• This record comes from PubMed

Application of the Enzymatic Electrochemical Biosensors for Monitoring Non-Competitive Inhibition of Enzyme Activity by Heavy Metals

. 2019 Jul 03 ; 19 (13) : . [epub] 20190703

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy

The inhibition effect of the selected heavy metals (Ag+, Cd2+, Cu2+, and Hg2+) on glucose oxidase (GOx) enzyme from Aspergillus niger (EC 1.1.3.4.) was studied using a new amperometric biosensor with an electrochemical transducer based on a glassy carbon electrode (GCE) covered with a thin layer of multi-wall carbon nanotubes (MWCNTs) incorporated with ruthenium(IV) oxide as a redox mediator. Direct adsorption of multi-wall carbon nanotubes (MWCNTs) and subsequent covering with Nafion® layer was used for immobilization of GOx. The analytical figures of merit of the developed glucose (Glc) biosensor are sufficient for determination of Glc in body fluids in clinical analysis. From all tested heavy metals, mercury(II) has the highest inhibition effect. However, it is necessary to remember that cadmium and silver ions also significantly inhibit the catalytic activity of GOx. Therefore, the development of GOx biosensors for selective indirect determination of each heavy metal still represents a challenge in the field of bioelectroanalysis. It can be concluded that amperometric biosensors, differing in the utilized enzyme, could find their application in the toxicity studies of various poisons.

See more in PubMed

Mäntsälä P., Niemi J. Enzymes: The biological catalysts of life. Physiol. Maintanance. 2009;2:1–22.

Woodward J.D., Trompetter I., Sewell B.T., Piotrowski M. Substrate specificity of plant nitrilase complexes is affected by their helical twist. Commun. Biol. 2018;1:186. doi: 10.1038/s42003-018-0186-4. PubMed DOI PMC

Schowen R.L. How an enzyme surmounts the activation energy barrier. Proc. Natl. Acad. Sci. USA. 2003;100:11931–11932. doi: 10.1073/pnas.2235806100. PubMed DOI PMC

Robinson P.K. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015;59:1–41. doi: 10.1042/bse0590001. PubMed DOI PMC

Aledo J.C., Lobo C., del Valle A.E. Energy diagrams for enzyme-catalyzed reactions: Concepts and misconcepts. Biochem. Mol. Biol. Educ. 2003;31:234–236. doi: 10.1002/bmb.2003.494031040240. DOI

Pearce L.L., Bominaar E.L., Hill B.C., Peterson J. Reversal of cyanide inhibition of cytochrome c oxidase by the auxiliary substrate nitric oxide an endogenous antidote to cyanide poisoning? J. Biol. Chem. 2003;278:52139–52145. doi: 10.1074/jbc.M310359200. PubMed DOI

Mizrahi L., Achituv Y. Effect of heavy metals ions on enzyme activity in the mediterranean mussel, donax trunculus. Bull. Environ. Contam. Toxicol. 1989;42:854–859. doi: 10.1007/BF01701626. PubMed DOI

Viarengo A. Biochemical effects of trace metals. Mar. Pollut. Bull. 1985;16:153–158. doi: 10.1016/0025-326X(85)90006-2. DOI

Hodson P.V. The effect of metal metabolism on uptake, disposition and toxicity in fish. Aquat. Toxicol. 1988;11:3–18. doi: 10.1016/0166-445X(88)90003-3. DOI

Martin T., Holdich D. The acute lethal toxicity of heavy metals to peracarid crustaceans (with particular reference to fresh-water asellids and gammarids) Water Res. 1986;20:1137–1147. doi: 10.1016/0043-1354(86)90060-6. DOI

Lu H.P., Xun L., Xie X.S. Single-molecule enzymatic dynamics. Science. 1998;282:1877–1882. doi: 10.1126/science.282.5395.1877. PubMed DOI

Blackmond D.G. Reaction progress kinetic analysis: A powerful methodology for mechanistic studies of complex catalytic reactions. Angew. Chem. Int. Ed. 2005;44:4302–4320. doi: 10.1002/anie.200462544. PubMed DOI

Kirk O., Borchert T.V., Fuglsang C.C. Industrial enzyme applications. Curr. Opin. Biotechnol. 2002;13:345–351. doi: 10.1016/S0958-1669(02)00328-2. PubMed DOI

Hasan F., Shah A.A., Hameed A. Industrial applications of microbial lipases. Enzym. Microb. Technol. 2006;39:235–251. doi: 10.1016/j.enzmictec.2005.10.016. DOI

