Dinuclear Copper(II) Complexes of 2,6-Bis[(N-Methylpiperazine-1-yl)methyl]-4-Formyl Phenol Ligand: Promising Biomimetic Catalysts for Dye Residue Degradation and Drug Synthesis
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SGS_025_001
Faculty of Chemical Technology, University of Pardubice
ID: 90254
e-INFRA CZ project
23-06465S
Czech Science Foundation
PubMed
40004069
PubMed Central
PMC11855269
DOI
10.3390/ijms26041603
PII: ijms26041603
Knihovny.cz E-resources
- Keywords
- biomimetic catalysis, dinuclear copper(II) complexes, organic dyes, oxidative transformation, pharmaceuticals,
- MeSH
- Coloring Agents chemistry MeSH
- Biomimetic Materials chemistry chemical synthesis MeSH
- Catalysis MeSH
- Catechol Oxidase metabolism chemistry MeSH
- Coordination Complexes * chemistry chemical synthesis MeSH
- Horseradish Peroxidase metabolism chemistry MeSH
- Crystallography, X-Ray MeSH
- Ligands MeSH
- Copper * chemistry MeSH
- Oxidation-Reduction MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Coloring Agents MeSH
- Catechol Oxidase MeSH
- Coordination Complexes * MeSH
- Horseradish Peroxidase MeSH
- Ligands MeSH
- Copper * MeSH
In this study, three dinuclear copper(II) complexes of ligand 2,6-bis[(N-methyl-piperazine-1-yl)methyl]-4-formyl phenol (L1) and one of 2,6-bis[(N-methylpiperazine-1-yl)methyl]-4-formyl phenol dimethylacetal (L2) with copper(II) ions have been investigated as new types of biomimetic catalysts for the oxidative transformation of different aminophenols and phenyldiamines. All the complexes of interest were newly synthesized and further characterized by IR spectroscopy, UV-Vis and mass spectrometry, X-ray diffraction, and selected electrochemical measurements. Crystal structures of these dinuclear copper(II) complexes have revealed that the coordination-shell geometry of copper atoms is close to a tetragonal pyramid. Catecholase, phenoxazinone synthase, and horseradish peroxidase-like activities were observed in pure methanol and water-methanol mixtures in the presence of molecular oxygen. The potential applicability of the complexes under study is discussed with respect to their possibilities and limitations in the replacement of natural copper-containing oxidoreductases in the oxidative degradation of water-insoluble chlorinated aminophenols in the dye industry or in the production of phenoxazine-based drugs.
See more in PubMed
Souza J.C., Silva B.F., Morales D.A., Umbuzeiro G.D.A., Zanoni M.V.B. Assessment of the compounds formed by oxidative reaction between p-toluenediamine and p-aminophenol in hair dyeing processes: Detection, mutagenic and toxicological properties. Sci. Total Environ. 2021;795:148806. doi: 10.1016/j.scitotenv.2021.148806. PubMed DOI
Souza J.C., Silva B.F., Morales D.A., Umbuzeiro G.D.A., Zanoni M.V.B. Assessment of p-aminophenol oxidation by simulating the process of hair dyeing and occurrence in hair salon wastewater and drinking water from treatment plant. J. Hazard. Mater. 2020;387:122000. doi: 10.1016/j.jhazmat.2019.122000. PubMed DOI
He L., Michailidou F., Gahlon H.L., Zeng W. Hair dye ingredients and potential health risks from exposure to hair dyeing. Chem. Res. Toxicol. 2022;35:901–915. doi: 10.1021/acs.chemrestox.1c00427. PubMed DOI PMC
Babenysheva A.V., Lisovskaya N.A., Belevich I.O., Lisovenko N.Y. Synthesis and antimicrobial activity of substituted benzoxazines and quinoxalines. Pharm. Chem. J. 2006;40:611–613. doi: 10.1007/s11094-006-0204-6. DOI
