• This record comes from PubMed

Microbial Diversity Drives Decomposition More than Advantage of Home Environment-Evidence from a Manipulation Experiment with Leaf Litter

. 2025 Feb 06 ; 13 (2) : . [epub] 20250206

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LM2015075, EF16_013/0001782, 8120001 Ministry of education youth and sport
Cooperatio - Environmental and Sustainability Research, project no. 270022 Charles University

Links

PubMed 40005718
PubMed Central PMC11858187
DOI 10.3390/microorganisms13020351
PII: microorganisms13020351
Knihovny.cz E-resources

Microbial diversity plays a crucial role in litter decomposition. However, the relationships between microbial diversity and substrate successional stage are the drivers of this decomposition. In this study, we experimentally manipulated microbial diversity and succession in post-mining soil. We used leaf litter samples from two forests of a post-mining site near Sokolov, Czech Republic: one alder plantation and one mixed forest with birch aspen and willow. Litter from each site was decomposed in the field for 3 and 12 months. The litter was X-ray sterilized and part of the litter was kept unsterilized to produce inoculum. Leaf litter samples of two different ages (3 and 12 months) from each site were each inoculated with litter of two different ages (3 and 12 months), using less and more diluted inoculum, producing two levels of microbial diversity. In each of these eight treatments, the bacterial community was then characterized by amplicon sequencing of the 16S rRNA gene and microbial respiration was used to assess the rate of decomposition. A significantly higher respiration (p < 0.05) was found for the litter inoculated with the higher level of microbial diversity. Higher respiration was also found for the younger litter compared to the older litter and both litter origins. This shows a reduction in microbial respiration with substrate age and inoculation diversity, suggesting that microbial diversity supports the decomposition of soil organic matter.

See more in PubMed

Vitousek P.M., Mooney H.A., Lubchenco J., Melillo J.M. Human domination of Earth’s ecosystems. Science. 1997;277:494–499. doi: 10.1126/science.277.5325.494. DOI

Song G., Li L., Pan G., Zhang Q. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry. 2005;74:47–62. doi: 10.1007/s10533-004-2222-3. DOI

Manlay R.J., Feller C., Swift M. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric. Ecosyst. Environ. 2006;119:217–233. doi: 10.1016/j.agee.2006.07.011. DOI

Batjes N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014;65:10–21. doi: 10.1111/ejss.12114_2. DOI

Sheng Y., Zhan Y., Zhu L. Reduced carbon sequestration potential of biochar in acidic soil. Sci. Total. Environ. 2016;572:129–137. doi: 10.1016/j.scitotenv.2016.07.140. PubMed DOI

Karu H., Szava-Kovats R., Pensa M., Kull O. Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine. Can. J. For. Res. 2009;39:1507–1517. doi: 10.1139/X09-069. DOI

Aerts R. Climate, Leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos. 1997;79:439. doi: 10.2307/3546886. DOI

Berg B., McClaugerty C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2008.

Loreau M. Microbial diversity, producer-decomposer interactions, and ecosystem processes: A theoretical model. Proc. R. Soc. B. 2001;268:303–309. doi: 10.1098/rspb.2000.1366. PubMed DOI PMC

Moorhead D.L., Sinsabaugh R.L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 2006;76:151–174. doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2. DOI

McGuire K.L., Treseder K.K. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol. Biochem. 2010;42:529–535. doi: 10.1016/j.soilbio.2009.11.016. DOI

Miki T., Ushio M., Fukui S., Kondoh M. Functional diversity of microbial decomposers facilitates plant coexistence in a plant–microbe–soil feedback model. Proc. Natl. Acad. Sci. USA. 2010;107:14251–14256. doi: 10.1073/pnas.0914281107. PubMed DOI PMC

Luo L., Gu J.-D. Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment. J. Environ. Manag. 2016;82:29–36. doi: 10.1016/j.jenvman.2016.07.040. PubMed DOI

Zhang F.-G., Zhang Q.-G. Microbial diversity limits soil heterotrophic respiration and mitigates the respiration response to moisture increase. Soil Biol. Biochem. 2016;98:180–185. doi: 10.1016/j.soilbio.2016.04.017. DOI

Banerjee S., Schlaeppi K., Van Der Heijden M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018;16:567–576. doi: 10.1038/s41579-018-0024-1. PubMed DOI

Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2017;68:12–26. doi: 10.1111/ejss.4_12398. DOI

Wagg C., Schlaeppi K., Banerjee S., Kuramae E.E., van der Heijden M.G.A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 2019;10:4841. doi: 10.1038/s41467-019-12798-y. PubMed DOI PMC

Balvanera P., Pfisterer A.B., Buchmann N., He J.S., Nakashizuka T., Raffaelli D., Schmid B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006;9:1146–1156. doi: 10.1111/j.1461-0248.2006.00963.x. PubMed DOI

Reed H.E., Martiny J.B.H. Testing the functional significance of microbial composition in natural communities. FEMS Microbiol. Ecol. 2007;62:161–170. doi: 10.1111/j.1574-6941.2007.00386.x. PubMed DOI

Maron P.-A., Sarr A., Kaisermann A., Lévêque J., Mathieu O., Guigue J., Karimi B., Bernard L., Dequiedt S., Terrat S., et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 2018;84:e02738-17. doi: 10.1128/AEM.02738-17. PubMed DOI PMC

Fierer N., Jackson R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 2006;103:626–631. doi: 10.1073/pnas.0507535103. PubMed DOI PMC

Berg B., Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009;68:1–13. doi: 10.1111/j.1574-6941.2009.00654.x. PubMed DOI

