Host Immune Cell Membrane Deformability Governs the Uptake Route of Malaria-Derived Extracellular Vesicles
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40030053
PubMed Central
PMC11924330
DOI
10.1021/acsnano.4c07503
Knihovny.cz E-zdroje
- Klíčová slova
- EVs, cellular uptake, extracellular vesicles, imaging flow cytometry, malaria, membrane deformability,
- MeSH
- buněčná membrána * metabolismus MeSH
- endocytóza MeSH
- extracelulární vezikuly * metabolismus MeSH
- lidé MeSH
- monocyty metabolismus imunologie MeSH
- Plasmodium falciparum * metabolismus MeSH
- T-lymfocyty metabolismus imunologie MeSH
- tropická malárie parazitologie imunologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The malaria parasite, Plasmodium falciparum, secretes extracellular vesicles (EVs) to facilitate its growth and to communicate with the external microenvironment, primarily targeting the host's immune cells. How parasitic EVs enter specific immune cell types within the highly heterogeneous pool of immune cells remains largely unknown. Using a combination of imaging flow cytometry and advanced fluorescence analysis, we demonstrated that the route of uptake of parasite-derived EVs differs markedly between host T cells and monocytes. T cells, which are components of the adaptive immune system, internalize parasite-derived EVs mainly through an interaction with the plasma membrane, whereas monocytes, which function in the innate immune system, take up these EVs via endocytosis. The membranal/endocytic balance of EV internalization is driven mostly by the amount of endocytic incorporation. Integrating atomic force microscopy with fluorescence data analysis revealed that internalization depends on the biophysical properties of the cell membrane rather than solely on molecular interactions. In support of this, altering the cholesterol content in the cell membrane tilted the balance in favor of one uptake route over another. Our results provide mechanistic insights into how P. falciparum-derived EVs enter into diverse host cells. This study highlights the sophisticated cell-communication tactics used by the malaria parasite.
Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
Zobrazit více v PubMed
World Malaria Report 2023. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023. (accessed April 18, 2024).
Ofir-Birin Y.; Heidenreich M.; Regev-Rudzki N. Pathogen-Derived Extracellular Vesicles Coordinate Social Behaviour and Host Manipulation. Semin. Cell Dev. Biol. 2017, 67, 83–90. 10.1016/j.semcdb.2017.03.004. PubMed DOI
Mashburn L. M.; Whiteley M. Membrane Vesicles Traffic Signals and Facilitate Group Activities in a Prokaryote. Nature 2005, 437 (7057), 422–425. 10.1038/nature03925. PubMed DOI
van der Pol E.; Böing A. N.; Harrison P.; Sturk A.; Nieuwland R. Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacol. Rev. 2012, 64 (3), 676–705. 10.1124/pr.112.005983. PubMed DOI
Sisquella X.; Ofir-Birin Y.; Pimentel M. A.; Cheng L.; Abou Karam P.; Sampaio N. G.; Penington J. S.; Connolly D.; Giladi T.; Scicluna B. J.; Sharples R. A.; Waltmann A.; Avni D.; Schwartz E.; Schofield L.; Porat Z.; Hansen D. S.; Papenfuss A. T.; Eriksson E. M.; Gerlic M.; Hill A. F.; Bowie A. G.; Regev-Rudzki N. Malaria Parasite DNA-Harbouring Vesicles Activate Cytosolic Immune Sensors. Nat. Commun. 2017, 8 (1), 1985.10.1038/s41467-017-02083-1. PubMed DOI PMC