Sabaa M.W., Sanad M.A., Abd El-Ghaffar M.A., Abdelwahab N.A., Sayed S.M., Soliman S.M. Synthesis, characterization, and application of polyanisidines as efficient photostabilizers for poly(vinyl chloride) films. J. Elastomers Plast. 2019;52:537–547. doi: 10.1177/0095244319877668. DOI
Nohynek G.J., Fautz R., Benech-Kieffer F., Toutain H. Toxicity and human health risk of hair dyes. Food Chem. Toxicol. 2004;42:517–543. doi: 10.1016/j.fct.2003.11.003. PubMed DOI
Mukkanna K.S., Stone N.M., Ingram J.R. Para-phenylenediamine allergy: Current perspectives on diagnosis and management. J. Asthma Allergy. 2017;10:9–15. doi: 10.2147/JAA.S90265. PubMed DOI PMC
Zhang X., Peng Z., Hou S., Sun Q., Yuan H., Yin D., Zhang W., Zhang Y., Tang J., Zhang S., et al. Ubiquitous occurrence of p-phenylenediamine (PPD) antioxidants and PPD-quinones in fresh atmospheric snow and their amplification effects on associated aqueous contamination. J. Hazard. Mater. 2024;465:133409. doi: 10.1016/j.jhazmat.2023.133409. PubMed DOI
Hahn V. Potential of the enzyme laccase for the synthesis and derivatization of antimicrobial compounds. World J. Microbiol. Biotechnol. 2023;39:107. doi: 10.1007/s11274-023-03539-x. PubMed DOI PMC
Chaurasia K.P., Bharati S.L., Sarma C. Laccases in pharmaceutical chemistry: A comprehensive appraisal. Mini-Rev. Org. Chem. 2016;13:430–451. doi: 10.2174/1570193X13666161019124854. DOI
Maiti S., Sinha S.S., Singh M. Microbial decolorization and detoxification of emerging environmental pollutant: Cosmetic hair dyes. J. Hazard. Mater. 2017;338:356–363. doi: 10.1016/j.jhazmat.2017.05.034. PubMed DOI
Mishra V., Sharma U., Rawat D., Benson D., Singh M., Sharma R.S. Fast-changing life-styles and ecotoxicity of hair dyes drive the emergence of hidden toxicants threatening environmental sustainability in Asia. Environ. Res. 2020;184:109253. doi: 10.1016/j.envres.2020.109253. PubMed DOI
Chen C.Y., Huang Y.C., Wei C.M., Meng M., Liu W.-H., Yang C.-H. Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express. 2013;3:49. doi: 10.1186/2191-0855-3-49. PubMed DOI PMC
Santo M., Weitsman R., Sivan A. The role of the copper-binding enzyme—Laccase—In the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeter. Biodegr. 2013;84:204–210. doi: 10.1016/j.ibiod.2012.03.001. DOI
Gałązka A., Jankiewicz U., Szczepkowski A. Biochemical characteristics of laccases and their practical application in the removal of xenobiotics from water. Appl. Sci. 2023;13:4394. doi: 10.3390/app13074394. DOI
Park H., Kwon O., Ryu K. Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase. Korean J. Chem. Eng. 2015;32:1847–1852. doi: 10.1007/s11814-015-0011-4. DOI
Benavente R., Lopez-Tejedor D., Perez-Rizquez C., Palomo J.M. Ultra-fast degradation of p-aminophenol by a nanostructured iron catalyst. Molecules. 2018;23:2166. doi: 10.3390/molecules23092166. PubMed DOI PMC
Lin Y., Cao Y., Yao O., Chai O.J.H., Xie J. Engineering noble metal nanomaterials for pollutant decomposition. Ind. Eng. Chem. Res. 2022;59:20561–20581. doi: 10.1021/acs.iecr.0c04258. DOI
Zhang L., Li B., Meng X., Huang L., Wang D. Degradation of four organophosphorous pesticides catalyzed by chitosan-metal coordination complexes. Environ. Sci. Pollut. Res. Int. 2015;22:15104–15112. doi: 10.1007/s11356-015-4669-2. PubMed DOI
Jain M., Yadav S., Mansi, Misra N., Khanna P., Khanna L. Copper-bisbenzimidazole complexes as biomimetic catalysts in organic transformations. Mini-Rev. Org. Chem. 2004;21:216–228. doi: 10.2174/1570193X20666230102105854. DOI
Reja S., Kejriwal A., Das R.K. Copper based biomimetic catalysts of catechol oxidase: An overview on recent trends. Catal. Ind. 2023;15:108–124. doi: 10.1134/S2070050423010063. DOI
