• This record comes from PubMed

The role of chemokines and interleukins in acute lymphoblastic leukemia: a systematic review

. 2024 Dec ; 22 (4) : 165-184. [epub] 20241204

Language English Country Poland Media print-electronic

Document type Journal Article, Systematic Review, Review

Grant support
DZRO-FVZ22-KLINIKA Ministry of Defence of the Czech Republic - Czech Republic

Acute lymphoblastic leukemia (ALL) is the most common childhood hematological malignancy, but it also affects adult patients with worse prognosis and outcomes. Leukemic cells benefit from protective mechanisms, which are mediated by intercellular signaling molecules - cytokines. Through these signals, cytokines modulate the biology of leukemic cells and their surroundings, enhancing the proliferation, survival, and chemoresistance of the disease. This ultimately leads to disease progression, refractoriness, and relapse, decreasing the chances of curability and overall survival of the patients. Targeting and modulating these pathological processes without affecting the healthy physiology is desirable, offering more possibilities for the treatment of ALL patients, which still remains unsatisfactory in certain cases. In this review, we comprehensively analyze the existing literature and ongoing trials regarding the role of chemokines and interleukins in the biology of ALL. Focusing on the functional pathways, genetic background, and critical checkpoints, we constructed a summary of molecules that are promising for prognostic stratification and mainly therapeutic use. Targeted therapy, including chemokine and interleukin pathways, is a new and promising approach to the treatment of cancer. With the expansion of our knowledge, we are able to uncover a spectrum of new potential checkpoints in order to modulate the disease biology. Several cytokine-related targets are advancing toward clinical application, offering the hope of higher disease response rates to treatment.

See more in PubMed

Abdalhabib EK, Alzahrani B, Saboor M, Hamza A, Elfaki EM, Alanazi F, et al. (2022). IL-10 rs1800896 Polymorphism: A Risk Factor for Adult Acute Lymphoblastic Leukemia. Pharmgenomics Pers Med 15: 809-815. DOI: 10.2147/PGPM.S377356. PubMed DOI

Abdelrasoul H, Vadakumchery A, Werner M, Lenk L, Khadour A, Young M, et al. (2020). Synergism between IL7R and CXCR4 drives BCR-ABL induced transformation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Nat Commun 11(1): 3194. DOI: 10.1038/s41467-020-16927-w. PubMed DOI

Ågerstam H, Karlsson C, Hansen N, Sandén C, Askmyr M, von Palffy S, et al. (2015). Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloidleukemia. Proc Natl Acad Sci U S A 112(34): 10786-10791. DOI: 10.1073/pnas.1422749112. PubMed DOI

Ågerstam H, Lilljebjörn H, Rissler M, Sandén C, Fioretos T (2022). IL1RAP is expressed in several subtypes of pediatric acute lymphoblastic leukemia and can be used as a target to eliminate ETV6::RUNX1-positive leukemia cells in preclinical models. Haematologica 108(2): 599-604. DOI: 10.3324/haematol.2022.281059. PubMed DOI

Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003). Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278(3): 1910-1914. DOI: 10.1074/jbc.M207577200. PubMed DOI

Agnusdei V, Minuzzo S, Frasson C, Grassi A, Axelrod F, Satyal S, et al. (2014). Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia 28(2): 278-288. DOI: 10.1038/leu.2013.183. PubMed DOI

Airoldi I, Cocco C, Di Carlo E, Disarò S, Ognio E, Basso G, Pistoia V (2006). Methylation of the IL-12Rbeta2 gene as novel tumor escape mechanism for pediatric B-acute lymphoblastic leukemia cells. Cancer Res 66(8): 3978-3980. DOI: 10.1158/0008-5472.CAN-05-4418. PubMed DOI

Airoldi I, Raffaghello L, Cocco C, Guglielmino R, Roncella S, Fedeli F, et al. (2004). Heterogeneous expression of interleukin-18 and its receptor in B-cell lymphoproliferative disorders deriving from naive, germinal center, and memory B lymphocytes. Clin Cancer Res 10(1 Pt 1): 144-154. DOI: 10.1158/1078-0432.ccr-1026-3. PubMed DOI

Akkapeddi P, Fragoso R, Hixon JA, Ramalho AS, Oliveira ML, Carvalho T, et al. (2019). A fully human anti-IL-7Rα antibody promotes antitumor activity against T-cell acute lymphoblastic leukemia. Leukemia 33(9): 2155-2168. DOI: 10.1038/s41375-019-0434-8. PubMed DOI

Alas S, Emmanouilides C, Bonavida B (2001). Inhibition of interleukin 10 by rituximab results in down-regulation of bcl-2 and sensitization of B-cell non-Hodgkin's lymphoma to apoptosis. Clin Cancer Res 7(3): 709-723.

Alexandrakis MG, Passam FH, Sfiridaki K, Moschandrea J, Pappa C, Liapi D, et al. (2004). Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leuk Res 28(3): 259-266. DOI: 10.1016/s0145-2126(03)00261-3. PubMed DOI

Alhakeem SS, McKenna MK, Oben KZ, Noothi SK, Rivas JR, Hildebrandt GC, et al. (2018). Chronic Lymphocytic Leukemia-Derived IL-10 Suppresses Antitumor Immunity. J Immunol 200(12): 4180-4189. DOI: 10.4049/jimmunol.1800241. PubMed DOI

Al-Hussaini M, Rettig MP, Ritchey JK, Karpova D, Uy GL, Eissenberg LG, et al. (2016). Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 127(1): 122-131. DOI: 10.1182/blood-2014-05-575704. PubMed DOI

Allahbakhshian Farsani M, Kamel M, Mehrpouri M, Heris RS, Hamidpour M, Salari S, Mohamadi MH (2020). The Expression of Interferon Gamma (IFN-γ) and Interleukin 6 (IL6) in Patients with Acute Lymphoblastic Leukemia (ALL). Pathol Oncol Res 26(1): 461-466. DOI: 10.1007/s12253-018-0536-z. PubMed DOI

Alsadeq A, Lenk L, Vadakumchery A, Cousins A, Vokuhl C, Khadour A, et al. (2018). IL7R is associated with CNS infiltration and relapse in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 132(15): 1614-1617. DOI: 10.1182/blood-2018-04-844209. PubMed DOI

Al-Shami A, Spolski R, Kelly J, Fry T, Schwartzberg PL, Pandey A, et al. (2004). A role for thymic stromal lymphopoietin in CD4(+) T cell development. J Exp Med 200(2): 159-168. DOI: 10.1084/jem.20031975. PubMed DOI

Ando N, Furuichi Y, Kasai S, Tamai M, Harama D, Kagami K, et al. (2018). Chemosensitivity is differentially regulated by the SDF-1/CXCR4 and SDF-1/CXCR7 axes in acute lymphoblastic leukemia with MLL gene rearrangements. Leuk Res 75: 36-44. DOI: 10.1016/j.leukres.2018.11.001. PubMed DOI

Angelova E, Audette C, Kovtun Y, Daver N, Wang SA, Pierce S, et al. (2019). CD123 expression patterns and selective targeting with a CD123-targeted antibody-drug conjugate (IMGN632) in acute lymphoblastic leukemia. Haematologica 104(4): 749-755. DOI: 10.3324/haematol.2018.205252. PubMed DOI

Apte RN, Voronov E (2008). Is interleukin-1 a good or bad "guy" in tumor immunobiology and immunotherapy? Immunol Rev 222: 222-241. DOI: 10.1111/j.1600-065X.2008.00615.x. PubMed DOI

Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, et al. (2007). A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12): 1380-1389. DOI: 10.1038/ni1541. PubMed DOI

Babovic S, Eaves CJ (2014). Hierarchical organization of fetal and adult hematopoietic stem cells. Exp Cell Res 329(2): 185-191. DOI: 10.1016/j.yexcr.2014.08.005. PubMed DOI

Baggiolini M, Clark-Lewis I (1992). Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307(1): 97-101. DOI: 10.1016/0014-5793(92)80909-z. PubMed DOI

Barata JT, Keenan TD, Silva A, Nadler LM, Boussiotis VA, Cardoso AA (2004). Common gamma chain-signaling cytokines promote proliferation of T-cell acute lymphoblastic leukemia. Haematologica 89(12): 1459-1467.

Beaupre DM, Talpaz M, Marini FC 3rd, Cristiano RJ, Roth JA, Estrov Z, et al. (1999). Autocrine interleukin-1beta production in leukemia: evidence for the involvement of mutated RAS. Cancer Res 59(12): 2971-2980.

