Electrodeposited Carbonyl Functional Polymers as Suitable Supports for Preparation of the First-Generation Biosensors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS-2023-001
University of Pardubice
PubMed
37050783
PubMed Central
PMC10098923
DOI
10.3390/s23073724
PII: s23073724
Knihovny.cz E-zdroje
- Klíčová slova
- Schiff base formation, amperometric detection, carbonyl functional polymer, catalytic biosensor, electropolymerization, enzyme, phenolic compounds,
- MeSH
- biosenzitivní techniky * metody MeSH
- elektrochemické techniky * metody MeSH
- elektrody MeSH
- polymery chemie MeSH
- reprodukovatelnost výsledků MeSH
- skot MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polymery MeSH
The aim of this electrochemical study was to ascertain which type of electrochemically deposited carbonyl functionalized polymer represents the most suitable electrode substrate for direct covalent immobilization of biological catalysts (enzymes). For this purpose, a triad of amperometric biosensors differing in the type of conductive polymers (poly-vanillin, poly-trans-cinnamaldehyde, and poly-4-hydroxybenzaldehyde) and in the functioning of selected enzymes (tyrosinase and alkaline phosphatase) has been compared for the biosensing of neurotransmitters (dopamine, epinephrine, norepinephrine, and serotonin) and phenyl phosphates (p-aminophenyl phosphate and hydroquinone diphosphate). The individual layers of the polymers were electrochemically deposited onto commercially available screen-printed carbon electrodes (type C110) using repetitive potential cycling in the linear voltammetric mode. Their characterization was subsequently performed by SEM imaging and attenuated total reflectance FTIR spectroscopy. Molecules of enzymes were covalently bonded to the free carbonyl groups in polymers via the Schiff base formation, in some cases even with the use of special cross-linkers. The as-prepared biosensors have been examined using cyclic voltammetry and amperometric detection. In this way, the role of the carbonyl groups embedded in the polymeric structure was defined with respect to the efficiency of binding enzymes, and consequently, via the final (electro)analytical performance.
Zobrazit více v PubMed
Rodríguez-Delgado M.M., Alemán-Nava G.S., Rodríguez-Delgado J.M., Dieck-Assad G., Martínez-Chapa S.O., Barceló D., Parra R. Laccase-based biosensors for detection of phenolic compounds. Trends Anal. Chem. 2015;74:21–45. doi: 10.1016/j.trac.2015.05.008. DOI
Situmorang M., Nurwahyuni I. The Development of reproducible and selective uric acid biosensor by using electrodeposited polytyramine as matrix polymer. Indones. J. Chem. 2017;17:461–470. doi: 10.22146/ijc.25818. DOI
Puthongkham P., Lee S.T., Venton G.J. Mechanism of histamine oxidation and electropolymerization at carbon electrodes. Anal. Chem. 2019;91:8366–8373. doi: 10.1021/acs.analchem.9b01178. PubMed DOI PMC
Chandrashekar B.N., Kumara Swamy B.E., Pandurangachar M., Sathisha T.V., Sherigara B.S. Electropolymerisation of l-arginine at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid. Colloids Surf. B Biointerfaces. 2011;88:413–418. doi: 10.1016/j.colsurfb.2011.07.023. PubMed DOI
Suginta W., Khunkaewla P., Schulte A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev. 2013;113:5458–5479. doi: 10.1021/cr300325r. PubMed DOI
Vasylieva N., Barnych B., Meiller A., Maucler C., Pollegioni L., Lin J.S., Barbier D., Marinesco S. Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens. Bioelectron. 2011;26:3993–4000. doi: 10.1016/j.bios.2011.03.012. PubMed DOI