Rajesh K., Rahiman A.K., Bharathi K.S., Sreedaran S., Gangadevi V., Narayanan V. Synthesis, characterization and bioactive evaluation of copper(II) 5,10,15,20-tetrakis[α,α,α,α-2-(2,6-bis(4-methylpiperazine-1-yl-methyl)-4-iminomethyl phenol)phenyl] porphyrin: A picket-fence porphyrin. Spectrochim. Acta A. 2010;77:652–660. doi: 10.1016/j.saa.2010.07.005. PubMed DOI
Reim J., Krebs B. Synthesis, structure and catecholase activity study of dinuclear copper(II) complexes. J. Chem. Soc., Dalton Trans. 1997;20:3793–3804. doi: 10.1039/a704245k. DOI
Sýs M., Kocábová J., Klikarová J., Novák M., Jirásko R., Obluková M., Mikysek T., Sokolová R. Comparison of mononuclear and dinuclear copper(II) biomimetic complexes: Spectroelectrochemical mechanistic study of their catalytic pathways. Dalton Trans. 2022;51:13703–13715. doi: 10.1039/D2DT01610A. PubMed DOI
Wu M.H., Lin M.C., Lee C.C., Yu S.M., Wang A.H., Ho T.D. Enhancement of laccase activity by pre-incubation with organic solvents. Sci. Rep. 2019;9:9754. doi: 10.1038/s41598-019-45118-x. PubMed DOI PMC
Addison A.W., Nageswara Rao T., Reedijk J., van Rijn J., Verschoor G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984;7:1349–1356. doi: 10.1039/DT9840001349. DOI
Holló B.B., Petruševski V.M., Kovács G.B., Franguelli F.P., Farkas A., Menyhárd A., Lendvay G., Sajó I.E., Nagy-Bereczki L., Pawar R.P., et al. Thermal and spectroscopic studies on a double-salt-type pyridine–silver perchlorate complex having κ1-O coordinated perchlorate ions. J. Therm. Anal. Calorim. 2019;138:1193–1205. doi: 10.1007/s10973-019-08663-1. DOI
Sýs M., Bártová M., Mikysek T., Švancara I. Electrodeposited carbonyl functional polymers as suitable supports for preparation of the first-generation biosensors. Sensors. 2023;23:3724. doi: 10.3390/s23073724. PubMed DOI PMC
Nakamoto K. Part A, Theory and Applications in Inorganic Chemistry. 6th ed. Wiley; Hoboken, NJ, USA: 2009. Infrared and raman spectra of inorganic and coordination compounds. DOI
Fruk L., Kuo C.-H., Torres E., Niemeyer C.M. Apoenzyme reconstitution as a chemical tool for structural enzymology and biotechnology. Angew. Chem. Int. Ed. 2009;48:1550–1574. doi: 10.1002/anie.200803098. PubMed DOI
Pàmies O., Diéguez M., Bäckvall J.-E. Artificial metalloenzymes in asymmetric catalysis: Key developments and future directions. Adv. Synth. Catal. 2015;357:1567–1586. doi: 10.1002/adsc.201500290. DOI
Chowdhury B., Maji M., Biswas B. Catalytic aspects of a copper(II) complex: Biological oxidase to oxygenase activity. J. Chem. Sci. 2017;129:1627–1637. doi: 10.1007/s12039-017-1379-y. DOI
Podder N., Mandal S. Aerobic oxidation of 2-aminophenol catalysed by a series of mononuclear copper(II) complexes: Phenoxazinone synthase-like activity and mechanistic study. New J. Chem. 2020;44:12793–12805. doi: 10.1039/D0NJ02558E. DOI
Roy S., Dutta T., Drew M.G.B., Chattopadhyay S. Phenoxazinone synthase mimicking activity of a dinuclear copper(II) complex with a half salen type Schiff base ligand. Polyhedron. 2020;178:114311. doi: 10.1016/j.poly.2019.114311. DOI
Oloyede H.O., Orighomisan Woods J.A., Görls H., Plass W., Eseola A.O. Influence of structural and thermal factors on phenoxazinone synthase activities catalysed by coordinatively saturated cobalt(III) octahedral complexes bearing diazene–disulfonamide NˆNˆN chelators. C. R. Chim. 2020;23:169–183. doi: 10.5802/crchim.15. DOI
Lerner L. Identity of a purple dye formed by peroxidic oxidation of p-aminophenol at low pH. J. Phys. Chem. A. 2011;115:2011–9901. doi: 10.1021/jp2045806. PubMed DOI
Quaranta M., Murkovic M., Klimant I. A new method to measure oxygen solubility in organic solvents through optical oxygen sensing. Analyst. 2013;138:6243–6245. doi: 10.1039/c3an36782g. PubMed DOI