De Gassart A.; Géminard C.; Février B.; Raposo G.; Vidal M. Lipid Raft-Associated Protein Sorting in Exosomes. Blood 2003, 102 (13), 4336–4344. 10.1182/blood-2003-03-0871. PubMed DOI
Thorsteinsson K.; Olsén E.; Schmidt E.; Pace H.; Bally M. FRET-Based Assay for the Quantification of Extracellular Vesicles and Other Vesicles of Complex Composition. Anal. Chem. 2020, 92 (23), 15336–15343. 10.1021/acs.analchem.0c02271. PubMed DOI PMC
Buzás E. I.; Tóth E.; Sódar B. W.; Szabó-Taylor K. Molecular Interactions at the Surface of Extracellular Vesicles. Semin. Immunopathol. 2018, 40 (5), 453–464. 10.1007/s00281-018-0682-0. PubMed DOI PMC
Dong G.; Filho A. L.; Olivier M. Modulation of Host-Pathogen Communication by Extracellular Vesicles (EVs) of the Protozoan Parasite Leishmania. Front. Cell. Infect. Microbiol. 2019, 9, 100.10.3389/fcimb.2019.00100. PubMed DOI PMC
Bonsergent E.; Grisard E.; Buchrieser J.; Schwartz O.; Théry C.; Lavieu G. Quantitative Characterization of Extracellular Vesicle Uptake and Content Delivery within Mammalian Cells. Nat. Commun. 2021, 12 (1), 1864.10.1038/s41467-021-22126-y. PubMed DOI PMC
Mantel P. Y.; Marti M. The Role of Extracellular Vesicles in Plasmodium and Other Protozoan Parasites. Cell Microbiol. 2014, 16 (3), 344–354. 10.1111/cmi.12259. PubMed DOI PMC
Regev-Rudzki N.; Wilson D. W.; Carvalho T. G.; Sisquella X.; Coleman B. M.; Rug M.; Bursac D.; Angrisano F.; Gee M.; Hill A. F.; Baum J.; Cowman A. F. Cell-Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles. Cell 2013, 153 (5), 1120–1133. 10.1016/j.cell.2013.04.029. PubMed DOI
Mantel P. Y.; Hoang A. N.; Goldowitz I.; Potashnikova D.; Hamza B.; Vorobjev I.; Ghiran I.; Toner M.; Irimia D.; Ivanov A. R.; Barteneva N.; Marti M. Malaria-Infected Erythrocyte-Derived Microvesicles Mediate Cellular Communication within the Parasite Population and with the Host Immune System. Cell Host Microbe 2013, 13 (5), 521–534. 10.1016/j.chom.2013.04.009. PubMed DOI PMC
Ofir-Birin Y.; Ben Ami Pilo H.; Cruz Camacho A.; Rudik A.; Rivkin A.; Revach O. Y.; Nir N.; Block Tamin T.; Abou Karam P.; Kiper E.; Peleg Y.; Nevo R.; Solomon A.; Havkin-Solomon T.; Rojas A.; Rotkopf R.; Porat Z.; Avni D.; Schwartz E.; Zillinger T.; Hartmann G.; Di Pizio A.; Quashie N.; Ben; Dikstein R.; Gerlic M.; Torrecilhas A. C.; Levy C.; Nolte-‘t Hoen E. N. M.; Bowie A. G.; Regev-Rudzki N. Malaria Parasites Both Repress Host CXCL10 and Use It as a Cue for Growth Acceleration. Nat. Commun. 2021, 12 (1), 4851.10.1038/s41467-021-24997-7. PubMed DOI PMC
Ye W.; Chew M.; Hou J.; Lai F.; Leopold S. J.; Loo H. L.; Ghose A.; Dutta A. K.; Chen Q.; Ooi E. E.; White N. J.; Dondorp A. M.; Preiser P.; Chen J. Microvesicles from Malaria-Infected Red Blood Cells Activate Natural Killer Cells via MDA5 Pathway. PLoS Pathog. 2018, 14 (10), e1007298.10.1371/JOURNAL.PPAT.1007298. PubMed DOI PMC
Abou Karam P.; Rosenhek-Goldian I.; Ziv T.; Ben Ami Pilo H.; Azuri I.; Rivkin A.; Kiper E.; Rotkopf R.; Cohen S. R.; Torrecilhas A. C.; Avinoam O.; Rojas A.; Morandi M. I.; Regev-Rudzki N. Malaria Parasites Release Vesicle Subpopulations with Signatures of Different Destinations. EMBO Rep. 2022, 23 (7), e54755.10.15252/embr.202254755. PubMed DOI PMC