Bien E, Balcerska A, Adamkiewicz-Drozynska E, Rapala M, Krawczyk M, Stepinski J (2009). Pre-treatment serum levels of interleukin-10, interleukin-12 and their ratio predict response to therapy and probability of event-free and overall survival in childhood soft tissue sarcomas, Hodgkin's lymphomas and acute lymphoblastic leukemias. Clin Biochem 42(10-11): 1144-1157. DOI: 10.1016/j.clinbiochem.2009.04.004. PubMed DOI

Boieri M, Ulvmoen A, Sudworth A, Lendrem C, Collin M, Dickinson AM, et al. (2017). IL-12, IL-15, and IL-18 pre-activated NK cells target resistant T cell acute lymphoblastic leukemia and delay leukemia development in vivo. Oncoimmunology 6(3): e1274478. DOI: 10.1080/2162402X.2016.1274478. PubMed DOI

Bolotin E, Annett G, Parkman R, Weinberg K (1999). Serum levels of IL-7 in bone marrow transplant recipients: relationship to clinical characteristics and lymphocyte count. Bone Marrow Transplant 23(8): 783-788. DOI: 10.1038/sj.bmt.1701655. PubMed DOI

Boris E, Theron A, Montagnon V, Rouquier N, Almeras M, Moreaux J, Bret C (2024). Immunophenotypic portrait of leukemia-associated-phenotype markers in B acute lymphoblastic leukemia. Cytometry B Clin Cytom 106(1): 45-57. DOI: 10.1002/cyto.b.22153. PubMed DOI

Bras AE, de Haas V, van Stigt A, Jongen-Lavrencic M, Beverloo HB, Te Marvelde JG, et al. (2019). CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. Cytometry B Clin Cytom 96(2). 134-142. DOI: 10.1002/cyto.b.21745. PubMed DOI

Brat DJ, Bellail AC, Van Meir EG (2005). The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7(2): 122-133. DOI: 10.1215/S1152851704001061. PubMed DOI

Brix N, Kessel C, Foell D, Hasle H, Albertsen BK, Bruun NH, et al. (2023). Phagocyte-related S100 proteins and cytokines in acute lymphoblastic leukemia and their prognostic value. Leuk Lymphoma 64(5): 981-989. DOI: 10.1080/10428194.2023.2193855. PubMed DOI

Buffière A, Uzan B, Aucagne R, Hermetet F, Mas M, Nassurdine S, et al. (2019). T-cell acute lymphoblastic leukemia displays autocrine production of Interleukin-7. Oncogene 38(48): 7357-7365. DOI: 10.1038/s41388-019-0921-4. PubMed DOI

Busfield SJ, Biondo M, Wong M, Ramshaw HS, Lee EM, Martin K, et al. (2012). CSL362: A Monoclonal Antibody to Human Interleukin-3 Receptor (CD123), Optimized for NK Cell-Mediated Cytotoxicity of AML Stem Cells. Blood 120(21): 3598. DOI: 10.1182/blood.V120.21.3598.3598. DOI

Buyse M, Squifflet P, Lange BJ, Alonzo TA, Larson RA, Kolitz JE, et al. (2011). Individual patient data meta-analysis of randomized trials evaluating IL-2 monotherapy as remission maintenance therapy in acute myeloid leukemia. Blood 117(26): 7007-7013. DOI: 10.1182/blood-2011-02-337725. PubMed DOI

Canale S, Cocco C, Frasson C, Seganfreddo E, Di Carlo E, Ognio E, et al. (2011). Interleukin-27 inhibits pediatric B-acute lymphoblastic leukemia cell spreading in a preclinical model. Leukemia 25(12): 1815-1824. DOI: 10.1038/leu.2011.158. PubMed DOI

Caocci G, Ledda A, Floris R, Vacca A, Arras M, Greco M, et al. (2014). Successful and safe stem cell mobilization using plerixafor in a patient with Philadelphia chromosome-positive acutelymphoblastic leukemia. Leuk Lymphoma 55(2): 462-463. DOI: 10.3109/10428194.2013.809079. PubMed DOI

Cardoso BA, Martins LR, Santos C, Nadler LM, Boussiotis VA, Cardoso AA, Barata JT (2009). Interleukin-4 Stimulates Proliferation and Growth of T-Cell Acute Lymphoblastic Leukemia Cells by Activating mTOR Signaling. Leukemia 23(1): 206-208. DOI: 10.1038/leu.2008.178. PubMed DOI

Cario G, Izraeli S, Teichert A, Rhein P, Skokowa J, Möricke A, et al. (2007). High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol 25(30): 4813-4820. DOI: 10.1200/JCO.2007.11.8166. PubMed DOI

Casado-García A, Isidro-Hernández M, Oak N, Mayado A, Mann-Ran C, Raboso-Gallego J, et al. (2022). Transient Inhibition of the JAK/STAT Pathway Prevents B-ALL Development in Genetically Predisposed Mice. Cancer Res 82(6): 1098-1109. DOI: 10.1158/0008-5472.CAN-21-3386. PubMed DOI

Chamorro S, Vela M, Franco-Villanueva A, Carramolino L, Gutiérrez J, Gómez L, et al. (2014). Antitumor effects of a monoclonal antibody to human CCR9 in leukemia cell xenografts. MAbs 6(4): 1000-1012. DOI: 10.4161/mabs.29063. PubMed DOI

Chang JS, Zhou M, Buffler PA, Chokkalingam AP, Metayer C, Wiemels JL (2011). Profound deficit of IL10 at birth in children who develop childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev 20(8): 1736-1740. DOI: 10.1158/1055-9965.EPI-11-0162. PubMed DOI

Chen N, Xu Y, Mou J, Rao Q, Xing H, Tian Z, et al. (2021a). Targeting of IL-10R on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood Cancer J 11(8): 144. DOI: 10.1038/s41408-021-00536-x. PubMed DOI

Chen Y, Li R, Shang S, Yang X, Li L, Wang W, Wang Y (2021b). Therapeutic Potential of TNFα and IL1β Blockade for CRS/ICANS in CAR-T Therapy via Ameliorating Endothelial Activation. Front Immunol 12: 623610. DOI: 10.3389/fimmu.2021.623610. PubMed DOI

Chen YL, Tang C, Zhang MY, Huang WL, Xu Y, Sun HY, et al. (2019). Blocking ATM-dependent NF-κB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic leukemia. Leukemia 33(10): 2365-2378. DOI: 10.1038/s41375-019-0458-0. PubMed DOI

Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, et al. (2016). Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta 1863(3): 449-463. DOI: 10.1016/j.bbamcr.2015.08.015. PubMed DOI

Chmielewski M, Kopecky C, Hombach AA, Abken H (2011). IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71(17): 5697-5706. DOI: 10.1158/0008-5472.CAN-11-0103. PubMed DOI

City of Hope Medical Center (2020). A Phase 2 Study to Evaluate the Anti-Tumor Activity of Single Agent Flotetuzumab in Advanced CD123-Positive Hematological Malignancies (Clinical trial registration No. NCT03739606). clinicaltrials.gov. [online] [cit. 2024-02-06]. Available from: https://clinicaltrials.gov/study/NCT03739606

Clara JA, Monge C, Yang Y, Takebe N (2020). Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol 17(4): 204-232. DOI: 10.1038/s41571-019-0293-2. PubMed DOI

Cocco C, Canale S, Frasson C, Di Carlo E, Ognio E, Ribatti D, et al. (2010). Interleukin-23 acts as antitumor agent on childhood B-acute lymphoblastic leukemia cells. Blood 116(19): 3887-3898. DOI: 10.1182/blood-2009-10-248245. PubMed DOI

Cocco C, Di Carlo E, Zupo S, Canale S, Zorzoli A, Ribatti D, et al. (2012). Complementary IL-23 and IL-27 anti-tumor activities cause strong inhibition of human follicular and diffuse large B-cell lymphoma growth in vivo. Leukemia 26(6): 1365-1374. DOI: 10.1038/leu.2011.363. PubMed DOI

Cohen KA, Liu TF, Cline JM, Wagner JD, Hall PD, Frankel AE (2005). Safety evaluation of DT388IL3, a diphtheria toxin/interleukin 3 fusion protein, in the cynomolgus monkey. Cancer Immunol Immunother 54(8): 799-806. DOI: 10.1007/s00262-004-0643-4. PubMed DOI

Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. (2007). The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566-569. DOI: 10.1038/nature06306. PubMed DOI

Cooper TM, Sison EAR, Baker SD, Li L, Ahmed A, Trippett T, et al. (2017). A phase 1 study of the CXCR4 antagonist plerixafor in combination with high-dose cytarabine and etoposide in children with relapsed or refractory acute leukemias or myelodysplastic syndrome: A Pediatric Oncology Experimental Therapeutics Investigators' Consortium study (POE 10-03). Pediatr Blood Cancer 64(8): 10.1002/pbc.26414. DOI: 10.1002/pbc.26414. PubMed DOI

Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M, et al. (2011). New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 117(23): 6267-6276. DOI: 10.1182/blood-2010-12-324004. PubMed DOI

Coustan-Smith E, Song G, Shurtleff S, Yeoh AE, Chng WJ, Chen SP, et al. (2018). Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight 3(9): e98561. DOI: 10.1172/jci.insight.98561. PubMed DOI