Quaranta M., Murkovic M., Klimant I., Zhou P., Liu H., Chen S., Lucia L., Zhan H., Fu S. 2,3-Diaminophenazine. Molbank. 2011;2011:M730. doi: 10.3390/m730. DOI
Tyagi N., Mathur P. Iron(III) complexes of bis (benzimidazol-2-yl) methyl) thiophene-2,5-dicarboxamide: Synthesis, spectral and oxidation of o-phenylenediamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;96:759–767. doi: 10.1016/j.saa.2012.07.004. PubMed DOI
Khattar R., Yadav A., Mathur P. Copper(II) complexes as catalyst for the aerobic oxidation of o-phenylenediamine to 2,3-diaminophenazine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;142:375–381. doi: 10.1016/j.saa.2015.01.115. PubMed DOI
Cheng L., Wu F., Bao H., Li F., Xu G., Zhang Y., Niu W. Unveiling the actual catalytic sites in nanozyme-catalyzed oxidation of o-phenylenediamine. Small. 2021;17:2104083. doi: 10.1002/smll.202104083. PubMed DOI
Bystryak S., Acharya C. Detection of HIV-1 p24 antigen in patients with varying degrees of viremia using an ELISA with a photochemical signal amplification system. Clin. Chim. Acta. 2016;456:128–136. doi: 10.1016/j.cca.2016.02.022. PubMed DOI PMC
Li Y., Li G., Peng H., Qin Y., Chen K. Facile synthesis of high-quality ultralong poly(aniline-co-p-phenylenediamine) nanofibers. Synth. Met. 2013;164:42–46. doi: 10.1016/j.synthmet.2012.12.024. DOI
Amer I., Mokrani T., Jewell L., Young D.A., Vosloo H.C.N. Oxidative copolymerization of p-phenylenediamine and 3-aminobenzenesulfonic acid. Tetrahedron Lett. 2016;57:426–430. doi: 10.1016/j.tetlet.2015.12.056. DOI
Samanta S., Roy P., Kar P. Sensing of ethanol and other alcohol contaminated ethanol by conducting functional poly(o-phenylenediamine) Mater. Sci. Eng. B. 2020;256:114541. doi: 10.1016/j.mseb.2020.114541. DOI
Mikysek T., Frühbauerová M., Švancara I., Novák M., Sýs M. A new voltammetric approach for the determination of biomimetic catalyst kinetic constants based on substrate consumption. Electroanalysis. 2023;35:e202200269. doi: 10.1002/elan.202200269. DOI
Meyer A., Fischer K. Oxidative transformation processes and products of para-phenylenediamine (PPD) and para-toluenediamine (PTD)—A review. Environ. Sci. Eur. 2015;27:11. doi: 10.1186/s12302-015-0044-7. DOI
Shanmuga Bharathi K., Kalilur Rahiman A., Rajesh K., Sreedaran S., Aravindan P.G., Velmurugan D., Narayanan V. Synthesis of new ‘end-off’ μ-phenoxo and bis-μ-acetato tri-bridged copper(II), nickel(II) and zinc(II) complexes: Spectral, magnetic, electrochemical, and catalytic studies. Polyhedron. 2006;25:2859–2868. doi: 10.1016/j.poly.2006.04.022. DOI
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015;C71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Spek A.L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2003;36:7–13. doi: 10.1107/S0021889802022112. DOI
Ganguly S., Kar P., Chakraborty M., Sarkard K., Ghosh A. Synthesis, structure and phenoxazinone synthase-like activity of three unprecedented alternating CoII–CoIII 1D chains. New J. Chem. 2019;43:18780. doi: 10.1039/C9NJ03236C. DOI
Liu M., Ye Y., Xu L., Gao T., Zhong A., Song Z. Recent Advances in Nanoscale Zero-Valent Iron (nZVI)-Based Advanced Oxidation Processes (AOPs): Applications, Mechanisms, and Future Prospects. Nanomaterials. 2023;13:2830. doi: 10.3390/nano13212830. PubMed DOI PMC
Liu M., Wan Y., Wang Y., Xu J., Li X. Robust photoelectrocatalytic degradation of antibiotics by organic-inorganic PDISA/Bi2WO6 S-scheme heterojunction membrane. J. Environ. Chem. Eng. 2024;12:112328. doi: 10.1016/j.jece.2024.112328. DOI