Vellard M. The enzyme as drug: Application of enzymes as pharmaceuticals. Curr. Opin. Biotechnol. 2003;14:444–450. doi: 10.1016/S0958-1669(03)00092-2. PubMed DOI

Bothner B., Chavez R., Wei J., Strupp C., Phung Q., Schneemann A., Siuzdak G. Monitoring enzyme catalysis with mass spectrometry. J. Biol. Chem. 2000;275:13455–13459. doi: 10.1074/jbc.275.18.13455. PubMed DOI

Cheng S., Wu Q., Xiao H., Chen H. Online monitoring of enzymatic reactions using time-resolved desorption electrospray ionization mass spectrometry. Anal. Chem. 2017;89:2338–2344. doi: 10.1021/acs.analchem.6b03975. PubMed DOI

Xu Z., Yao S., Wei Y., Zhou J., Zhang L., Wang C., Guo Y. Monitoring enzyme reaction and screening of inhibitors of acetylcholinesterase by quantitative matrix-assisted laser desorption/ionization fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 2008;19:1849–1855. doi: 10.1016/j.jasms.2008.07.025. PubMed DOI

Westley C., Fisk H., Xu Y., Hollywood K.A., Carnell A.J., Micklefield J., Turner N.J., Goodacre R. Real-time monitoring of enzyme-catalysed reactions using deep UV resonance raman spectroscopy. Chem. A Eur. J. 2017;23:6983–6987. doi: 10.1002/chem.201701388. PubMed DOI PMC

Miller R.B., Karn R.C. A rapid spectrophotometric method for the determination of esterase activity. J. Biochem. Biophys. Methods. 1980;3:345–354. doi: 10.1016/0165-022X(80)90043-3. PubMed DOI

German N., Voronovic J., Ramanavicius A., Ramanaviciene A. Gold nanoparticles and polypyrrole for glucose biosensor design. Procedia Eng. 2012;47:482–485. doi: 10.1016/j.proeng.2012.09.189. DOI

Kim J.-H., Lee D., Bae T.-S., Lee Y.-S. The electrochemical enzymatic glucose biosensor based on mesoporous carbon fibers activated by potassium carbonate. J. Ind. Eng. Chem. 2015;25:192–198. doi: 10.1016/j.jiec.2014.10.034. DOI

Kotzian P., Brázdilová P., Kalcher K., Vytřas K. Determination of hydrogen peroxide, glucose and hypoxanthine using (bio) sensors based on ruthenium dioxide-modified screen-printed electrodes. Anal. Lett. 2005;38:1099–1113. doi: 10.1081/AL-200057205. DOI

Kotzian P., Brázdilová P., Řezková S., Kalcher K., Vytřas K. Amperometric glucose biosensor based on rhodium dioxide-modified carbon ink. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2006;18:1499–1504. doi: 10.1002/elan.200503549. DOI

Wei A., Sun X.W., Wang J., Lei Y., Cai X., Li C.M., Dong Z., Huang W. Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl. Phys. Lett. 2006;89:123902. doi: 10.1063/1.2356307. DOI

Weng W.-H., Wang C.-W., Pang S.-T., Pan T.-M. Enzymatic glucose biosensor based on TbYxOy electrolyte-insulator-semiconductor. J. Electrochem. Soc. 2016;163:B445–B452. doi: 10.1149/2.0641608jes. DOI

Ashrafi A.M., Koudelkova Z., Sedlackova E., Richtera L., Adam V. Electrochemical sensors and biosensors for determination of mercury ions. J. Electrochem. Soc. 2018;165:B824–B834. doi: 10.1149/2.0381816jes. DOI

Wang J. Stripping analysis at bismuth electrodes: A review. Electroanal. Int. J. Devot. Fundam. Pract. Asp. Electroanal. 2005;17:1341–1346. doi: 10.1002/elan.200403270. DOI

Liang M., Jin F., Liu R., Su R., Qi W., Yu Y., Wang L., He Z. Enhanced electrochemical detection performance of multiwall carbon nanotubes functionalized by aspartame. J. Mater. Sci. 2013;48:5624–5632. doi: 10.1007/s10853-013-7357-y. DOI

Scheller F.W., Schubert F., Neumann B., Pfeiffer D., Hintsche R., Dransfeld I., Wollenberger U., Renneberg R., Warsinke A., Johansson G. Second generation biosensors. Biosens. Bioelectron. 1991;6:245–253. doi: 10.1016/0956-5663(91)80010-U. PubMed DOI

Peigney A., Laurent C., Flahaut E., Bacsa R., Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 2001;39:507–514. doi: 10.1016/S0008-6223(00)00155-X. DOI