Cramer SD, Aplan PD, Durum SK (2016). Therapeutic targeting of IL-7Rα signaling pathways in ALL treatment. Blood 128(4): 473-478. DOI: 10.1182/blood-2016-03-679209. PubMed DOI

Crazzolara R, Kreczy A, Mann G, Heitger A, Eibl G, Fink FM, et al. (2001). High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol 115(3): 545-553. DOI: 10.1046/j.1365-2141.2001.03164.x. PubMed DOI

Cuéllar Mendoza ME, Chávez Sánchez FR, Dorantes Acosta EM, Niembro Zúñiga AM, Pelayo R, Zapata Tarrés M (2024). Not only a therapeutic target; mTOR in Hodgkin lymphoma and acute lymphoblastic leukemia. Front Oncol 14: 1304605. DOI: 10.3389/fonc.2024.1304605. PubMed DOI

Dai Q, Zhang G, Wang Y, Ye L, Shi R, Peng L, et al. (2023). Cytokine network imbalance in children with B-cell acute lymphoblastic leukemia at diagnosis. Cytokine 169: 156267. DOI: 10.1016/j.cyto.2023.156267. PubMed DOI

Das N, Gupta R, Gupta SK, Bakhshi S, Malhotra A, Rai S, et al. (2020). A Real-world Perspective of CD123 Expression in Acute Leukemia as Promising Biomarker to Predict Treatment Outcome in B-ALL and AML. Clin Lymphoma Myeloma Leuk 20(10): e673-e684. DOI: 10.1016/j.clml.2020.05.004. PubMed DOI

de Lourdes Perim A, Amarante MK, Guembarovski RL, de Oliveira CEC, Watanabe MAE (2015). CXCL12/CXCR4 axis in the pathogenesis of acute lymphoblastic leukemia (ALL): a possible therapeutic target. Cell Mol Life Sci 72(9): 1715-1723. DOI: 10.1007/s00018-014-1830-x. PubMed DOI

de Rooij B, Polak R, van den Berk LCJ, Stalpers F, Pieters R, den Boer ML (2017). Acute lymphoblastic leukemia cells create a leukemic niche without affecting the CXCR4/CXCL12 axis. Haematologica 102(10): e389-e393. DOI: 10.3324/haematol.2016.159517. PubMed DOI

de Vasconcellos JF, Laranjeira AB, Zanchin NI, Otubo R, Vaz TH, Cardoso AA, et al. (2011). Increased CCL2 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia. Pediatr Blood Cancer 56(4): 568-577. DOI: 10.1002/pbc.22941. PubMed DOI

Degryse S, de Bock CE, Demeyer S, Govaerts I, Bornschein S, Verbeke D, et al. (2018). Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32(3): 788-800. DOI: 10.1038/leu.2017.276. PubMed DOI

Demoulin S, Roncarati P, Delvenne P, Hubert P (2012). Production of large numbers of plasmacytoid dendritic cells with functional activities from CD34(+) hematopoietic progenitor cells: use of interleukin-3. Exp Hematol 40(4): 268-278. DOI: 10.1016/j.exphem.2012.01.002. PubMed DOI

Deng X, Tu Z, Xiong M, Tembo K, Zhou L, Liu P, et al. (2017). Wnt5a and CCL25 promote adult T-cell acute lymphoblastic leukemia cell migration, invasion and metastasis. Oncotarget 8(24): 39033-39047. DOI: 10.18632/oncotarget.16559. PubMed DOI

di Celle PF, Carbone A, Marchis D, Zhou D, Sozzani S, Zupo S, et al. (1994). Cytokine gene expression in B-cell chronic lymphocytic leukemia: evidence of constitutive interleukin-8 (IL-8) mRNA expression and secretion of biologically active IL-8 protein. Blood 84(1): 220-228. DOI

Dinarello CA, Simon A, van der Meer JWM (2012). Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11(8): 633-652. DOI: 10.1038/nrd3800. PubMed DOI

Djokic M, Björklund E, Blennow E, Mazur J, Söderhäll S, Porwit A (2009). Overexpression of CD123 correlates with the hyperdiploid genotype in acute lymphoblastic leukemia. Haematologica 94(7): 1016-1019. DOI: 10.3324/haematol.2008.000299. PubMed DOI

Dreyzin A, Jacobsohn D, Angiolillo A, Wistinghausen B, Schore RJ, Perez E, et al. (2022). Intravenous anakinra for tisagenlecleucel-related toxicities in children and young adults. Pediatr Hematol Oncol 39(4): 370-378. DOI: 10.1080/08880018.2021.1988012. PubMed DOI

Du W, Li J, Liu W, He Y, Yao J, Liu Y, et al. (2016). Interleukin-3 receptor α chain (CD123) is preferentially expressed in immature T-ALL and may not associate with outcomes of chemotherapy. Tumour Biol 37(3): 3817-3821. DOI: 10.1007/s13277-015-3272-y. PubMed DOI

Dubois SP, Miljkovic MD, Fleisher TA, Pittaluga S, Hsu-Albert J, Bryant BR, et al. (2021). Short-course IL-15 given as a continuous infusion led to a massive expansion of effective NK cells: implications for combination therapy with antitumor antibodies. J Immunother Cancer 9(4): e002193. DOI: 10.1136/jitc-2020-002193. PubMed DOI

Elbaz O, Shaltout A (2001). Implication of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Interleukin-3 (IL-3) in Children with Acute Myeloid Leukaemia (AML); Malignancy. Hematology 5(5): 383-388. PubMed DOI

Epron G, Ame-Thomas P, Le Priol J, Pangault C, Dulong J, Lamy T, et al. (2012). Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling. Leukemia 26(1): 139-148. DOI: 10.1038/leu.2011.179. PubMed DOI

Esmailbeig M, Ghaderi A (2017). Interleukin-18: a regulator of cancer and autoimmune diseases. Eur Cytokine Netw 28(4): 127-140. DOI: 10.1684/ecn.2018.0401. PubMed DOI

Fabbi M, Carbotti G, Ferrini S (2017). Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm 2017: 3958069. DOI: 10.1155/2017/3958069. PubMed DOI

Faderl S, Do KA, Johnson MM, Keating M, O'brien S, Jilani I, et al. (2005). Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia. Blood 106(13): 4303-4307. DOI: 10.1182/blood-2005-03-1010. PubMed DOI

Ferretti E, Di Carlo E, Cocco C, Ribatti D, Sorrentino C, Ognio E, et al. (2010). Direct inhibition of human acute myeloid leukemia cell growth by IL-12. Immunol Lett 133(2): 99-105. DOI: 10.1016/j.imlet.2010.08.002. PubMed DOI

Fitch BA, Zhou M, Situ J, Surianarayanan S, Reeves MQ, Hermiston ML, et al. (2022). Decreased IL-10 accelerates B-cell leukemia/lymphoma in a mouse model of pediatric lymphoid leukemia. Blood Adv 6(3): 854-865. DOI: 10.1182/bloodadvances.2021005522. PubMed DOI

Frankel AE, McCubrey JA, Miller MS, Delatte S, Ramage J, Kiser M, et al. (2000). Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia 14(4): 576-585. DOI: 10.1038/sj.leu.2401743. PubMed DOI

Frohna PA, Ratnayake A, Doerr N, Basheer A, Al-Mawsawi LQ, Kim WJ, et al. (2020). Results From a First-in-Human Study of BNZ-1, a Selective Multicytokine Inhibitor Targeting Members of the Common Gamma (gamma;c) Family of Cytokines. J Clin Pharmacol 60(2): 264-273. DOI: 10.1002/jcph.1522. PubMed DOI

Gärtner Y, Bitar L, Zipp F, Vogelaar CF (2023). Interleukin-4 as a therapeutic target. Pharmacol Ther 242: 108348. DOI: 10.1016/j.pharmthera.2023.108348. PubMed DOI

Gattillo S, Marktel S, Rizzo L, Malato S, Malabarba L, Coppola M, et al. (2015). Plerixafor on demand in ten healthy family donors as a rescue strategy to achieve an adequate graft for stem cell transplantation. Transfusion 55(8): 1993-2000. DOI: 10.1111/trf.13059. PubMed DOI

Gaudichon J, Jakobczyk H, Debaize L, Cousin E, Galibert MD, Troadec MB, Gandemer V (2019). Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: Reconciling biological concepts and clinical issues. Blood Rev 36: 40-56. DOI: 10.1016/j.blre.2019.04.003. PubMed DOI

Gazeau N, Liang EC, Wu QV, Voutsinas JM, Barba P, Iacoboni G, et al. (2023). Anakinra for Refractory Cytokine Release Syndrome orImmune Effector Cell-Associated Neurotoxicity Syndrome after Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 29(7): 430-437. DOI: 10.1016/j.jtct.2023.04.001. PubMed DOI

Gearing DP, Gough NM, King JA, Hilton DJ, Nicola NA, Simpson RJ, et al. (1987). Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J 6(13): 3995-4002. DOI: 10.1002/j.1460-2075.1987.tb02742.x. PubMed DOI

Geron I, Savino AM, Fishman H, Tal N, Brown J, Turati VA, et al. (2022). An instructive role for Interleukin-7 receptor α in the development of human B-cell precursor leukemia. Nat Commun 13(1): 659. DOI: 10.1038/s41467-022-28218-7. PubMed DOI

Ghufran H, Riaz S, Mahmood N, Yaqoob M, Shahid S, Bhinder MA, et al. (2019). Polymorphism of Interleukin-10 (IL-10, -1082 G/A) and Interleukin-28B (IL-28B, C/T) In Pediatric Acute Lymphoblastic Leukemia (ALL). Pak J Pharm Sci 32 (5 Supplementary): 2357-2361.

