub] 20230404

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37050783

Grantová podpora
SGS-2023-001 University of Pardubice

The aim of this electrochemical study was to ascertain which type of electrochemically deposited carbonyl functionalized polymer represents the most suitable electrode substrate for direct covalent immobilization of biological catalysts (enzymes). For this purpose, a triad of amperometric biosensors differing in the type of conductive polymers (poly-vanillin, poly-trans-cinnamaldehyde, and poly-4-hydroxybenzaldehyde) and in the functioning of selected enzymes (tyrosinase and alkaline phosphatase) has been compared for the biosensing of neurotransmitters (dopamine, epinephrine, norepinephrine, and serotonin) and phenyl phosphates (p-aminophenyl phosphate and hydroquinone diphosphate). The individual layers of the polymers were electrochemically deposited onto commercially available screen-printed carbon electrodes (type C110) using repetitive potential cycling in the linear voltammetric mode. Their characterization was subsequently performed by SEM imaging and attenuated total reflectance FTIR spectroscopy. Molecules of enzymes were covalently bonded to the free carbonyl groups in polymers via the Schiff base formation, in some cases even with the use of special cross-linkers. The as-prepared biosensors have been examined using cyclic voltammetry and amperometric detection. In this way, the role of the carbonyl groups embedded in the polymeric structure was defined with respect to the efficiency of binding enzymes, and consequently, via the final (electro)analytical performance.

Zobrazit více v PubMed

Rodríguez-Delgado M.M., Alemán-Nava G.S., Rodríguez-Delgado J.M., Dieck-Assad G., Martínez-Chapa S.O., Barceló D., Parra R. Laccase-based biosensors for detection of phenolic compounds. Trends Anal. Chem. 2015;74:21–45. doi: 10.1016/j.trac.2015.05.008. DOI

Situmorang M., Nurwahyuni I. The Development of reproducible and selective uric acid biosensor by using electrodeposited polytyramine as matrix polymer. Indones. J. Chem. 2017;17:461–470. doi: 10.22146/ijc.25818. DOI

Puthongkham P., Lee S.T., Venton G.J. Mechanism of histamine oxidation and electropolymerization at carbon electrodes. Anal. Chem. 2019;91:8366–8373. doi: 10.1021/acs.analchem.9b01178. PubMed DOI PMC

Chandrashekar B.N., Kumara Swamy B.E., Pandurangachar M., Sathisha T.V., Sherigara B.S. Electropolymerisation of l-arginine at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid. Colloids Surf. B Biointerfaces. 2011;88:413–418. doi: 10.1016/j.colsurfb.2011.07.023. PubMed DOI

Suginta W., Khunkaewla P., Schulte A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev. 2013;113:5458–5479. doi: 10.1021/cr300325r. PubMed DOI

Vasylieva N., Barnych B., Meiller A., Maucler C., Pollegioni L., Lin J.S., Barbier D., Marinesco S. Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens. Bioelectron. 2011;26:3993–4000. doi: 10.1016/j.bios.2011.03.012. PubMed DOI

Kumar A.K.S., Zhang Y., Li D., Compton R.G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 2020;121:106867. doi: 10.1016/j.elecom.2020.106867. DOI

Vasil’eva I.S., Morozova O.V., Shumakovich G.P., Yaropolov A.I. Synthesis of electroconductive polyaniline using immobilized laccase. Appl. Biochem. Microbiol. 2009;45:27–30. doi: 10.1134/S0003683809010050. PubMed DOI

Matysiak E., Nowicka A.M., Wagner B., Donten M. Space-oriented immobilization of fully active laccase on PPy–ferromagnetic nanoparticles composite layer. Electrochim. Acta. 2016;191:586–593. doi: 10.1016/j.electacta.2016.01.111. DOI

Wang F., Yu X., Zhao G. Construction and characterization of sandwich-type laccase electrode based on functionalized conducting polymers. Chem. Pap. 2021;75:725–733. doi: 10.1007/s11696-020-01336-6. DOI