Sýs M., Žabčíková S., Červenka L., Vytřas K. Comparison of adsorptive with extractive stripping voltammetry in electrochemical determination of retinol. Potr. SJF Sci. 2017;11:96–105. doi: 10.5219/713. DOI

Nguyen H., Park J., Kang S., Kim M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors. 2015;15:10481–10510. doi: 10.3390/s150510481. PubMed DOI PMC

Wolfschmidt H., Baier C., Gsell S., Fischer M., Schreck M., Stimming U. STM, SECPM, AFM and electrochemistry on single crystalline surfaces. Materials. 2010;3:4196–4213. doi: 10.3390/ma3084196. PubMed DOI PMC

Vang R.T., Lauritsen J.V., Laegsgaard E., Besenbacher F. Scanning tunneling microscopy as a tool to study catalytically relevant model systems. Chem. Soc. Rev. 2008;37:2191–2203. doi: 10.1039/b800307f. PubMed DOI

Bard A.J., Fan F.R.F., Kwak J., Lev O. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 1989;61:132–138. doi: 10.1021/ac00177a011. DOI

Vahabi S., Salman B.N., Javanmard A. Atomic force microscopy application in biological research: A review study. Iran. J. Med Sci. 2013;38:76. PubMed PMC

Sýs M., Pekec B., Kalcher K., Vytřas K. Amperometric enzyme carbon paste-based biosensor for quantification of hydroquinone and polyphenolic antioxidant capacity. Int. J. Electrochem. Sci. 2013;8:9030–9040.

Pan B., Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 2008;42:9005–9013. doi: 10.1021/es801777n. PubMed DOI

Rasouli H., Naji L., Hosseini M.G. Electrochemical and electromechanical behavior of Nafion-based soft actuators with PPy/CB/MWCNT nanocomposite electrodes. RSC Adv. 2017;7:3190–3203. doi: 10.1039/C6RA25771B. DOI

Bhalla N., Jolly P., Formisano N., Estrela P. Introduction to biosensors. Essays Biochem. 2016;60:1–8. doi: 10.1042/EBC20150001. PubMed DOI PMC

Anojčić J., Guzsvány V., Vajdle O., Madarász D., Rónavári A., Kónya Z., Kalcher K. Hydrodynamic chronoamperometric determination of hydrogen peroxide using carbon paste electrodes coated by multiwalled carbon nanotubes decorated with MnO2 or Pt particles. Sens. Actuators B: Chem. 2016;233:83–92. doi: 10.1016/j.snb.2016.04.005. DOI

Cueni-Villoz N., Devigili A., Delodder F., Cianferoni S., Feihl F., Rossetti A.O., Eggimann P., Vincent J.-L., Taccone F.S., Oddo M. Increased blood glucose variability during therapeutic hypothermia and outcome after cardiac arrest. Crit. Care Med. 2011;39:2225–2231. doi: 10.1097/CCM.0b013e31822572c9. PubMed DOI

Blanco A., Blanco G. Chapter 8—Enzymes. In: Blanco A., Blanco G., editors. Medical Biochemistry. Academic Press; Cambridge, MA, USA: 2017. pp. 153–175.

Ghica M.E., Brett C.M. Glucose oxidase inhibition in poly (neutral red) mediated enzyme biosensors for heavy metal determination. Microchim. Acta. 2008;163:185–193. doi: 10.1007/s00604-008-0018-1. DOI

Malitesta C., Guascito M. Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosens. Bioelectron. 2005;20:1643–1647. doi: 10.1016/j.bios.2004.08.003. PubMed DOI

Mugheri A.Q., Tahira A., Sherazi S.T.H., Abro M.I., Willander M., Ibupoto Z.H. An amperometric indirect determination of heavy metal ions through inhibition of glucose oxidase immobilized on cobalt oxide nanostructures. Sens. Lett. 2016;14:1178–1186. doi: 10.1166/sl.2016.3752. DOI

Varjovi M.J., Sabzi R.E., Borghei S.M. Determination of heavy metal ions by an amperometric biosensor based on glucose oxidase immobilized onto single-walled carbon nanotubes/Nile blue nanocomposite. J. Iran. Chem. Soc. 2018;15:1765–1774. doi: 10.1007/s13738-018-1374-3. DOI

Ashrafi A.M., Cerovac S., Mudrić S., Guzsvány V., Husáková L., Urbanová I., Vytřas K. Antimony nanoparticle-multiwalled carbon nanotubes composite immobilized at carbon paste electrode for determination of trace heavy metals. Sens. Actuators B: Chem. 2014;191:320–325. doi: 10.1016/j.snb.2013.08.087. DOI