Goh TS, Hong C (2017). New insights of common gamma chain in hematological malignancies. Cytokine 89: 179-184. DOI: 10.1016/j.cyto.2015.12.009. PubMed DOI

Gómez AM, Martínez C, González M, Luque A, Melen GJ, Martínez J, et al. (2015). Chemokines and relapses in childhood acute lymphoblastic leukemia: A role in migration and in resistance to antileukemic drugs. Blood Cells Mol Dis 55(3): 220-227. DOI: 10.1016/j.bcmd.2015.07.001. PubMed DOI

González-García S, García-Peydró M, Martín-Gayo E, Ballestar E, Esteller M, Bornstein R, et al. (2009). CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7R{alpha} gene expression in early human thymopoiesis and leukemia. J Exp Med 206(4): 779-791. DOI: 10.1084/jem.20081922. PubMed DOI

González-García S, Mosquera M, Fuentes P, Palumbo T, Escudero A, Pérez-Martínez A, et al. (2019). IL-7R is essential for leukemia-initiating cell activity of T-cell acute lymphoblastic leukemia. Blood 134(24): 2171-2182. DOI: 10.1182/blood.2019000982. PubMed DOI

Gossai NP, Gordon PM (2017). The Role of the Central Nervous System Microenvironment in Pediatric Acute Lymphoblastic Leukemia. Front Pediatr 5: 90. DOI: 10.3389/fped.2017.00090. PubMed DOI

Govaerts I, Jacobs K, Vandepoel R, Cools J (2019). JAK/STAT Pathway Mutations in T-ALL, Including the STAT5B N642H Mutation, are Sensitive to JAK1/JAK3 Inhibitors. Hemasphere 3(6): e313. DOI: 10.1097/HS9.0000000000000313. PubMed DOI

Gracie JA, Robertson SE, McInnes IB (2003). Interleukin-18. J Leukoc Biol 73(2): 213-224. DOI: 10.1189/jlb.0602313. PubMed DOI

Griffith JW, Sokol CL, Luster AD (2014). Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32: 659-702. DOI: 10.1146/annurev-immunol-032713-120145. PubMed DOI

Hiroki CH, Amarante MK, Petenuci DL, Sakaguchi AY, Trigo FC, Watanabe MA, de Oliveira CE (2015). IL-10 gene polymorphism and influence of chemotherapy on cytokine plasma levels in childhood acute lymphoblastic leukemia patients: IL-10 polymorphism and plasma levels in leukemia patients. Blood Cells Mol Dis 55(2): 168-172. DOI: 10.1016/j.bcmd.2015.06.004. PubMed DOI

Hixon JA, Andrews C, Kashi L, Kohnhorst CL, Senkevitch E, Czarra K, Barata JT, et al. (2020). New anti-IL-7Rα monoclonal antibodies show efficacy against T cell acute lymphoblastic leukemia in pre-clinical models. Leukemia 34(1): 35-49. DOI: 10.1038/s41375-019-0531-8. PubMed DOI

Hogge DE. Yalcintepe L, Wong SH, Gerhard B, Frankel AE (2006). Variant diphtheria toxin-interleukin-3 fusion proteins with increased receptor affinity have enhanced cytotoxicity against acute myeloid leukemia progenitors. Clin Cancer Res 12(4): 1284-1291. DOI: 10.1158/1078-0432.CCR-05-2070. PubMed DOI

Holmes WE, Lee J, Kuang WJ, Rice GC, Wood WI (1991). Structure and functional expression of a human interleukin-8 receptor. Science 253(5025): 1278-1280. DOI: 10.1126/science.1840701. PubMed DOI

Hong Z, Wei Z, Xie T, Fu L, Sun J, Zhou F, et al. (2021). Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol 14: 48. DOI: 10.1186/s13045-021-01060-y. PubMed DOI

Horacek JM, Kupsa T, Vasatova M, Jebavy L, Zak P (2015). Serum cytokine and adhesion molecule profile differs in newly diagnosed acute myeloid and lymphoblastic leukemia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159(2): 299-301. DOI: 10.5507/bp.2014.051. PubMed DOI

Horlad H, Ma C, Yano H, Pan C, Ohnishi K, Fujiwara Y, et al. (2016). An IL-27/Stat3 axis induces expression of programmed cell death 1 ligands (PD-L1/2) on infiltrating macrophages in lymphoma. Cancer Sci 107(11): 1696-1704. DOI: 10.1111/cas.13065. PubMed DOI

Hou Z, Ren Y, Zhang X, Huang D, Yan F, Sun W, et al. (2024). EP300-ZNF384 transactivates IL3RA to promote the progression of B-cell acute lymphoblastic leukemia. Cell Commun Signal 22(1): 211. DOI: 10.1186/s12964-024-01596-9. PubMed DOI

Hsu PC, Chen CC, Yang YC, Shih HY, Chin YT, Pei JS, et al. (2023). Interleukin-8 Rs4073 Genotypes as Prognostic Predictors for Childhood Acute Lymphocytic Leukemia. Anticancer Res 43(12): 5359-5366. DOI: 10.21873/anticanres.16739. PubMed DOI

Hu Y, Zhang L, Wu R, Han R, Jia Y, Jiang Z, et al. (2011). Specific killing of CCR9 high-expressing acute T lymphocytic leukemia cells by CCL25 fused with PE38 toxin. Leuk Res 35(9): 1254-1260. DOI: 10.1016/j.leukres.2011.01.015. PubMed DOI

Huang S, Chen Z, Yu JF, Young D, Bashey A, Ho AD, Law P (1999). Correlation between IL-3 receptor expression and growth potential of human CD34+ hematopoietic cells from different tissues. Stem Cells 17(5): 265-272. DOI: 10.1002/stem.170265. PubMed DOI

Hughes CE, Nibbs RJB (2018). A guide to chemokines and their receptors. FEBS J 285(16): 2944-2971. DOI: 10.1111/febs.14466. PubMed DOI

Hunter R, Imbach KJ, Zhou C, Dougan J, Hamilton JAG, Chen KZ, et al. (2022). B-cell acute lymphoblastic leukemia promotes an immune suppressive microenvironment that can be overcome by IL-12. Sci Rep 12(1): 11870. DOI: 10.1038/s41598-022-16152-z. PubMed DOI

Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, et al. (2016). Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A 113(48): E7788-E7797. DOI: 10.1073/pnas.1610544113. PubMed DOI

Ihle JN (1992). Interleukin-3 and hematopoiesis. Chem Immunol 51: 65-106. DOI: 10.1159/000420755. PubMed DOI

IL1RAP interleukin 1 receptor accessory protein [Homo sapiens (human)] (2024). [online] [cit. 2024-03-27]. Available from: https://www.ncbi.nlm.nih.gov/gene/3556

ImmunoGen, Inc. (2023). A Phase 1/2, Multi-center, Open-label Study of IMGN632 Monotherapy Administered Intravenously in Patients With CD123-positive Acute Myeloid Leukemia and Other CD123-positive Hematologic Malignancies (Clinical trial registration No. NCT03386513). [online] [cit. 2024-01-22]. Available from: https://www.dana-farber.org/clinical-trials/18-013

Inagaki A, Ishida T, Ishii T, Komatsu H, Iida S, Ding J, et al. (2006). Clinical significance of serum Th1-, Th2- and regulatory T cells-associated cytokines in adult T-cell leukemia/lymphoma: high interleukin-5 and -10 levels are significant unfavorable prognostic factors. Int J Cancer 118: 3054-3061. DOI: 10.1002/ijc.21688. PubMed DOI

Inoue K, Sugiyama H, Ogawa H, Yamagami T, Azuma T, Oka Y, et al. (1994). Expression of the interleukin-6 (IL-6), IL-6 receptor, and gp130 genes in acute leukemia. Blood 84(8): 2672-2680. DOI

Jain MD, Smith M, Shah NN (2023). How I treat refractory CRS and ICANS after CAR T-cell therapy. Blood 141(20): 2430-2442. DOI: 10.1182/blood.2022017414. PubMed DOI

Järås M, Johnels P, Hansen N, Agerstam H, Tsapogas P, Rissler M, et al. (2010). Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci U S A 107(37): 16280-16285. DOI: 10.1073/pnas.1004408107. PubMed DOI