Mantel P. Y.; Hjelmqvist D.; Walch M.; Kharoubi-Hess S.; Nilsson S.; Ravel D.; Ribeiro M.; Grüring C.; Ma S.; Padmanabhan P.; Trachtenberg A.; Ankarklev J.; Brancucci N. M.; Huttenhower C.; Duraisingh M. T.; Ghiran I.; Kuo W. P.; Filgueira L.; Martinelli R.; Marti M. Infected Erythrocyte-Derived Extracellular Vesicles Alter Vascular Function via Regulatory Ago2-MiRNA Complexes in Malaria. Nat. Commun. 2016, 7 (1), 12727.10.1038/ncomms12727. PubMed DOI PMC
Dekel E.; Yaffe D.; Rosenhek-Goldian I.; Ben-Nissan G.; Ofir-Birin Y.; Morandi M. I.; Ziv T.; Sisquella X.; Pimentel M. A.; Nebl T.; Kapp E.; Ohana Daniel Y.; Karam P. A.; Alfandari D.; Rotkopf R.; Malihi S.; Temin T. B.; Mullick D.; Revach O. Y.; Rudik A.; Gov N. S.; Azuri I.; Porat Z.; Bergamaschi G.; Sorkin R.; Wuite G. J. L.; Avinoam O.; Carvalho T. G.; Cohen S. R.; Sharon M.; Regev-Rudzki N. 20S Proteasomes Secreted by the Malaria Parasite Promote Its Growth. Nat. Commun. 2021, 12 (1), 1172.10.1038/s41467-021-21344-8. PubMed DOI PMC
Abdi A.; Yu L.; Goulding D.; Rono M. K.; Bejon P.; Choudhary J.; Rayner J. Proteomic Analysis of Extracellular Vesicles from a Plasmodium Falciparum Kenyan Clinical Isolate Defines a Core Parasite Secretome. Wellcome Open Res. 2017, 2, 50.10.12688/wellcomeopenres.11910.1. PubMed DOI PMC
Kioko M.; Pance A.; Mwangi S.; Goulding D.; Kemp A.; Rono M.; Ochola-Oyier L. I.; Bull P. C.; Bejon P.; Rayner J. C.; Abdi A. I. Extracellular Vesicles Could Be a Putative Posttranscriptional Regulatory Mechanism That Shapes Intracellular RNA Levels in Plasmodium Falciparum. Nat. Commun. 2023, 14 (1), 6447.10.1038/s41467-023-42103-x. PubMed DOI PMC
Rivkin A.; Ben-Hur S.; Regev-Rudzki N. Malaria Parasites Distribute Subversive Messages across Enemy Lines. Trends Parasitol. 2017, 33 (1), 2–4. 10.1016/j.pt.2016.11.005. PubMed DOI
Escrevente C.; Keller S.; Altevogt P.; Costa J. Interaction and Uptake of Exosomes by Ovarian Cancer Cells. BMC Cancer 2011, 11 (1), 108.10.1186/1471-2407-11-108. PubMed DOI PMC
Gurung S.; Perocheau D.; Touramanidou L.; Baruteau J. The Exosome Journey: From Biogenesis to Uptake and Intracellular Signalling. Cell Commun. Signaling 2021, 19 (1), 47.10.1186/s12964-021-00730-1. PubMed DOI PMC
Friese C.; Yang J.. Extracellular Vesicle Transportation and Uptake by Recipient Cells Physiol. Behav. 2019; Vol. 46 (2), , pp 248–25610.3390/pr9020273.Extracellular. DOI
Raposo G.; Stoorvogel W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. 10.1083/jcb.201211138. PubMed DOI PMC
Mulcahy L. A.; Pink R. C.; Carter D. R. F. Routes and Mechanisms of Extracellular Vesicle Uptake. J. Extracell. Vesicles 2014, 3 (1), 24641.10.3402/jev.v3.24641. PubMed DOI PMC
Horibe S.; Tanahashi T.; Kawauchi S.; Murakami Y.; Rikitake Y. Mechanism of Recipient Cell-Dependent Differences in Exosome Uptake. BMC Cancer 2018, 18 (1), 47.10.1186/s12885-017-3958-1. PubMed DOI PMC
Montecalvo A.; Larregina A. T.; Shufesky W. J.; Stolz D. B.; Sullivan M. L. G.; Karlsson J. M.; Baty C. J.; Gibson G. A.; Erdos G.; Wang Z.; Milosevic J.; Tkacheva O. A.; Divito S. J.; Jordan R.; Lyons-Weiler J.; Watkins S. C.; Morelli A. E. Mechanism of Transfer of Functional MicroRNAs between Mouse Dendritic Cells via Exosomes. Blood 2012, 119 (3), 756–766. 10.1182/blood-2011-02-338004. PubMed DOI PMC