Lauber C.L., Hamady M., Knight R., Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009;75:5111–5120. doi: 10.1128/AEM.00335-09. PubMed DOI PMC

Gołębiewski M., Tarasek A., Sikora M., Deja-Sikora E., Tretyn A., Niklińska M. Rapid Microbial Community Changes During Initial Stages of Pine Litter Decomposition. Microb. Ecol. 2018;77:56–75. doi: 10.1007/s00248-018-1209-x. PubMed DOI PMC

Schroeter S.A., Eveillard D., Chaffron S., Zoppi J., Kampe B., Lohmann P., Jehmlich N., von Bergen M., Sanchez-Arcos C., Pohnert G., et al. Microbial community functioning during plant litter decomposition. Sci. Rep. 2022;12:7451. doi: 10.1038/s41598-022-11485-1. PubMed DOI PMC

Angst Š., Baldrian P., Harantová L., Cajthaml T., Frouz J. Different twig litter (Salix caprea) diameter does affect microbial community activity and composition but not decay rate. FEMS Microbiol. Ecol. 2018;94:fiy126. doi: 10.1093/femsec/fiy126. PubMed DOI

Wardle D.A., Parkinson D. Interactions between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils. 1990;9:273–280. doi: 10.1007/BF00336239. DOI

Frouz J., Toyota A., Mudrák O., Jílková V., Filipová A., Cajthaml T. Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession. Soil Biol. Biochem. 2016;99:75–84. doi: 10.1016/j.soilbio.2016.04.024. DOI

Vicena J., Ardestani M.M., Baldrian P., Frouz J. The effect of microbial diversity and biomass on microbial respiration in two soils along the soil chronosequence. Microorganisms. 2022;10:1920. doi: 10.3390/microorganisms10101920. PubMed DOI PMC

Berg B., Laskowski R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover. Elsevier Academic Press; San Diego, CA, USA: 2006.

Oravecz O., Elhottová D., Krištůfek V., Šustr V., Frouz J., Tříska J., Márialigeti K. Application of ARDRA and PLFA analysis in characterizing the bacterial communities of the food, gut and excrement of saprophagous larvae of Penthetria holosericea (Diptera: Bibionidae): A pilot study. Folia Microbiol. 2004;49:83–93. PubMed

Šnajdr J., Valášková V., Merhautová V., Cajthaml T., Baldrian P. Activity and spatial distribution of lignocellu-lose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzym. Microb. Technol. 2008;43:86–192. doi: 10.1016/j.enzmictec.2007.11.008. DOI

Stella T., Covino S., Burianová E., Filipová A., Křesinová Z., Voříšková J., Větrovský T., Baldrian P., Cajthaml T. Chemical and microbiological characterization of an aged PCB-contaminated soil. Sci. Total. Environ. 2015;533:177–186. doi: 10.1016/j.scitotenv.2015.06.019. PubMed DOI

Sagova-Mareckova M., Cermak L., Novotna J., Plhackova K., Forstova J., Kopecky J. Innovative Methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 2008;74:2902–2907. doi: 10.1128/AEM.02161-07. PubMed DOI PMC

Martinović T., Kohout P., López-Mondéjar R., Gallardo C.A., Starke R., Tomšovský M., Baldrian P. Bacterial community in soil and tree roots of Picea abies shows little response to clearcutting. FEMS Microbiol. Ecol. 2022;98:fiac118. doi: 10.1093/femsec/fiac118. PubMed DOI

Větrovský T., Baldrian P., Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI

Edgar R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv. 2016 bioRxiv:081257.

Cole J.R., Wang Q., Fish J.A., Chai B., McGarrell D.M., Sun Y., Brown C.T., Porras-Alfaro A., Kuske C.R., Tiedje J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC

Šmilauer P., Lepš J. Multivariate Analysis of Ecological Data Using Canoco 5. Cambridge University Press; Cambridge, UK: 2014.

ter Braak C.J.F., Šmilauer P. Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination. Microcomputer Power; Ithaca, NY, USA: 2012.

Baumann K., Dignac M.-F., Rumpel C., Bardoux G., Sarr A., Steffens M., Maron P.-A. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry. 2012;114:201–212. doi: 10.1007/s10533-012-9800-6. DOI

Crampon M., Bodilis J., Portet-Koltalo F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. J. Hazard. Mater. 2018;359:500–509. doi: 10.1016/j.jhazmat.2018.07.088. PubMed DOI

Cragg R.G., Bardgett R.D. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biol. Biochem. 2001;33:2073–2081. doi: 10.1016/S0038-0717(01)00138-9. DOI

Helingerová M., Frouz J., Šantrůčková H. Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic) Ecol. Eng. 2010;36:768–776. doi: 10.1016/j.ecoleng.2010.01.007. DOI

Harantová L., Mudrák O., Kohout P., Elhottová D., Frouz J., Baldrian P. Development of microbial community during primary succession in areas degraded by mining activities. Land Degrad. Dev. 2017;28:2574–2584. doi: 10.1002/ldr.2817. DOI

Sierra C.A., Müller M. A general mathematical framework for representing soil organic matter dynamics. Ecol. Monogr. 2015;85:505–524. doi: 10.1890/15-0361.1. DOI

Manzoni S., Chakrawal A., Ledder G. Decomposition rate as an emergent property of optimal microbial foraging. Front. Ecol. Evol. 2023;11:1094269. doi: 10.3389/fevo.2023.1094269. DOI

Sarquis A., Sierra C.A. Information content in time series of litter decomposition studies and the transit time of litter in arid lands. Biogeosciences. 2023;20:1759–1771. doi: 10.5194/bg-20-1759-2023. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...