Jia H, Dilger P, Bird C, Wadhwa M (2016). IL-27 Promotes Proliferation of Human Leukemic Cell Lines Through the MAPK/ERK Signaling Pathway and Suppresses Sensitivity to Chemotherapeutic Drugs. J Interferon Cytokine Res 36(5): 302-316. DOI: 10.1089/jir.2015.0091. PubMed DOI

Jiang H, Harris MB, Rothman P (2000). IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol 105(6 Pt 1): 1063-1070. DOI: 10.1067/mai.2000.107604. PubMed DOI

Jiang T, Zhou C, Ren S (2016). Role of IL-2 in cancer immunotherapy. Oncoimmunology 5(6): e1163462. DOI: 10.1080/2162402X.2016.1163462. PubMed DOI

Johnson DE, O'Keefe RA, Grandis JR (2018). Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15(4): 234-248. DOI: 10.1038/nrclinonc.2018.8. PubMed DOI

Jones SA, Jenkins BJ (2018). Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 18(12). 773-789. DOI: 10.1038/s41577-018-0066-7. PubMed DOI

Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, et al. (2000). The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14(10): 1777-1784. DOI: 10.1038/sj.leu.2401903. PubMed DOI

Jorgensen MM, de la Puente P (2022). Leukemia Inhibitory Factor: An Important Cytokine in Pathologies and Cancer. Biomolecules 12(2): 217. DOI: 10.3390/biom12020217. PubMed DOI

Jovasevic VM, Gorelik L, Bluestone JA, Mokyr MB (2004). Importance of IL-10 for CTLA-4-mediated inhibition of tumor-eradicating immunity. J Immunol 172(3): 1449-1454. DOI: 10.4049/jimmunol.172.3.1449. PubMed DOI

Kang S, Narazaki M, Metwally H, Kishimoto T (2020). Historical overview of the interleukin-6 family cytokine. J Exp Med 217(5): e20190347. DOI: 10.1084/jem.20190347. PubMed DOI

Karakhanova S, Bedke T, Enk AH, Mahnke K (2011). IL-27 renders DC immunosuppressive by induction of B7-H1. J Leukoc Biol 89(6): 837-845. DOI: 10.1189/jlb.1209788. PubMed DOI

Kato I, Niwa A, Heike T, Fujino H, Saito MK, Umeda K, et al. (2011). Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis. PLoS One 6(11): e27042. DOI: 10.1371/journal.pone.0027042. PubMed DOI

Kawakami M, Kawakami K, Kioi M, Leland P, Puri RK (2005). Hodgkin lymphoma therapy with interleukin-4 receptor-directed cytotoxin in an infiltrating animal model. Blood 105(9): 3707-3713. DOI: 10.1182/blood-2004-08-3216. PubMed DOI

Khurana S, Heckman MG, Craig FE, Cochuyt JJ, Greipp P, Rahman ZA, et al. (2024). Evaluation of Novel Targets, Including CC-Chemokine Receptor 4, in Adult T-Cell Acute Lymphoblastic Leukemia/Lymphoma: A Mayo Clinic Clinical and Pathologic Study. Arch Pathol Lab Med 148(4): 471-475. DOI: 10.5858/arpa.2022-0482-OA. PubMed DOI

Kim JH (2020). Interleukin-8 in the Tumor Immune Niche: Lessons from Comparative Oncology. Adv Exp Med Biol 1240: 25-33. DOI: 10.1007/978-3-030-38315-2_2. PubMed DOI

Klapper JA, Downey SG, Smith FO, Yang JC, Hughes MS, Kammula US, et al. (2008). High-dose Interleukin-2 for the Treatment of Metastatic Renal Cell Carcinoma. Cancer 113(2): 293-301. DOI: 10.1002/cncr.23552. PubMed DOI

Ko B, Takebe N, Andrews O, Makena MR, Chen AP (2023). Rethinking Oncologic Treatment Strategies with Interleukin-2. Cells 12(9): 1316. DOI: 10.3390/cells12091316. PubMed DOI

Ko SY, Park CJ, Park SH, Cho YU, Jang S, Seo EJ, et al. (2014). High CXCR4 and low VLA-4 expression predicts poor survival in adults with acute lymphoblastic leukemia. Leuk Res 38(1): 65-70. DOI: 10.1016/j.leukres.2013.10.016. PubMed DOI

Kołodrubiec J, Kozłowska M, Irga-Jaworska N, Sędek Ł, Pastorczak A, Trelińska J, Młynarski W (2022). Efficacy of ruxolitinib in acute lymphoblastic leukemia: A systematic review. Leuk Res 121: 106925. DOI: 10.1016/j.leukres.2022.106925. PubMed DOI

Konoplev S, Jorgensen JL, Thomas DA, Lin E, Burger J, Kantarjian HM, et al. (2011). Phosphorylated CXCR4 is associated with poor survival in adults with B-acute lymphoblastic leukemia. Cancer 117(20): 4689-4695. DOI: 10.1002/cncr.26113. PubMed DOI

Koreth J, Kim HT, Jones KT, Lange PB, Reynolds CG, Chammas MJ, et al. (2016). Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood 128(1): 130-137. DOI: 10.1182/blood-2016-02-702852. PubMed DOI

Kovtun Y, Jones GE, Adams S, Harvey L, Audette CA, Wilhelm A, et al. (2018). A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv 2(8): 848-858. DOI: 10.1182/bloodadvances.2018017517. PubMed DOI

Koyama D, Kikuchi J, Hiraoka N, Wada T, Kurosawa H, Chiba S, Furukawa Y (2014). Proteasome inhibitors exert cytotoxicity and increase chemosensitivity via transcriptional repression of Notch1 in T-cell acute lymphoblastic leukemia. Leukemia 28(6): 1216-1226. DOI: 10.1038/leu.2013.366. PubMed DOI

Kügler M, Stein C, Kellner C, Mentz K, Saul D, Schwenkert M, et al. (2010). A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective eliminationof acute myeloid leukaemia cells by dual targeting. Br J Haematol 150(5): 574-586. DOI: 10.1111/j.1365-2141.2010.08300.x. PubMed DOI

Kupsa T, Horacek JM, Jebavy L (2012). The role of cytokines in acute myeloid leukemia: a systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156(4): 291-301. DOI: 10.5507/bp.2012.108. PubMed DOI

Kurtz DM, Tschetter LK, Allred JB, Geyer SM, Kurtin PJ, Putnam WD, et al. (2007). Subcutaneous interleukin-4 (IL 4) for relapsed and resistant non-Hodgkin lymphoma: a phase II trial in the North Central Cancer Treatment Group, NCCTG 91-78-51. Leuk Lymphoma 48(7): 1290-1298. DOI: 10.1080/10428190701355028. PubMed DOI

Langowski JL, Kastelein RA, Oft M (2007). Swords into plowshares: IL-23 repurposes tumor immune surveillance. Trends Immunol 28(5): 207-212. DOI: 10.1016/j.it.2007.03.006. PubMed DOI

Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, et al. (2006). IL-23 promotes tumour incidence and growth. Nature 442(7101): 461-465. DOI: 10.1038/nature04808. PubMed DOI

Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ (2004). IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 202: 96-105. DOI: 10.1111/j.0105-2896.2004.00214.x PubMed DOI

Laouar Y, In C, Ra F (2004). Overexpression of IL-7R alpha provides a competitive advantage during early T-cell development. Blood 103(6): 1985-1994. DOI: 10.1182/blood-2003-06-2126. PubMed DOI

Li Z, Chu X, Gao L, Ling J, Xiao P, Lu J, et al. (2021). High Expression of Interleukin-3 Receptor Alpha Chain (CD123) Predicts Favorable Outcome in Pediatric B-Cell Acute Lymphoblastic Leukemia Lacking Prognosis-Defining Genomic Aberrations. Front Oncol 11: 614420. DOI: 10.3389/fonc.2021.614420. PubMed DOI

Liu C, Chu D, Kalantar-Zadeh K, George J, Young HA, Liu G (2021a). Cytokines: From Clinical Significance to Quantification. Adv Sci (Weinh) 8(15): e2004433. DOI: 10.1002/advs.202004433. PubMed DOI

Liu J, Zeng H, Zhang Y (1999). [Study on the expression of interleukin-8 and its receptors in acute leukemia]. Zhonghua Xue Ye Xue Za Zhi 20: 24-26 (Chinese).