Morelli A. E.; Larregina A. T.; Shufesky W. J.; Sullivan M. L. G.; Stolz D. B.; Papworth G. D.; Zahorchak A. F.; Logar A. J.; Wang Z.; Watkins S. C.; Falo L. D.; Thomson A. W. Endocytosis, Intracellular Sorting, and Processing of Exosomes by Dendritic Cells. Blood 2004, 104 (10), 3257–3266. 10.1182/blood-2004-03-0824. PubMed DOI
Joshi B. S.; de Beer M. A.; Giepmans B. N. G.; Zuhorn I. S. Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes. ACS Nano 2020, 14 (4), 4444–4455. 10.1021/acsnano.9b10033. PubMed DOI PMC
Eguchi S.; Takefuji M.; Sakaguchi T.; Ishihama S.; Mori Y.; Tsuda T.; Takikawa T.; Yoshida T.; Ohashi K.; Shimizu Y.; Hayashida R.; Kondo K.; Bando Y. K.; Ouchi N.; Murohara T. Cardiomyocytes Capture Stem Cell-Derived, Anti-Apoptotic MicroRNA-214 via Clathrin-Mediated Endocytosis in Acute Myocardial Infarction. J. Biol. Chem. 2019, 294 (31), 11665–11674. 10.1074/jbc.RA119.007537. PubMed DOI PMC
Zheng Y.; Tu C.; Zhang J.; Wang J. Inhibition of Multiple Myeloma-derived Exosomes Uptake Suppresses the Functional Response in Bone Marrow Stromal Cell. Int. J. Oncol. 2019, 54 (3), 1061–1070. 10.3892/ijo.2019.4685. PubMed DOI
Feng D.; Zhao W. L.; Ye Y. Y.; Bai X. C.; Liu R. Q.; Chang L. F.; Zhou Q.; Sui S. F. Cellular Internalization of Exosomes Occurs through Phagocytosis. Traffic 2010, 11 (5), 675–687. 10.1111/j.1600-0854.2010.01041.x. PubMed DOI
Fabbri M.; Paone A.; Calore F.; Galli R.; Gaudio E.; Santhanam R.; Lovat F.; Fadda P.; Mao C.; Nuovo G. J.; Zanesi N.; Crawford M.; Ozer G. H.; Wernicke D.; Alder H.; Caligiuri M. A.; Nana-Sinkam P.; Perrotti D.; Croce C. M. MicroRNAs Bind to Toll-like Receptors to Induce Prometastatic Inflammatory Response. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (31), E2110–E2116. 10.1073/pnas.1209414109. PubMed DOI PMC
Parolini I.; Federici C.; Raggi C.; Lugini L.; Palleschi S.; De Milito A.; Coscia C.; Iessi E.; Logozzi M.; Molinari A.; Colone M.; Tatti M.; Sargiacomo M.; Fais S. Microenvironmental PH Is a Key Factor for Exosome Traffic in Tumor Cells. J. Biol. Chem. 2009, 284 (49), 34211–34222. 10.1074/jbc.M109.041152. PubMed DOI PMC
Carrera-Bravo C.; Koh E. Y.; Tan K. S. W. The Roles of Parasite-Derived Extracellular Vesicles in Disease and Host-Parasite Communication. Parasitol. Int. 2021, 83, 10237310.1016/j.parint.2021.102373. PubMed DOI
Dekel E.; Abou Karam P.; Ohana-daniel Y.; Biton M.; Regev-rudzki N. Antibody-free labeling of malaria-derived extracellular vesicles using flow cytometry. Biomedicines 2020, 8 (5), 98.10.3390/biomedicines8050098. PubMed DOI PMC
Alfandari D.; Ben Ami Pilo H.; Abou Karam P.; Dagan O.; Joubran C.; Rotkopf R.; Regev-Rudzki N.; Porat Z. Monitoring Distribution Dynamics of EV RNA Cargo Within Recipient Monocytes and Macrophages. Front. Cell. Infect. Microbiol. 2022, 11, 73962810.3389/fcimb.2021.739628. PubMed DOI PMC
Janmey P. A.; Kinnunen P. K. J. Biophysical Properties of Lipids and Dynamic Membranes. Trends Cell Biol. 2006, 16 (10), 538–546. 10.1016/j.tcb.2006.08.009. PubMed DOI
Joseph J. G.; Liu A. P. Mechanical Regulation of Endocytosis: New Insights and Recent Advances. Adv. Biosyst. 2020, 4 (5), 1900278.10.1002/adbi.201900278. PubMed DOI