Luong J.H.T., Narayan T., Shipra Solanki S., Malhotra B.D. Recent advances of conducting polymers and their composites for electrochemical biosensing applications. J. Funct. Biomater. 2020;11:71. doi: 10.3390/jfb11040071. PubMed DOI PMC

Yang X., Kirsch J., Zhang Y., Fergus J., Simonian A. Electrode passivation by phenolic compounds: Modeling analysis. J. Electrochem. Soc. 2014;161:E3036–E3041. doi: 10.1149/2.006408jes. DOI

Wang G., Feng C. Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell. Polymers. 2017;9:220. doi: 10.3390/polym9060220. PubMed DOI PMC

Pawar S.A., Chand A.N., Kumar A.V. Polydopamine: An amine oxidase mimicking sustainable catalyst for the synthesis of nitrogen heterocycles under aqueous conditions. ACS Sustain. Chem. Eng. 2019;7:8274–8286. doi: 10.1021/acssuschemeng.8b06677. DOI

Farhadi K., Banisaeid S., Jamali A., Zebhi H., Ghelichkhah Z., Khalili H., Abbasi R. Application of polytyramine nanoparticles to the corrosion protection of copper. J. Chin. Chem. Soc. 2015;62:1149–1154. doi: 10.1002/jccs.201500219. DOI

Rahim E.A., Istiqomah N., Almilda G., Ridhay A., Sumarni N.K., Indriani I. Antibacterial and antioxidant activities of polyeugenol with high molecular weight. Indones. J. Chem. 2020;20:722–728. doi: 10.22146/ijc.44659. DOI

Kumar K.K., Devendiran M., Kalaivani R.A., Narayanan S.S. Polycurcumin nanospheres modified electrode for nanoscale detection of mercury ions in seawater. Chem. Phys. Lett. 2021;781:138974. doi: 10.1016/j.cplett.2021.138974. DOI

Cochran D.B., Gray L.N., Anderson K.W., Dziubla T.D. Degradable poly(apigenin) polymer inhibits tumor cell adhesion to vascular endothelial cells. J. Biomed. Mater. Res. 2016;104:1438–1447. doi: 10.1002/jbm.b.33486. PubMed DOI

Maziz A., Özgür E., Bergaud C., Uzun L. Progress in conducting polymers for biointerfacing and biorecognition applications. Sens. Actuators Rep. 2021;3:100035. doi: 10.1016/j.snr.2021.100035. DOI

Thévenot D.R., Toth K., Durst R.A., Wilson G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001;16:121–131. doi: 10.1016/S0956-5663(01)00115-4. PubMed DOI

Mahadhy A., Mattiasson B., Ståhl Wernersson E., Hedström M. Evaluation of polytyramine film and 6-mercaptohexanol self-assembled monolayers as the immobilization layers for a capacitive DNA sensor chip: A comparison. Sensors. 2021;21:8149. doi: 10.3390/s21238149. PubMed DOI PMC

Lima T.M., Soares P.I., Nascimento L.A., Franco D.L., Pereira A.C., Ferreira L.F. A novel electrochemical sensor for simultaneous determination of cadmium and lead using graphite electrodes modified with poly(p-coumaric acid) Microchem. J. 2021;168:106406. doi: 10.1016/j.microc.2021.106406. DOI

Sheldon R.A., van Pelt S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013;42:6223–6235. doi: 10.1039/C3CS60075K. PubMed DOI

Madhuchandra H.D., Kumara Swamy B.E. Poly(vanillin) modified carbon paste electrode for the determination of adrenaline: A voltammetric study. Mater. Sci. Energy Technol. 2019;2:697–702. doi: 10.1016/j.mset.2019.09.002. DOI