Liu RT, Wang XX, Sun JR, Gao N, Yu WZ (2020). Correlations of IL-6 and IL-10 gene polymorphisms with childhood acute lymphoblastic leukemia. Eur Rev Med Pharmacol Sci 24(15): 8048-8056. DOI: 10.26355/eurrev_202008_22488. PubMed DOI

Liu X, Ren H, Guo H, Wang W, Zhao N (2021b). Interleukin-35 has a tumor-promoting role in hepatocellular carcinoma. Clin Exp Immunol 203(2): 219-229. DOI: 10.1111/cei.13535. PubMed DOI

Liu YN, Chang TH, Tsai MF, Wu SG, Tsai TH, Chen HY, et al. (2015). IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget 6(12): 10415-10431. DOI: 10.18632/oncotarget.3389. PubMed DOI

Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, et al. (2003). Antitumor and antimetastatic activity of IL-23. J Immunol 171(2): 600-607. DOI: 10.4049/jimmunol.171.2.600. PubMed DOI

Ludwig H, Nachbaur DM, Fritz E, Krainer M, Huber H (1991). Interleukin-6 is a prognostic factor in multiple myeloma. Blood 77(12): 2794-2795. DOI

Lyapichev KA, Sukswai N, Angelova E, Kersh MJ, Pierce S, Konopleva M, et al. (2021). CD123 Expression in Philadelphia Chromosome-like B Acute Lymphoblastic Leukemia/Lymphoma. Clin Lymphoma Myeloma Leuk 21(4): e317-e320. DOI: 10.1016/j.clml.2020.09.014. PubMed DOI

Ma A, Boone DL, Lodolce JP (2000). The Pleiotropic Functions of Interleukin 15. J Exp Med 191(5): 753-756. DOI: 10.1084/jem.191.5.753. PubMed DOI

Ma C, Witkowski MT, Harris J, Dolgalev I, Sreeram S, Qian W, Tong J, et al. (2020). Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche. Sci Adv 6(44): eaba5536. DOI: 10.1126/sciadv.aba5536. PubMed DOI

Ma S, Shi Y, Pang Y, Dong F, Cheng H, Hao S, et al. (2014). Notch1-induced T cell leukemia can be potentiated by microenvironmental cues in the spleen. J Hematol Oncol 7: 71. DOI: 10.1186/s13045-014-0071-7. PubMed DOI

Maeda M, Tanabe-Shibuya J, Miyazato P, Masutani H, Yasunaga JI, Usami K, et al. (2020). IL-2/IL-2 Receptor Pathway Plays a Crucial Role in the Growth and Malignant Transformation of HTLV-1-Infected T Cells to Develop Adult T-Cell Leukemia. Front Microbiol 11: 356. DOI: 10.3389/fmicb.2020.00356. PubMed DOI

Magalhães-Gama F, Kerr MWA, de Araújo ND, Ibiapina HNS, Neves JCF, Hanna FSA, et al. (2021). Imbalance of Chemokines and Cytokines in the Bone Marrow Microenvironment of Children with B-Cell Acute Lymphoblastic Leukemia. J Oncol 2021: 5530650. DOI: 10.1155/2021/5530650. PubMed DOI

Malard F, Mohty M (2020). Acute lymphoblastic leukaemia. Lancet 395(10230): 1146-1162. DOI: 10.1016/S0140-6736(19)33018-1. PubMed DOI

Manabe A, Coustan-Smith E, Kumagai M, Behm FG, Raimondi SC, Pui CH, Campana D (1994). Interleukin-4 induces programmed cell death (apoptosis) in cases of high-risk acute lymphoblastic leukemia. Blood 83(7): 1731-1737. DOI

Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE, et al. (2013). T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood 122(18): 3138-3148. DOI: 10.1182/blood-2012-12-474056. PubMed DOI

Mazur B, Mertas A, Sońta-Jakimczyk D, Szczepański T, Janik-Moszant A (2004). Concentration of IL-2, IL-6, IL-8, IL-10 and TNF-alpha in children with acute lymphoblastic leukemia after cessation of chemotherapy. Hematol Oncol 22(1): 27-34. DOI: 10.1002/hon.725. PubMed DOI

Melão A, Spit M, Cardoso BA, Barata JT (2016). Optimal interleukin-7 receptor-mediated signaling, cell cycle progression and viability of T-cell acute lymphoblastic leukemia cells rely on casein kinase 2 activity. Haematologica 101(11): 1368-1379. DOI: 10.3324/haematol.2015.141143. PubMed DOI

Melo RCC, Longhini AL, Bigarella CL, Baratti MO, Traina F, Favaro P, et al. (2014). CXCR7 Is Highly Expressed in Acute Lymphoblastic Leukemia and Potentiates CXCR4 Response to CXCL12. PLoS One 9(1): e85926. DOI: 10.1371/journal.pone.0085926. PubMed DOI

Miljkovic MD, Dubois SP, Müller JR, Bryant B, Ma E, Conlon KC, Waldmann TA (2023). Interleukin-15 augments NK cell-mediated ADCC of alemtuzumab in patients with CD52+ T-cell malignancies. Blood Adv 7(3): 384-394. DOI: 10.1182/bloodadvances.2021006440. PubMed DOI

Mirandola L, Chiriva-Internati M, Montagna D, Locatelli F, Zecca M, Ranzani M, et al. (2012). Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia. J Pathol 226(5): 713-722. DOI: 10.1002/path.3015. PubMed DOI

Mirlekar B, Michaud D, Searcy R, Greene K, Pylayeva-Gupta Y (2018). IL35 Hinders Endogenous Antitumor T-cell Immunity and Responsiveness to Immunotherapy in Pancreatic Cancer. Cancer Immunol Res 6(9): 1014-1024. DOI: 10.1158/2326-6066.CIR-17-0710. PubMed DOI

Mitchell K, Barreyro L, Todorova TI, Taylor SJ, Antony-Debré I, Narayanagari SR, et al. (2018). IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med 215(6): 1709-1727. DOI: 10.1084/jem.20180147. PubMed DOI

Mocellin S, Marincola F, Rossi CR, Nitti D, Lise M (2004). The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev 15(1): 61-76. DOI: 10.1016/j.cytogfr.2003.11.001. PubMed DOI

Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A (2001). Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19: 683-765. DOI: 10.1146/annurev.immunol.19.1.683. PubMed DOI

Mori N, Shirakawa F, Murakami S, Oda S, Eto S (1994). Interleukin-1 alpha as an autocrine growth factor for acute lymphoblastic leukaemia cells. Br J Haematol 86(2): 386-388. DOI: 10.1111/j.1365-2141.1994.tb04746.x. PubMed DOI

Mori T, Kikuchi T, Yamazaki R, Koda Y, Saburi M, Sakurai M, et al. (2021). Phase 1 study of plerixafor in combination with total body irradiation-based myeloablative conditioning for allogeneic hematopoietic stem cell transplantation. Int J Hematol 113(6): 877-883. DOI: 10.1007/s12185-021-03109-7. PubMed DOI

Morrison SJ, Scadden DT (2014). The bone marrow niche for haematopoietic stem cells. Nature 505(7483): 327-334. DOI: 10.1038/nature12984. PubMed DOI

Moses BS, Slone WL, Thomas P, Evans R, Piktel D, Angel PM, et al. (2016). Bone marrow microenvironment modulation of acutelymphoblastic leukemia phenotype. Exp Hematol 44(1): 50-59.e1-2. DOI: 10.1016/j.exphem.2015.09.003. PubMed DOI

Muhammad S, Fan T, Hai Y, Gao Y, He J (2023). Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 22(1): 121. DOI: 10.1186/s12943-023-01826-7. PubMed DOI

Muñoz L, Nomdedéu JF, López O, Carnicer MJ, Bellido M, Aventín A, et al. (2001). Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 86(12): 1261-1269.

Naing A, Infante JR, Papadopoulos KP, Chan IH, Shen C, Ratti NP, et al. (2018). PEGylated IL-10 (Pegilodecakin) Induces Systemic Immune Activation, CD8+ T Cell Invigoration and Polyclonal T Cell Expansion in Cancer Patients. Cancer Cell 34(6): 775-791.e3. DOI: 10.1016/j.ccell.2018.10.007. PubMed DOI

Nievergall E, Ramshaw HS, Yong AS, Biondo M, Busfield SJ, Vairo G, et al. (2014). Monoclonal antibody targeting of IL-3 receptor α with CSL362 effectively depletes CML progenitor and stem cells. Blood 123(8): 1218-1228. DOI: 10.1182/blood-2012-12-475194. PubMed DOI

Nievergall E, Reynolds J, Kok CH, Watkins DB, Biondo M, Busfield SJ, et al. (2016). TGF-α and IL-6 plasma levels selectively identify CML patients who fail to achieve an early molecular response or progress in the first year of therapy. Leukemia 30(6): 1263-1272. DOI: 10.1038/leu.2016.34. PubMed DOI

Okabe M, Kuni-eda Y, Sugiwura T, Tanaka M, Miyagishima T, Saiki I, et al. (1991). Inhibitory effect of interleukin-4 on the in vitro growth of Ph1-positive acute lymphoblastic leukemia cells. Blood 78(6): 1574-1580. DOI

Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT (2019). IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul 71: 88-96. DOI: 10.1016/j.jbior.2018.09.012. PubMed DOI

Olson OC, Joyce JA (2013). Microenvironment-mediated resistance to anticancer therapies. Cell Res 23: 179-181. DOI: 10.1038/cr.2012.123. PubMed DOI