Ashrafi A.M., Vytřas K. Stripping voltammetric determination of mercury (II) at antimony-coated carbon paste electrode. Talanta. 2011;85:2700–2702. doi: 10.1016/j.talanta.2011.07.078. PubMed DOI

Ashrafi A.M., Vytřas K. New procedures for voltammetric determination of copper (II) using antimony film-coated carbon paste electrodes. Electrochimica Acta. 2012;73:112–117. doi: 10.1016/j.electacta.2011.12.042. DOI

Ashrafi A.M., Vytřas K. Determination of trace bismuth (III) by stripping voltammetry at antimony-coated carbon paste electrode. Int. J. Electrochem. Sci. 2012;7:68–76.

Ashrafi A.M., Vytřas K. Codeposited antimony-bismuth film carbon paste electrodes for electrochemical stripping determination of trace heavy metals. Int. J. Electrochem. Sci. 2013;8:2095–2103.

Bonfil Y., Brand M., Kirowa-Eisner E. Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Analytica Chimica Acta. 2000;424:65–76. doi: 10.1016/S0003-2670(00)01074-6. DOI

Hocevar S.B., Švancara I., Ogorevc B., Vytřas K. Antimony film electrode for electrochemical stripping analysis. Analytical chemistry. 2007;79:8639–8643. doi: 10.1021/ac070478m. PubMed DOI

Perone S. The Application of Stripping Analysis to the Determination of Silver (I) Using Graphite Electrodes. Anal. Chem. 1963;35:2091–2094. doi: 10.1021/ac60206a032. DOI

Švancara I., Vytřas K., Hua C., Smyth M.R. Voltammetric determination of mercury (II) at a carbon paste electrode in aqueous solutions containing tetraphenylborate ion. Talanta. 1992;39:391–396. doi: 10.1016/0039-9140(92)80153-5. PubMed DOI

Svobodová E., Baldrianová L., Hocevar S.B., Svancara I. Electrochemical stripping analysis of selected heavy metals at antimony trioxide-modified carbon paste electrode. Int. J. Electrochem. Sci. 2012;7:197–210.

Yang Y., Wang Z., Yang M., Guo M., Wu Z., Shen G., Yu R. Inhibitive determination of mercury ion using a renewable urea biosensor based on self-assembled gold nanoparticles. Sens. Actuators B Chem. 2006;114:1–8. doi: 10.1016/j.snb.2005.04.005. DOI

D’Souza S.F. Microbial biosensors. Biosens. Bioelectron. 2001;16:337–353. doi: 10.1016/S0956-5663(01)00125-7. PubMed DOI

Chey C., Ibupoto Z., Khun K., Nur O., Willander M.J.S. Indirect determination of mercury ion by inhibition of a glucose biosensor based on ZnO nanorods. Sensors. 2012;12:15063–15077. doi: 10.3390/s121115063. PubMed DOI PMC

Guascito M.R., Malitesta C., Mazzotta E., Turco A. Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor: Study of the effect of hydrogen peroxide decomposition. Sens. Actuators B Chem. 2008;131:394–402. doi: 10.1016/j.snb.2007.11.049. DOI

Samphao A., Rerkchai H., Jitcharoen J., Nacapricha D., Kalcher K. Indirect determination of mercury by inhibition of glucose oxidase immobilized on a carbon paste electrode. Int. J. Electrochem. Sci. 2012;7:1001–1010.

Jung W.K., Koo H.C., Kim K.W., Shin S., Kim S.H., Park Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 2008;74:2171–2178. doi: 10.1128/AEM.02001-07. PubMed DOI PMC

Colowick S.P., Kaplan N.O., McCormick D.B., Wright L.D. Methods in Enzymology. Volume 1 Academic Press; New York, NY, USA: 1955.

Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI

Bass M., Berman A., Singh A., Konovalov O., Freger V. Surface structure of Nafion in vapor and liquid. J. Phys. Chem. B. 2010;114:3784–3790. doi: 10.1021/jp9113128. PubMed DOI

Schachl K., Turkušić E., Komersová A., Bartoš M., Moderegger H., Švancara I., Alemu H., Vytřas K., Jimenez-Castro M., Kalcher K. Amperometric determination of glucose with a carbon paste biosensor. Collect. Czechoslov. Chem. Commun. 2002;67:302–313. doi: 10.1135/cccc20020302. DOI

Švancara I., Metelka R., Vytřas K. Piston-driven carbon paste electrode holders for electrochemical measurements. Sens. Electroanal. 2005;1:7–18.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...