Bis(2,2'-bipyridil)Copper(II) Chloride Complex: Tyrosinase Biomimetic Catalyst or Redox Mediator?

. 2020 Dec 29 ; 14 (1) : . [epub] 20201229

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33383885

Grantová podpora
(project 19-03160S) Czech Science Foundation
(No. CZ.02.1.01/0.0/0.0/16_025/0007314) ERDF "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice"

In this article, construction of amperometric sensor(s) based on screen-printed carbon electrodes covered by thin layers of two types of carbon nanomaterials serving as amplifiers, and containing [Cu(bipy)2Cl]Cl∙5H2O complex is reported. Their performance and biomimetic activity towards two selected neurotransmitters (dopamine and serotonin) was studied mainly using flow injection analysis (FIA). The important parameters of FIA such as working potential, flow rate, and pH were optimized. The mechanism of the catalytic activity is explained and experimentally confirmed. It reveals that presence of hydrogen peroxide plays a crucial role which leads to answer the title question: can presented complex really be considered as a tyrosinase biomimetic catalyst or only as a redox mediator?

Erratum v

PubMed

Zobrazit více v PubMed

Ndagi U., Mhlongo N., Soliman M.E. Metal complexes in cancer therapy—An update from drug design perspective. Drug Des. Dev. Ther. 2017;11:599–616. doi: 10.2147/DDDT.S119488. PubMed DOI PMC

Trudu F., Amato F., Vaňhara P., Pivetta T., Peña-Méndez E., Havel J. Coordination compounds in cancer: Past, present and perspectives. J. Appl. Biomed. 2015;13:79–103. doi: 10.1016/j.jab.2015.03.003. DOI

Monro S., Colón K.L., Yin H., Roque J., Konda P., Gujar S., Thummel R.P., Lilge L., Cameron C.G., McFarland S.A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019;119:797–828. doi: 10.1021/acs.chemrev.8b00211. PubMed DOI PMC

Williams R.J.P. Role of transition metal ions in biological processes. R. Inst. Chem. Rev. 1968;1:13–38. doi: 10.1039/rr9680100013. DOI

Oiye É.N., Ribeiro M.F.M., Katayama J.M.T., Tadini M.C., Balbino M.A., Eleotério I.C., Magalhães J., Castro A.S., Silva R.S.M., da Cruz Júnior J.W., et al. Electrochemical sensors containing Schiff bases and their transition metal complexes to detect analytes of forensic, pharmaceutical and environmental interest. A review. Crit. Rev. Anal. Chem. 2019;49:488–509. doi: 10.1080/10408347.2018.1561242. PubMed DOI

Honarmand E., Motaghedifard M.H., Ghamari M. Electroanalytical approach for determination of promethazine hydrochloride on gold nanoparticles-incorporated carbon paste electrode as a nanosensor. RSC Adv. 2014;4:35511–35521. doi: 10.1039/C4RA02712D. DOI

Barton J.K., Olmon E.D., Sontz P.A. Metal complexes for dna-mediated charge transport. Coord. Chem. Rev. 2011;255:619–634. doi: 10.1016/j.ccr.2010.09.002. PubMed DOI PMC

Saygili Y., Stojanovic M., Flores-Díaz N., Zakeeruddin S.M., Vlachopoulos N., Grätzel M., Hagfeldt A. Metal coordination complexes as redox mediators in regenerative dye-sensitized solar cells. Inorganics. 2019;7:30. doi: 10.3390/inorganics7030030. DOI

Yuan C.-J., Hsu C.-L., Wang S.-C., Chang K.-S. Eliminating the interference of ascorbic acid and uric acid to the amperometric glucose biosensor by cation exchangers membrane and size exclusion membrane. Electroanalysis. 2005;17:2239–2245. doi: 10.1002/elan.200503359. DOI

Ambrózy A., Hlavatá L., Labuda J. Protective membranes at electrochemical biosensors. Acta Chim. Slov. 2013;6:35–41. doi: 10.2478/acs-2013-0007. DOI

Hasanzadeh M., Shadjou N., Saghatforoush L., Dolatabadi J.E.N. Preparation of a new electrochemical sensor based on iron (III) complexes modified carbon paste electrode for simultaneous determination of mefenamic acid and indomethacin. Colloids Surf. B. 2012;92:91–97. doi: 10.1016/j.colsurfb.2011.11.026. PubMed DOI