Oniki S, Nagai H, Horikawa T, Furukawa J, Belladonna ML, Yoshimoto T, et al. (2006). Interleukin-23 and interleukin-27 exert quite different antitumor and vaccine effects on poorly immunogenic melanoma. Cancer Res 66(12): 6395-6404. DOI: 10.1158/0008-5472.CAN-05-4087. PubMed DOI

Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T, et al. (2012). BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 120(14): 2843-2852. DOI: 10.1182/blood-2012-02-413021. PubMed DOI

Ozbek N, Yetgin S, Tuncer AM (2000). Effects of G-CSF and high-dose methylprednisolone on peripheral stem cells, serum IL-3 levels and hematological parameters in acute lymphoblastic leukemia patients with neutropenia: a pilot study. Leuk Res 24(1): 55-58. DOI: 10.1016/s0145-2126(99)00138-1. PubMed DOI

Pandey S, Singh R, Habib N, Singh V, Kushwaha R, Tripathi AK, Mahdi AA (2023). Expression of CXCL8 (IL-8) in the Pathogenesis of T-Cell Acute Lymphoblastic Leukemia Patients. Cureus 15(9): e45929. DOI: 10.7759/cureus.45929. PubMed DOI

Parameswaran R, Yu M, Lim M, Groffen J, Heisterkamp N (2011). Combination of drug therapy in acute lymphoblastic leukemia with a CXCR4 antagonist. Leukemia 25(8): 1314-1323. DOI: 10.1038/leu.2011.76. PubMed DOI

Parameswaran R, Yu M, Lyu MA, Lim M, Rosenblum MG, Groffen J, Heisterkamp N (2012). Treatment of acute lymphoblastic leukemia with an rGel/BLyS fusion toxin. Leukemia 26(8): 1786-1796. DOI: 10.1038/leu.2012.54. PubMed DOI

Park HH, Kim M, Lee BH, Lim J, Kim Y, Lee EJ, et al. (2006). Intracellular IL-4, IL-10, and IFN-gamma levels of leukemic cells and bone marrow T cells in acute leukemia. Ann Clin Lab Sci 36(1): 7-15.

Passaro D, Irigoyen M, Catherinet C, Gachet S, Da Costa De Jesus C, Lasgi C, et al. (2015). CXCR4 Is Required for Leukemia-Initiating Cell Activity in T Cell Acute Lymphoblastic Leukemia. Cancer Cell 27(6): 769-779. DOI: 10.1016/j.ccell.2015.05.003. PubMed DOI

Pavlovsky C, Vasconcelos Cordoba B, Sanchez MB, Moiraghi B, Varela A, Custidiano R, et al. (2023). Elevated plasma levels of IL-6 and MCP-1 selectively identify CML patients who better sustainmolecular remission after TKI withdrawal. J Hematol Oncol 16(1): 43. DOI: 10.1186/s13045-023-01440-6. PubMed DOI

Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M, Brentjens RJ (2012). Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119(18): 4133-4141. DOI: 10.1182/blood-2011-12-400044. PubMed DOI

Peled A, Klein S, Beider K, Burger JA, Abraham M (2018). Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies. Cytokine 109: 11-16. DOI: 10.1016/j.cyto.2018.02.020. PubMed DOI

Pemmaraju N, Bose P, Rampal R, Gerds AT, Fleischman A, Verstovsek S (2023). Ten years after ruxolitinib approval for myelofibrosis: a review of clinical efficacy. Leuk Lymphoma 64(6): 1063-1081. DOI: 10.1080/10428194.2023.2196593. PubMed DOI

Peña-Martínez P, Eriksson M, Ramakrishnan R, Chapellier M, Högberg C, Orsmark-Pietras C, et al. (2018). Interleukin 4 induces apoptosis of acute myeloid leukemia cells in a Stat6-dependent manner. Leukemia 32(3): 588-596. DOI: 10.1038/leu.2017.261. PubMed DOI

Qian F, Arner BE, Kelly KM, Annageldiyev C, Sharma A, Claxton DF, et al. (2022). Interleukin-4 treatment reduces leukemia burden in acute myeloid leukemia. FASEB J 36(5): e22328. DOI: 10.1096/fj.202200251R. PubMed DOI

Qin H, Cho M, Haso W, Zhang L, Tasian SK, Oo HZ, et al. (2015). Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein. Blood 126(5): 629-639. DOI: 10.1182/blood-2014-11-612903. PubMed DOI

Qiuping Z, Jei X, Youxin J, Wei J, Chun L, Jin W, et al. (2004). CC chemokine ligand 25 enhances resistance to apoptosis in CD4+ T cells from patients with T-cell lineage acute and chronic lymphocytic leukemia by means of livin activation. Cancer Res 64(20): 7579-7587. DOI: 10.1158/0008-5472.CAN-04-0641. PubMed DOI

Qiuping Z, Qun L, Chunsong H, Xiaolian Z, Baojun H, Mingzhen Y, et al. (2003). Selectively increased expression and functions of chemokine receptor CCR9 on CD4+ T cells from patients with T-cell lineage acute lymphocytic leukemia. Cancer Res 63(19): 6469-6477.

Quentmeier H, Drexler HG, Fleckenstein D, Zaborski M, Armstrong A, Sims JE, Lyman SD (2001). Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 15(8): 1286-1292. DOI: 10.1038/sj.leu.2402175. PubMed DOI

Rabe JL, Gardner L, Hunter R, Fonseca JA, Dougan J, Gearheart CM, et al. (2019). IL12 Abrogates Calcineurin-Dependent Immune Evasion during Leukemia Progression. Cancer Res 79(14): 3702-3713. DOI: 10.1158/0008-5472.CAN-18-3800. PubMed DOI

Ramos TL, de Sousa Fernandes MS, da Silva Fidélis DE, Jurema Santos GC, Albuquerque RB, Ferreira DJS, et al. (2023). Prevention of acute GVHD using an orthogonal IL-2/IL-2Rβ system to selectively expand regulatory T cells in vivo. Blood 141(11): 1337-1352. DOI: 10.1182/blood.2022018440. PubMed DOI

Rand V, Parker H, Russell LJ, Schwab C, Ensor H, Irving J, et al. (2011). Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood 117(25): 6848-6855. DOI: 10.1182/blood-2011-01-329961. PubMed DOI

Rebouissou S, Amessou M, Couchy G, Poussin K, Imbeaud S, Pilati C, et al. (2009). Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457(7226): 200-204. DOI: 10.1038/nature07475. PubMed DOI

Renard N, Duvert V, Banchereau J, Saeland S (1994). Interleukin-13 inhibits the proliferation of normal and leukemic human B-cell precursors. Blood 84(7): 2253-2260. DOI

Reshmi SC, Harvey RC, Roberts KG, Stonerock E, Smith A, Jenkins H, et al. (2017). Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group. Blood 129(25): 3352-3361. DOI: 10.1182/blood-2016-12-758979. PubMed DOI

Riccioni R, Diverio D, Riti V, Buffolino S, Mariani G, Boe A, et al. (2009). Interleukin (IL)-3/granulocyte macrophage-colony stimulating factor/IL-5 receptor alpha and beta chains are preferentially expressed in acute myeloid leukaemias with mutated FMS-related tyrosine kinase 3 receptor. Br J Haematol 144(3): 376-387. DOI: 10.1111/j.1365-2141.2008.07491.x. PubMed DOI

Richter-Pechańska P, Kunz JB, Hof J, Zimmermann M, Rausch T, Bandapalli OR, et al. (2017). Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J 7(2): e523. DOI: 10.1038/bcj.2017.3. PubMed DOI

Risnik D, Podaza E, Almejún MB, Colado A, Elías EE, Bezares RF, et al. (2017). Revisiting the role of interleukin-8 in chronic lymphocytic leukemia. Sci Rep 7(1): 15714. DOI: 10.1038/s41598-017-15953-x. PubMed DOI

Rizzo M, Varnier L, Pezzicoli G, Pirovano M, Cosmai L, Porta C (2022). IL-8 and its role as a potential biomarker of resistance to anti-angiogenic agents and immune checkpoint inhibitors in metastatic renal cell carcinoma. Front Oncol 12: 990568. DOI: 10.3389/fonc.2022.990568. PubMed DOI

Rose-John S (2018). Interleukin-6 Family Cytokines. Cold Spring Harb Perspect Biol 10(2): a028415. DOI: 10.1101/cshperspect.a028415 PubMed DOI

Rose-John S, Scheller J, Elson G, Jones SA (2006). Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 80(2): 227-236. DOI: 10.1189/jlb.1105674. PubMed DOI

Ruella M, Barrett DM, Kenderian SS, Shestova O, Hofmann TJ, Perazzelli J, et al. (2016). Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest 126(10): 3814-3826. DOI: 10.1172/JCI87366. PubMed DOI