Kumar A.K.S., Zhang Y., Li D., Compton R.G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 2020;121:106867. doi: 10.1016/j.elecom.2020.106867. DOI
Vasil’eva I.S., Morozova O.V., Shumakovich G.P., Yaropolov A.I. Synthesis of electroconductive polyaniline using immobilized laccase. Appl. Biochem. Microbiol. 2009;45:27–30. doi: 10.1134/S0003683809010050. PubMed DOI
Matysiak E., Nowicka A.M., Wagner B., Donten M. Space-oriented immobilization of fully active laccase on PPy–ferromagnetic nanoparticles composite layer. Electrochim. Acta. 2016;191:586–593. doi: 10.1016/j.electacta.2016.01.111. DOI
Wang F., Yu X., Zhao G. Construction and characterization of sandwich-type laccase electrode based on functionalized conducting polymers. Chem. Pap. 2021;75:725–733. doi: 10.1007/s11696-020-01336-6. DOI
Luong J.H.T., Narayan T., Shipra Solanki S., Malhotra B.D. Recent advances of conducting polymers and their composites for electrochemical biosensing applications. J. Funct. Biomater. 2020;11:71. doi: 10.3390/jfb11040071. PubMed DOI PMC
Yang X., Kirsch J., Zhang Y., Fergus J., Simonian A. Electrode passivation by phenolic compounds: Modeling analysis. J. Electrochem. Soc. 2014;161:E3036–E3041. doi: 10.1149/2.006408jes. DOI
Wang G., Feng C. Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell. Polymers. 2017;9:220. doi: 10.3390/polym9060220. PubMed DOI PMC
Pawar S.A., Chand A.N., Kumar A.V. Polydopamine: An amine oxidase mimicking sustainable catalyst for the synthesis of nitrogen heterocycles under aqueous conditions. ACS Sustain. Chem. Eng. 2019;7:8274–8286. doi: 10.1021/acssuschemeng.8b06677. DOI
Farhadi K., Banisaeid S., Jamali A., Zebhi H., Ghelichkhah Z., Khalili H., Abbasi R. Application of polytyramine nanoparticles to the corrosion protection of copper. J. Chin. Chem. Soc. 2015;62:1149–1154. doi: 10.1002/jccs.201500219. DOI
Rahim E.A., Istiqomah N., Almilda G., Ridhay A., Sumarni N.K., Indriani I. Antibacterial and antioxidant activities of polyeugenol with high molecular weight. Indones. J. Chem. 2020;20:722–728. doi: 10.22146/ijc.44659. DOI
Kumar K.K., Devendiran M., Kalaivani R.A., Narayanan S.S. Polycurcumin nanospheres modified electrode for nanoscale detection of mercury ions in seawater. Chem. Phys. Lett. 2021;781:138974. doi: 10.1016/j.cplett.2021.138974. DOI
Cochran D.B., Gray L.N., Anderson K.W., Dziubla T.D. Degradable poly(apigenin) polymer inhibits tumor cell adhesion to vascular endothelial cells. J. Biomed. Mater. Res. 2016;104:1438–1447. doi: 10.1002/jbm.b.33486. PubMed DOI
Maziz A., Özgür E., Bergaud C., Uzun L. Progress in conducting polymers for biointerfacing and biorecognition applications. Sens. Actuators Rep. 2021;3:100035. doi: 10.1016/j.snr.2021.100035. DOI
Thévenot D.R., Toth K., Durst R.A., Wilson G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001;16:121–131. doi: 10.1016/S0956-5663(01)00115-4. PubMed DOI
Mahadhy A., Mattiasson B., Ståhl Wernersson E., Hedström M. Evaluation of polytyramine film and 6-mercaptohexanol self-assembled monolayers as the immobilization layers for a capacitive DNA sensor chip: A comparison. Sensors. 2021;21:8149. doi: 10.3390/s21238149. PubMed DOI PMC
Lima T.M., Soares P.I., Nascimento L.A., Franco D.L., Pereira A.C., Ferreira L.F. A novel electrochemical sensor for simultaneous determination of cadmium and lead using graphite electrodes modified with poly(p-coumaric acid) Microchem. J. 2021;168:106406. doi: 10.1016/j.microc.2021.106406. DOI
Sheldon R.A., van Pelt S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013;42:6223–6235. doi: 10.1039/C3CS60075K. PubMed DOI