Turunc E., Gumus I., Arslan H. Redox active Co(II) complex modified carbon paste electrode for the determination of dopamine. Mater. Chem. Phys. 2020;243:122597. doi: 10.1016/j.matchemphys.2019.122597. DOI

Xu J., Yuan Y., Li W., Deng P., Deng J. Carbon paste electrode modified with a binuclear manganese complex as a sensitive voltammetric sensor for tryptophan. Microchim. Acta. 2011;174:239. doi: 10.1007/s00604-011-0619-y. DOI

Chen J., Huang B., Zhan S., Ye J. A trinuclear copper (I) complex modified Au electrode based on a nonelectrocatalytic mechanism as hydrogen peroxide sensor. J. Electroanal. Chem. 2015;759:194–200. doi: 10.1016/j.jelechem.2015.11.016. DOI

Leonardi S.G., Bonyani M., Ghosh K., Dhara A.K., Lombardo L., Donato N., Neri G. Development of a novel Cu (II) complex modified electrode and a portable electrochemical analyzer for the determination of dissolved oxygen (DO) in water. Chemosensors. 2016;4:7. doi: 10.3390/chemosensors4020007. DOI

Zhuang R.R., Jian F.F., Wang K. An electrochemical sensing platform based on a new copper complex for the determination of hydrogen peroxide and nitrite. Sci. Technol. Adv. Mater. 2009;10:045001. doi: 10.1088/1468-6996/10/4/045001. PubMed DOI PMC

Perathoner S., Centi G. Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams. Top. Catal. 2005;33:207–224. doi: 10.1007/s11244-005-2529-x. DOI

Agostini E., Hernández-Ruiz J., Arnao M.B., Milrad S.R., Tigier H.A., Acosta M. A peroxidase isoenzyme secreted by turnip (Brassica napus) hairy-root cultures: Inactivation by hydrogen peroxide and application in diagnostic kits. Biotechnol. Appl. Biochem. 2002;35:1–7. doi: 10.1042/BA20010049. PubMed DOI

Plant L., Jeff M. Hydrogen peroxide: A potent force to destroy organics in wastewater. Chem. Eng. 1994:EE16.

Ashrafi A.M., Sýs M., Sedláčková E., Shaaban Farag A., Adam V., Přibyl J., Richtera L. Application of the enzymatic electrochemical biosensors for monitoring non-competitive inhibition of enzyme activity by heavy metals. Sensors. 2019;19:2939. doi: 10.3390/s19132939. PubMed DOI PMC

Mayuri P., Saravanan N., Kumar A.S. A bioinspired copper 2, 2-bipyridyl complex immobilized MWCNT modified electrode prepared by a new strategy for elegant electrocatalytic reduction and sensing of hydrogen peroxide. Electrochim. Acta. 2017;240:522–533. doi: 10.1016/j.electacta.2017.04.082. DOI

Mojica E., Kalcher K. Copper oxide as mediator for the amperometric determination of hydrogen peroxide. Philipp J. Sci. 2007;136:25.

Karyakin A.A., Karyakina E.E. Prussian Blue-based ‘artificial peroxidase’ as a transducer for hydrogen peroxide detection. Application to biosensors. Sens. Actuators B Chem. 1999;57:268–273. doi: 10.1016/S0925-4005(99)00154-9. PubMed DOI

Hanabusa K., Ye X., Koyama T., Kurose A., Shirai H. Catalytic electroreduction of dioxygen and hydrogen peroxide on graphite electrode modified by iron phthalocyanine-wrapping poly (peptide) Polym. J. 1992;24:485–489. doi: 10.1295/polymj.24.485. DOI

Chang Q., Deng K., Zhu L., Jiang G., Yu C., Tang H. Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim. Acta. 2009;165:299. doi: 10.1007/s00604-008-0133-z. DOI

Sotomayor M.D.P.T., Tanaka A.A., Kubota L.T. Development of an amperometric sensor highly selective for dopamine and analogous compounds determination using bis(2,2′-bipyridil) copper(II) chloride complex. Electroanalysis. 2003;15:787–796. doi: 10.1002/elan.200390097. DOI