Fan B., Liu Z., Zhao X., Liu H., Fan G., Hao H. Fabrication, characterization and efficient surface protection mechanism of poly(trans-cinnamaldehyde) electropolymerized coatings for EH36 steel in simulated seawater. Colloids Surf. A Physicochem. Eng. Asp. 2021;629:127434. doi: 10.1016/j.colsurfa.2021.127434. DOI

Kiss L., Kunsági-Máté S. Electrochemical oxidation of benzaldehyde and hydroxybenzaldehydes in acetonitrile on platinum and glassy carbon electrodes. C. R. Chim. 2019;22:557–561. doi: 10.1016/j.crci.2019.06.004. DOI

Sýs M., Mukherjee A., Jashari G., Adam V., Ashrafi A.M., Novák M., Richtera L. Bis(2,2′-bipyridil)copper(II) chloride complex: Tyrosinase biomimetic catalyst or redox mediator? Materials. 2021;14:113. doi: 10.3390/ma14010113. PubMed DOI PMC

Čadková M., Dvořáková V., Metelka R., Bílková Z., Korecká L. Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection. Electrochem. Commun. 2015;59:1–4. doi: 10.1016/j.elecom.2015.06.014. DOI

Hawley M.D., Tatawawadi S.V., Piekarski S., Adams R.N. Electrochemical studies of the oxidation pathways of catecholamines. J. Am. Chem. Soc. 1967;89:447–450. doi: 10.1021/ja00978a051. PubMed DOI

Seki M., Wada R., Muguruma H. Electrochemical behavior of intramolecular cyclization reaction of catecholamines at carbon nanotube/carboxymethylcellulose electrode. J. Electroanal. Chem. 2022;918:116486. doi: 10.1016/j.jelechem.2022.116486. DOI

Bacil R.P., Chen L., Serrano S.H.P., Compton R.G. Dopamine oxidation at gold electrodes: Mechanism and kinetics near neutral pH. Phys. Chem. Chem. Phys. 2020;22:607–614. doi: 10.1039/C9CP05527D. PubMed DOI

Sugumaran M. Reactivities of quinone methides versus o-quinones in catecholamine metabolism and eumelanin biosynthesis. Int. J. Mol. Sci. 2016;17:1576. doi: 10.3390/ijms17091576. PubMed DOI PMC

Nady H., El-Rabiei M.M., Abd El-Hafeza G.M. Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution. Egypt. J. Pet. 2017;26:669–678. doi: 10.1016/j.ejpe.2016.10.009. DOI

Enache T.A., Oliveira-Brett A.M. Pathways of electrochemical oxidation of indolic compounds. Electroanalysis. 2011;23:1337–1344. doi: 10.1002/elan.201000671. DOI

Lee J., Kang Y., Chang J., Song J., Kim B.K. Determination of serotonin concentration in single human platelets through single-entity electrochemistry. ACS Sens. 2020;5:1943–1948. doi: 10.1021/acssensors.0c00267. PubMed DOI

Patel A.N., Unwin P.R., Macpherson J.V. Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys. Chem. Chem. Phys. 2013;15:18085. doi: 10.1039/c3cp53513d. PubMed DOI

Buckey G., Owens O.E., Gabriel A.W., Downing C.M., Calhoun M.C., Cliffel D.E. Adsorption and electropolymerization of p-aminophenol reduces reproducibility of electrochemical immunoassays. Molecules. 2022;27:6046. doi: 10.3390/molecules27186046. PubMed DOI PMC

DuVall S.H., McCreery R.L. Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes. Anal. Chem. 1999;71:4594–4602. doi: 10.1021/ac990399d. DOI

Fernley H.N., Walker P.G. Studies on alkaline phosphatase. Biochem. J. 1967;104:1011–1018. doi: 10.1042/bj1041011. PubMed DOI PMC

Wilson M.S., Rauh R.D. Hydroquinone diphosphate: An alkaline phosphatase substrate that does not produce electrode fouling in electrochemical immunoassays. Biosens. Bioelectron. 2004;20:276–283. doi: 10.1016/j.bios.2004.01.013. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...