Madhuchandra H.D., Kumara Swamy B.E. Poly(vanillin) modified carbon paste electrode for the determination of adrenaline: A voltammetric study. Mater. Sci. Energy Technol. 2019;2:697–702. doi: 10.1016/j.mset.2019.09.002. DOI
Fan B., Liu Z., Zhao X., Liu H., Fan G., Hao H. Fabrication, characterization and efficient surface protection mechanism of poly(trans-cinnamaldehyde) electropolymerized coatings for EH36 steel in simulated seawater. Colloids Surf. A Physicochem. Eng. Asp. 2021;629:127434. doi: 10.1016/j.colsurfa.2021.127434. DOI
Kiss L., Kunsági-Máté S. Electrochemical oxidation of benzaldehyde and hydroxybenzaldehydes in acetonitrile on platinum and glassy carbon electrodes. C. R. Chim. 2019;22:557–561. doi: 10.1016/j.crci.2019.06.004. DOI
Sýs M., Mukherjee A., Jashari G., Adam V., Ashrafi A.M., Novák M., Richtera L. Bis(2,2′-bipyridil)copper(II) chloride complex: Tyrosinase biomimetic catalyst or redox mediator? Materials. 2021;14:113. doi: 10.3390/ma14010113. PubMed DOI PMC
Čadková M., Dvořáková V., Metelka R., Bílková Z., Korecká L. Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection. Electrochem. Commun. 2015;59:1–4. doi: 10.1016/j.elecom.2015.06.014. DOI
Hawley M.D., Tatawawadi S.V., Piekarski S., Adams R.N. Electrochemical studies of the oxidation pathways of catecholamines. J. Am. Chem. Soc. 1967;89:447–450. doi: 10.1021/ja00978a051. PubMed DOI
Seki M., Wada R., Muguruma H. Electrochemical behavior of intramolecular cyclization reaction of catecholamines at carbon nanotube/carboxymethylcellulose electrode. J. Electroanal. Chem. 2022;918:116486. doi: 10.1016/j.jelechem.2022.116486. DOI
Bacil R.P., Chen L., Serrano S.H.P., Compton R.G. Dopamine oxidation at gold electrodes: Mechanism and kinetics near neutral pH. Phys. Chem. Chem. Phys. 2020;22:607–614. doi: 10.1039/C9CP05527D. PubMed DOI
Sugumaran M. Reactivities of quinone methides versus o-quinones in catecholamine metabolism and eumelanin biosynthesis. Int. J. Mol. Sci. 2016;17:1576. doi: 10.3390/ijms17091576. PubMed DOI PMC
Nady H., El-Rabiei M.M., Abd El-Hafeza G.M. Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution. Egypt. J. Pet. 2017;26:669–678. doi: 10.1016/j.ejpe.2016.10.009. DOI
Enache T.A., Oliveira-Brett A.M. Pathways of electrochemical oxidation of indolic compounds. Electroanalysis. 2011;23:1337–1344. doi: 10.1002/elan.201000671. DOI
Lee J., Kang Y., Chang J., Song J., Kim B.K. Determination of serotonin concentration in single human platelets through single-entity electrochemistry. ACS Sens. 2020;5:1943–1948. doi: 10.1021/acssensors.0c00267. PubMed DOI
Patel A.N., Unwin P.R., Macpherson J.V. Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys. Chem. Chem. Phys. 2013;15:18085. doi: 10.1039/c3cp53513d. PubMed DOI
Buckey G., Owens O.E., Gabriel A.W., Downing C.M., Calhoun M.C., Cliffel D.E. Adsorption and electropolymerization of p-aminophenol reduces reproducibility of electrochemical immunoassays. Molecules. 2022;27:6046. doi: 10.3390/molecules27186046. PubMed DOI PMC
DuVall S.H., McCreery R.L. Control of catechol and hydroquinone electron-transfer kinetics on native and modified glassy carbon electrodes. Anal. Chem. 1999;71:4594–4602. doi: 10.1021/ac990399d. DOI
Fernley H.N., Walker P.G. Studies on alkaline phosphatase. Biochem. J. 1967;104:1011–1018. doi: 10.1042/bj1041011. PubMed DOI PMC
Wilson M.S., Rauh R.D. Hydroquinone diphosphate: An alkaline phosphatase substrate that does not produce electrode fouling in electrochemical immunoassays. Biosens. Bioelectron. 2004;20:276–283. doi: 10.1016/j.bios.2004.01.013. PubMed DOI