Conca D. V.; Bano F.; Wirén J. von.; Scherrer L.; Svirelis J.; Thorsteinsson K.; Dahlin A.; Bally M.. Variant-Specific Interactions at the Plasma Membrane: Heparan Sulfate’s Impact on SARS-CoV-2 Binding Kinetics bioRxiv 2024, p 2024-01.10.1101/2024.01.10.574981. PubMed DOI PMC
Norling K.; Bernasconi V.; Agmo Hernández V.; Parveen N.; Edwards K.; Lycke N. Y.; Hoök F.; Bally M. Gel Phase 1,2-Distearoyl-Sn-Glycero-3-Phosphocholine-Based Liposomes Are Superior to Fluid Phase Liposomes at Augmenting Both Antigen Presentation on Major Histocompatibility Complex Class II and Costimulatory Molecule Display by Dendritic Cells in Vitro. ACS Infect. Dis. 2019, 5 (11), 1867–1878. 10.1021/acsinfecdis.9b00189. PubMed DOI
Ofir-Birin Y.; Abou karam P.; Rudik A.; Giladi T.; Porat Z.; Regev-Rudzki N. Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry. Front. Immunol. 2018, 9, 1011.10.3389/fimmu.2018.01011. PubMed DOI PMC
Zuba-Surma E. K.; Kucia M.; Abdel-latif A. A.; Lillard J. W.; Ratajczak M. Z. The ImageStream System: A Key Step to a New Era in Imaging. Folia Histochem. Cytobiol. 2007, 45 (4), 279–290. PubMed
Stegmann T.; Wey J.; Bartoldus I.; Schoen P.; Bron R.; Ortiz A.; Nieva J. L.; Wilschut J. Evaluation of Viral Membrane Fusion Assays. Comparison of the Octadecylrhodamine Dequenching Assay with the Pyrene Excimer Assay. Biochemistry 1993, 32 (42), 11330–11337. 10.1021/bi00093a009. PubMed DOI
MacDonald R. I. Characteristics of Self-Quenching of the Fluorescence of Lipid-Conjugated Rhodamine in Membranes. J. Biol. Chem. 1990, 265 (23), 13533–13539. 10.1016/S0021-9258(18)77380-8. PubMed DOI
Arbeloa F. L.; Ojeda P. R.; Arbeloa I. L. Flourescence Self-Quenching of the Molecular Forms of Rhodamine B in Aqueous and Ethanolic Solutions. J. Lumin. 1989, 44 (1–2), 105–112. 10.1016/0022-2313(89)90027-6. DOI
Zhao W.; Fogg D. K.; Kaplan M. J. A Novel Image-Based Quantitative Method for the Characterization of NETosis. J. Immunol. Methods 2015, 423, 104–110. 10.1016/j.jim.2015.04.027. PubMed DOI PMC
Lindner B.; Martin E.; Steininger M.; Bundalo A.; Lenter M.; Zuber J.; Schuler M. A Genome-Wide CRISPR/Cas9 Screen to Identify Phagocytosis Modulators in Monocytic THP-1 Cells. Sci. Rep. 2021, 11 (1), 12973.10.1038/s41598-021-92332-7. PubMed DOI PMC
Kurynina A. V.; Erokhina M. V.; Makarevich O. A.; Sysoeva V. Y.; Lepekha L. N.; Kuznetsov S. A.; Onishchenko G. E. Plasticity of Human THP–1 Cell Phagocytic Activity during Macrophagic Differentiation. Biochemistry 2018, 83 (3), 200–214. 10.1134/S0006297918030021. PubMed DOI
Mao Y.; Finnemann S. C. Regulation of Phagocytosis by Rho GTPases. Small GTPases 2015, 6 (2), 89–99. 10.4161/21541248.2014.989785. PubMed DOI PMC
Dean P.; Heunis T.; Härtlova A.; Trost M. Regulation of Phagosome Functions by Post-Translational Modifications: A New Paradigm. Curr. Opin. Chem. Biol. 2019, 48, 73–80. 10.1016/j.cbpa.2018.11.001. PubMed DOI
Cockram T. O. J.; Dundee J. M.; Popescu A. S.; Brown G. C. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front. Immunol. 2021, 12, 629979.10.3389/fimmu.2021.629979. PubMed DOI PMC
Richards D. M.; Endres R. G. The Mechanism of Phagocytosis: Two Stages of Engulfment. Biophys. J. 2014, 107 (7), 1542–1553. 10.1016/j.bpj.2014.07.070. PubMed DOI PMC
McKelvey K. J.; Powell K. L.; Ashton A. W.; Morris J. M.; McCracken S. A. Exosomes: Mechanisms of Uptake. J. Circ. Biomarkers 2015, 4, 7.10.5772/61186. PubMed DOI PMC