Detoni C., Carvalho N.M.F., de Souza R.O.M.A., Aranda D.A.G., Antunes O.A.C. Oxidation of benzene catalyzed by 2,2′-bipyridine and 1,10-phenantroline Cu(II) complexes. Catal. Lett. 2009;129:79–84. doi: 10.1007/s10562-008-9830-9. DOI

Louis B., Detoni C., Carvalho N.M.F., Duarte C.D., Antunes O.A.C. Cu(II) bipyridine and phenantroline complexes: Tailor-made catalysts for the selective oxidation of tetralin. Appl. Catal. A Gen. 2009;360:218–225. doi: 10.1016/j.apcata.2009.03.022. DOI

Gao W., Alemany L.B., Ci L., Ajayan P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009;1:403–408. doi: 10.1038/nchem.281. PubMed DOI

Lee Y., Ahn J.H. Biomimetic tactile sensors based on nanomaterials. ACS Nano. 2020;14:1220–1226. doi: 10.1021/acsnano.0c00363. PubMed DOI

Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusion less electrochemical systems. Electroanal. Chem. Interf. Electrochem. 1979;101:19–28. doi: 10.1016/S0022-0728(79)80075-3. DOI

Chen F., Zhao X., Liu H., Qu J. Reaction of Cu(CN)32− with H2O2 in water under alkaline conditions: Cyanide oxidation, Cu+/Cu2+ catalysis and H2O2 decomposition. Appl. Catal. B Environ. 2014;158–159:85–90. doi: 10.1016/j.apcatb.2014.04.010. DOI

Ding Y.H., Floren M., Tan W. Mussel-inspired polydopamine for bio-surface functionalization. Biosurf. Biotribol. 2016;2:121–136. doi: 10.1016/j.bsbt.2016.11.001. PubMed DOI PMC

Sýs M., Obluková M., Kolivoška V., Sokolová R., Korecká L., Mikysek T. Catalytic properties of variously immobilized mushroom tyrosinase: A kinetic study for future development of biomimetic amperometric biosensors. J. Electroanal. Chem. 2020;864:114066. doi: 10.1016/j.jelechem.2020.114066. DOI

Kato Y., Ono S., Kitamoto N., Kettle A.J. Covalent modification of cytoskeletal proteins in neuronal cells by tryptamine-4,5-dione. Redox Biol. 2014;2:983–990. doi: 10.1016/j.redox.2014.08.004. PubMed DOI PMC

Solomon E.I., Sundaram U.M., Machonkin T.E. Multicopper oxidases and oxygenases. Chem. Rev. 1996;96:2563–2606. doi: 10.1021/cr950046o. PubMed DOI

Sýs M., Vytřas K. Tyrosinase electrochemical biosensors monitoring medicinally significant substances. Curr. Med. Chem. 2018;25:3988–4006. doi: 10.2174/0929867324666170727121327. PubMed DOI

Komendová M., Metelka R., Urban J. Monolithic capillary column with an integrated electrochemical detector. J. Chromatogr. A. 2017;1509:171–175. doi: 10.1016/j.chroma.2017.06.057. PubMed DOI

Likhitwitayawuid K. Stilbenes with tyrosinase inhibitory activity. Curr. Sci. 2008;94:44–52.

Miksa B. Fluorescent dyes used in polymer carriers as imaging agents in anticancer therapy. Med. Chem. 2016;6:611–639. doi: 10.4172/2161-0444.1000406. DOI

Yang Z., Robb D.A. Comparison of tyrosinase activity and stability in aqueous and nearly nonaqueous environments. Enzyme Microb. Technol. 1993;15:1030–1036. doi: 10.1016/0141-0229(93)90050-C. DOI

Serrano-Plana J., Garcia-Bosch I., Company A., Costas M. Structural and reactivity models for copper oxygenases: Cooperative effects and novel reactivities. Acc. Chem. Res. 2015;48:2397–2406. doi: 10.1021/acs.accounts.5b00187. PubMed DOI

Keown W., Gary J.B., Stack T.D.P. High-valent copper in biomimetic and biological oxidations. J. Biol. Inorg. Chem. 2017;22:289–305. doi: 10.1007/s00775-016-1420-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...