Chang M. Y.; Brune J. E.; Black M.; Altemeier W. A.; Frevert C. W. Multicompartmental Analysis of the Murine Pulmonary Immune Response by Spectral Flow Cytometry. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023, 325 (4), L518–L535. 10.1152/ajplung.00317.2022. PubMed DOI PMC
Croce A. C.; Bottiroli G. Autofluorescence Spectroscopy and Imaging: A Tool for Biomedical Research and Diagnosis. Eur. J. Histochem. 2014, 58 (4), 320–337. 10.4081/ejh.2014.2461. PubMed DOI PMC
Thottacherry J. J.; Sathe M.; Prabhakara C.; Mayor S. Spoilt for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annu. Rev. Cell Dev. Biol. 2019, 35 (1), 55–84. 10.1146/annurev-cellbio-100617-062710. PubMed DOI PMC
Andronico L. A.; Jiang Y.; Carannante V.; Iskrak S.; Sandoz P. A.; Mikes J.; Klymchenko A.; Buggert M.; Österborg A.; Önfelt B.; Brodin P.; Sezgin E.. High-Throughput Analysis of Membrane Fluidity Unveils a Hidden Dimension in Immune Cell States bioRxiv 2024, p 2024-01.10.1101/2024.01.15.575649. DOI
Schneider J.; Dufrêne Y. F.; Barger W. R.; Lee G. U. Atomic Force Microscope Image Contrast Mechanisms on Supported Lipid Bilayers. Biophys. J. 2000, 79 (2), 1107–1118. 10.1016/S0006-3495(00)76364-8. PubMed DOI PMC
Garcia-Manyes S.; Sanz F. Nanomechanics of Lipid Bilayers by Force Spectroscopy with AFM: A Perspective. Biochim. Biophys. Acta, Biomembr. 2010, 1798 (4), 741–749. 10.1016/j.bbamem.2009.12.019. PubMed DOI
Dufrêne Y. F.; Boland T.; Schneider J. W.; Barger W. R.; Lee G. U. Characterization of the Physical Properties of Model Biomembranes at the Nanometer Scale with the Atomic Force Microscope. Faraday Discuss. 1999, 111 (0), 79–94. 10.1039/a807637e. PubMed DOI
Raucher D.; Sheetz M. P. Membrane Expansion Increases Endocytosis Rate during Mitosis. J. Cell Biol. 1999, 144 (3), 497–506. 10.1083/jcb.144.3.497. PubMed DOI PMC
Djakbarova U.; Madraki Y.; Chan E. T.; Kural C. Dynamic Interplay between Cell Membrane Tension and Clathrin-Mediated Endocytosis. Biol. Cell 2021, 113 (8), 344–373. 10.1111/boc.202000110. PubMed DOI PMC
Rodal S. K.; Skretting G.; Garred Ø.; Vilhardt F.; Van Deurs B.; Sandvig K. Extraction of Cholesterol with Methyl-β-Cyclodextrin Perturbs Formation of Clathrin-Coated Endocytic Vesicles. Mol. Biol. Cell 1999, 10 (4), 961–974. 10.1091/mbc.10.4.961. PubMed DOI PMC
Hissa B.; Pontes B.; Roma P. M. S.; Alves A. P.; Rocha C. D.; Valverde T. M.; Aguiar P. H. N.; Almeida F. P.; Guimarães A. J.; Guatimosim C.; Silva A. M.; Fernandes M. C.; Andrews N. W.; Viana N. B.; Mesquita O. N.; Agero U.; Andrade L. O. Membrane Cholesterol Removal Changes Mechanical Properties of Cells and Induces Secretion of a Specific Pool of Lysosomes. PLoS One 2013, 8 (12), e8298810.1371/journal.pone.0082988. PubMed DOI PMC
Biswas A.; Kashyap P.; Datta S.; Sengupta T.; Sinha B. Cholesterol Depletion by MβCD Enhances Cell Membrane Tension and Its Variations-Reducing Integrity. Biophys. J. 2019, 116 (8), 1456–1468. 10.1016/j.bpj.2019.03.016. PubMed DOI PMC
Yáñez-Mó M.; Siljander P.R.; Andreu Z.; Zavec A.B.; Borràs F.E.; Buzas E.I.; Buzas K.; Casal E.; Cappello F.; Carvalho J.; et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015, 14 (4), 27066.10.3402/jev.v4.27066. PubMed DOI PMC
Owen D. M.Methods in Membrane Lipids, 2nd ed.; Humana Press, 2015; Vol. 1232, pp 1–327.
Park D.; Don A. S.; Massamiri T.; Karwa A.; Warner B.; MacDonald J.; Hemenway C.; Naik A.; Kuan K. T.; Dilda P. J.; Wong J. W. H.; Camphausen K.; Chinen L.; Dyszlewski M.; Hogg P. J. Noninvasive Imaging of Cell Death Using an Hsp90 Ligand. J. Am. Chem. Soc. 2011, 133 (9), 2832–2835. 10.1021/ja110226y. PubMed DOI PMC
Krylova S. V.; Feng D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int. J. Mol. Sci. 2023, 24 (2), 1337.10.3390/ijms24021337. PubMed DOI PMC
Rai A. K.; Johnson P. J. Trichomonas Vaginalis Extracellular Vesicles Are Internalized by Host Cells Using Proteoglycans and Caveolin-Dependent Endocytosis. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (43), 21354–21360. 10.1073/pnas.1912356116. PubMed DOI PMC
Grant B. D.; Donaldson J. G. Pathways and Mechanisms of Endocytic Recycling. Nat. Rev. Mol. Cell Biol. 2009, 10 (9), 597–608. 10.1038/nrm2755. PubMed DOI PMC
Cocucci E.; Aguet F.; Boulant S.; Kirchhausen T. The First Five Seconds in the Life of a Clathrin-Coated Pit. Cell 2012, 150 (3), 495–507. 10.1016/j.cell.2012.05.047. PubMed DOI PMC
François-Martin C.; Pincet F. Actual Fusion Efficiency in the Lipid Mixing Assay - Comparison between Nanodiscs and Liposomes. Sci. Rep. 2017, 7 (1), 43860.10.1038/srep43860. PubMed DOI PMC
Cho Y. Y.; Kwon O. H.; Chung S. Preferred Endocytosis of Amyloid Precursor Protein from Cholesterol-Enriched Lipid Raft Microdomains. Molecules 2020, 25 (23), 5490.10.3390/molecules25235490. PubMed DOI PMC
Watts C.; Marsh M. Endocytosis: What Goes in and How?. J. Cell Sci. 1992, 103 (1), 1–8. 10.1242/JCS.103.1.1A. PubMed DOI
Morandi M. I.; Busko P.; Ozer-Partuk E.; Khan S.; Zarfati G.; Elbaz-Alon Y.; Abou Karam P.; Napso Shogan T.; Ginini L.; Gil Z.; Regev-Rudzki N.; Avinoam O. Extracellular Vesicle Fusion Visualized by Cryo-Electron Microscopy. PNAS Nexus 2022, 1 (4), pgac156.10.1093/pnasnexus/pgac156. PubMed DOI PMC
Ben Ami Pilo H.; Khan Khilji S.; Lühle J.; Biskup K.; Levy Gal B.; Rosenhek Goldian I.; Alfandari D.; Revach O.; Kiper E.; Morandi M. I.; Rotkopf R.; Porat Z.; Blanchard V.; Seeberger P. H.; Regev-Rudzki N.; Moscovitz O. Sialylated N -glycans Mediate Monocyte Uptake of Extracellular Vesicles Secreted from Plasmodium Falciparum -infected Red Blood Cells. J. Extracell. Biol. 2022, 1 (2), e33.10.1002/jex2.33. PubMed DOI PMC
Näslund T. I.; Paquin-Proulx D.; Paredes P. T.; Vallhov H.; Sandberg J. K.; Gabrielsson S. Exosomes from Breast Milk Inhibit HIV-1 Infection of Dendritic Cells and Subsequent Viral Transfer to CD4+ T Cells. Aids 2014, 28 (2), 171–180. 10.1097/QAD.0000000000000159. PubMed DOI
Rana S.; Yue S.; Stadel D.; Zöller M. Toward Tailored Exosomes: The Exosomal Tetraspanin Web Contributes to Target Cell Selection. Int. J. Biochem. Cell Biol. 2012, 44 (9), 1574–1584. 10.1016/j.biocel.2012.06.018. PubMed DOI
Zech D.; Rana S.; Büchler M. W.; Zöller M. Tumor-Exosomes and Leukocyte Activation: An Ambivalent Crosstalk. Cell Commun. Signaling 2012, 10, 37.10.1186/1478-811X-10-37. PubMed DOI PMC
Groza R.; Schmidt K. V.; Müller P. M.; Ronchi P.; Schlack-Leigers C.; Neu U.; Puchkov D.; Dimova R.; Matthaeus C.; Taraska J.; Weikl T. R.; Ewers H. Adhesion Energy Controls Lipid Binding-Mediated Endocytosis. Nat. Commun. 2024, 15 (1), 2767.10.1038/s41467-024-47109-7. PubMed DOI PMC
Martin-Jaular L.; Nakayasu E. S.; Ferrer M.; Almeida I. C.; del Portillo H. A. Exosomes from Plasmodium Yoelii-Infected Reticulocytes Protect Mice from Lethal Infections. PLoS One 2011, 6 (10), e26588.10.1371/journal.pone.0026588. PubMed DOI PMC
Trager W.; Jensen J. B. Human Malaria Parasites in Continuous Culture. J. Parasitol. 2005, 91 (3), 484–486. 10.1645/0022-3395(2005)091[0484:HMPICC]2.0.CO;2. PubMed DOI
Unterholzner L.; Keating S. E.; Baran M.; Horan K. A.; Jensen S. B.; Sharma S.; Sirois C. M.; Jin T.; Latz E.; Xiao T. S.; Fitzgerald K. A.; Paludan S. R.; Bowie A. G. IFI16 Is an Innate Immune Sensor for Intracellular DNA. Nat. Immunol. 2010, 11 (11), 997–1004. 10.1038/ni.1932. PubMed DOI PMC
Cladera J.; Martin I.; O’Shea P. The Fusion Domain of HIV Gp41 Interacts Specifically with Heparan Sulfate on the T-Lymphocyte Cell Surface. EMBO J. 2001, 20 (1–2), 19–26. 10.1093/emboj/20.1.19. PubMed DOI PMC
Klug Y. A.; Schwarzer R.; Rotem E.; Charni M.; Nudelman A.; Gramatica A.; Zarmi B.; Rotter V.; Shai Y. The HIV Gp41 Fusion Protein Inhibits T-Cell Activation through the Lentiviral Lytic Peptide 2 Motif. Biochemistry 2019, 58 (6), 818–832. 10.1021/acs.biochem.8b01175. PubMed DOI
Coleman B. M.; Hanssen E.; Lawson V. A.; Hill A. F. Prion-Infected Cells Regulate the Release of Exosomes with Distinct Ultrastructural Features. FASEB J. 2012, 26 (10), 4160–4173. 10.1096/fj.11-202077. PubMed DOI
Gerstle Z.; Desai R.; Veatch S. L. Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability. Methods Enzymol. 2018, 603, 129–150. 10.1016/bs.mie.2018.02.007. PubMed DOI PMC
Filipe V.; Hawe A.; Jiskoot W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm. Res. 2010, 27 (5), 796–810. 10.1007/s11095-010-0073-2. PubMed DOI PMC
Fendl B.; Weiss R.; Fischer M. B.; Spittler A.; Weber V. Characterization of Extracellular Vesicles in Whole Blood: Influence of Pre-Analytical Parameters and Visualization of Vesicle-Cell Interactions Using Imaging Flow Cytometry. Biochem. Biophys. Res. Commun. 2016, 478 (1), 168–173. 10.1016/j.bbrc.2016.07.073. PubMed DOI
Nečas D.; Klapetek P. Gwyddion: An Open-Source Software for SPM Data Analysis. Open Phys. 2012, 10 (1), 181–188. 10.2478/s11534-011-0096-2. DOI
Virtanen P.; Gommers R.; Oliphant T. E.; Haberland M.; Reddy T.; Cournapeau D.; Burovski E.; Peterson P.; Weckesser W.; Bright J.; van der Walt S. J.; Brett M.; Wilson J.; Millman K. J.; Mayorov N.; Nelson A. R. J.; Jones E.; Kern R.; Larson E.; Carey C. J.; Polat İ.; Feng Y.; Moore E. W.; VanderPlas J.; Laxalde D.; Perktold J.; Cimrman R.; Henriksen I.; Quintero E. A.; Harris C. R.; Archibald A. M.; Ribeiro A. H.; Pedregosa F.; van Mulbregt P.; Vijaykumar A.; Bardelli A. Pietro.; Rothberg A.; Hilboll A.; Kloeckner A.; Scopatz A.; Lee A.; Rokem A.; Woods C. N.; Fulton C.; Masson C.; Häggström C.; Fitzgerald C.; Nicholson D. A.; Hagen D. R.; Pasechnik D. V.; Olivetti E.; Martin E.; Wieser E.; Silva F.; Lenders F.; Wilhelm F.; Young G.; Price G. A.; Ingold G. L.; Allen G. E.; Lee G. R.; Audren H.; Probst I.; Dietrich J. P.; Silterra J.; Webber J. T.; Slavič J.; Nothman J.; Buchner J.; Kulick J.; Schönberger J. L.; de Miranda Cardoso J. V.; Reimer J.; Harrington J.; Rodríguez J. L. C.; Nunez-Iglesias J.; Kuczynski J.; Tritz K.; Thoma M.; Newville M.; Kümmerer M.; Bolingbroke M.; Tartre M.; Pak M.; Smith N. J.; Nowaczyk N.; Shebanov N.; Pavlyk O.; Brodtkorb P. A.; Lee P.; McGibbon R. T.; Feldbauer R.; Lewis S.; Tygier S.; Sievert S.; Vigna S.; Peterson S.; More S.; Pudlik T.; Oshima T.; Pingel T. J.; Robitaille T. P.; Spura T.; Jones T. R.; Cera T.; Leslie T.; Zito T.; Krauss T.; Upadhyay U.; Halchenko Y. O.; Vázquez-Baeza Y. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17 (3), 261–272. 10.1038/s41592-019-0686-2. PubMed DOI PMC
Pedregosa F.; Michel V.; Grisel O.; Blondel M.; Prettenhofer P.; Weiss R.; Vanderplas J.; Cournapeau D.; Pedregosa F.; Varoquaux G.; Gramfort A.; Thirion B.; Grisel O.; Dubourg V.; Passos A.; Brucher M. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12 (85), 2825–2830.