Saadi MI, Ramzi M, Hosseinzadeh M, Ebrahimi N, Owjfard M, Abdolyousefi EN, et al. (2021). Expression Levels of Il-6 and Il-18 in Acute Myeloid Leukemia and Its Relation with Response to Therapy and Acute GvHD After Bone Marrow Transplantation. Indian J Surg Oncol 12(3): 465-471. DOI: 10.1007/s13193-021-01358-w. PubMed DOI

Sahin AO, Buitenhuis M (2012). Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adh Migr 6(1): 39-48. DOI: 10.4161/cam.18975. PubMed DOI

Sanchez-Correa B, Bergua JM, Campos C, Gayoso I, Arcos MJ, Bañas H, et al. (2013). Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine 61(3): 885-891. DOI: 10.1016/j.cyto.2012.12.023. PubMed DOI

Schliemann C, Palumbo A, Zuberbühler K, Villa A, Kaspar M, Trachsel E, et al. (2009). Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood 113(10): 2275-2283. DOI: 10.1182/blood-2008-05-160747. PubMed DOI

Schneider R, Yaneva T, Beauseigle D, El-Khoury L, Arbour N (2011). IL-27 increases the proliferation and effector functions of human naïve CD8+ T lymphocytes and promotes their development into Tc1 cells. Eur J Immunol 41(1): 47-59. DOI: 10.1002/eji.201040804. PubMed DOI

Scupoli MT, Donadelli M, Cioffi F, Rossi M, Perbellini O, Malpeli G, et al. (2008). Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways. Haematologica 93(4): 524-532. DOI: 10.3324/haematol.12098. PubMed DOI

Scupoli MT, Perbellini O, Krampera M, Vinante F, Cioffi F, Pizzolo G (2007). Interleukin 7 requirement for survival of T-cell acute lymphoblastic leukemia and human thymocytes on bone marrow stroma. Haematologica 92(2): 264-266. DOI: 10.3324/haematol.10356. PubMed DOI

Seita J, Asakawa M, Ooehara J, Takayanagi SI, Morita Y, Watanabe N, et al. (2008). Interleukin-27 directly induces differentiation in hematopoietic stem cells. Blood 111(4): 1903-1912. DOI: 10.1182/blood-2007-06-093328. PubMed DOI

Senkevitch E, Li W, Hixon JA, Andrews C, Cramer SD, Pauly GT, et al. (2018). Inhibiting Janus Kinase 1 and BCL-2 to treat T cell acute lymphoblastic leukemia with IL7-Rα mutations. Oncotarget 9(32): 22605-22617. DOI: 10.18632/oncotarget.25194. PubMed DOI

Sestak K, Dufour JP, Liu DX, Rout N, Alvarez X, Blanchard J, et al. (2018). Beneficial Effects of Human Anti-Interleukin-15 Antibody in Gluten-Sensitive Rhesus Macaques with Celiac Disease. Front Immunol 9(6): 1603. DOI: 10.3389/fimmu.2018.01603. PubMed DOI

Shochat C, Tal N, Bandapalli OR, Palmi C, Ganmore I, te Kronnie G, et al. (2011). Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med 208(5): 901-908. DOI: 10.1084/jem.20110580. PubMed DOI

Shochat C, Tal N, Gryshkova V, Birger Y, Bandapalli OR, Cazzaniga G, et al. (2014). Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 124(1): 106-110. DOI: 10.1182/blood-2013-10-529685. PubMed DOI

Silva A, Laranjeira AB, Martins LR, Cardoso BA, Demengeot J, Yunes JA, et al. (2011). IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. Cancer Res 71(14): 4780-4789. DOI: 10.1158/0008-5472.CAN-10-3606. PubMed DOI

Simioni C, Conti I, Varano G, Brenna C, Costanzi E, Neri LM (2021). The Complexity of the Tumor Microenvironment and Its Role in Acute Lymphoblastic Leukemia: Implications for Therapies. Front Oncol 11: 673506. DOI: 10.3389/fonc.2021.673506. PubMed DOI

Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA, et al. (2011). TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477(7363): 229-233. DOI: 10.1038/nature10329. PubMed DOI

Sison EAR, Magoon D, Li L, Annesley CE, Rau RE, Small D, Brown P (2014). Plerixafor as a chemosensitizing agent in pediatric acute lymphoblastic leukemia: efficacy and potential mechanisms of resistance to CXCR4 inhibition. Oncotarget 5(19): 8947-8958. DOI: 10.18632/oncotarget.2407. PubMed DOI

Sison EAR, Magoon D, Li L, Annesley CE, Romagnoli B, Douglas GJ, et al. (2015). POL5551, a novel and potent CXCR4 antagonist, enhances sensitivity to chemotherapy in pediatric ALL. Oncotarget 6(31): 30902-30918. DOI: 10.18632/oncotarget.5094. PubMed DOI

Sison EAR, Rau RE, McIntyre E, Li L, Small D, Brown P (2013). MLL-rearranged acute lymphoblastic leukaemia stem cell interactions with bone marrow stroma promote survival and therapeutic resistance that can be overcome with CXCR4 antagonism. Br J Haematol 160(6): 785-797. DOI: 10.1111/bjh.12205. PubMed DOI

Skinnider BF, Kapp U, Mak TW (2001). Interleukin 13: a growth factor in hodgkin lymphoma. Int Arch Allergy Immunol 126(4): 267-276. DOI: 10.1159/000049523. PubMed DOI

Skinnider BF, Kapp U, Mak TW (2002). The role of interleukin 13 in classical Hodgkin lymphoma. Leuk Lymphoma 43(6): 1203-1210. DOI: 10.1080/10428190290026259. PubMed DOI

Skroblyn T, Joedicke JJ, Pfau M, Krüger K, Bourquin JP, Izraeli S, et al. (2022). CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment. J Pathol 258(1): 12-25. DOI: 10.1002/path.5924. PubMed DOI

Slade MJ, Uy GL (2020). CD123 bi-specific antibodies in development in AML: What do we know so far? Best Pract Res Clin Haematol 33(4): 101219. DOI: 10.1016/j.beha.2020.101219. PubMed DOI

Solati H, Zareinejad M, Ghavami A, Ghasemi Z, Amirghofran Z (2020). IL-35 and IL-18 Serum Levels in Children With Acute Lymphoblastic Leukemia: The Relationship With Prognostic Factors. J Pediatr Hematol Oncol 42(4): 281-286. DOI: 10.1097/MPH.0000000000001667. PubMed DOI

Soler MF, Abaurrea A, Azcoaga P, Araujo AM, Caffarel MM (2023). New perspectives in cancer immunotherapy: targeting IL-6 cytokine family. J Immunother Cancer 11(11): e007530. DOI: 0.1136/jitc-2023-007530. PubMed DOI

Somovilla-Crespo B, Martín Monzón MT, Vela M, Corraliza-Gorjón I, Santamaria S, Garcia-Sanz JA, Kremer L (2018). 92R Monoclonal Antibody Inhibits Human CCR9+ Leukemia Cells Growth in NSG Mice Xenografts. Front Immunol 9: 77. DOI: 10.3389/fimmu.2018.00077. PubMed DOI

Spencer S, Köstel Bal S, Egner W, Lango Allen H, Raza SI, Ma CA, et al. (2019). Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. J Exp Med 216(9): 1986-1998. DOI: 10.1084/jem.20190344. PubMed DOI

Sredni B, Weil M, Khomenok G, Lebenthal I, Teitz S, Mardor Y, et al. (2004). Ammonium trichloro(dioxoethylene-o,o)tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res 64(5): 1843-1852. DOI: 10.1158/0008-5472.can-03-3179. PubMed DOI

Srivastava S, Pelloso D, Feng H, Voiles L, Lewis D, Haskova Z, et al. (2013). Effects of interleukin-18 on natural killercells: costimulation of activation through Fc receptors for immunoglobulin. Cancer Immunol Immunother 62(6): 1073-1082. DOI: 10.1007/s00262-013-1403-0. PubMed DOI

Stein C, Kellner C, Kügler M, Reiff N, Mentz K, Schwenkert M, et al. (2010). Novel conjugates of single-chain Fv antibody fragments specific for stem cell antigen CD123 mediate potent death of acute myeloid leukaemia cells. Br J Haematol 148(6): 879-889. DOI: 10.1111/j.1365-2141.2009.08033.x. PubMed DOI

Su L, Fang MH, Zou J, Gao SJ, Gu XY, Meng XD, et al. (2021). Posttransplant blockade of CXCR4 improves leukemia complete remission rates and donor stem cell engraftment without aggravating GVHD. Cell Mol Immunol 18: 2541-2553. DOI: 10.1038/s41423-021-00775-9. PubMed DOI

Sugiyama T, Nagasawa T (2015). CXCL12 catches T-ALL at the entrance of the bone marrow. Trends Immunol 36(9): 504-506. DOI: 10.1016/j.it.2015.08.001. PubMed DOI

Sun L, He C, Nair L, Yeung J, Egwuagu CE (2015). Interleukin 12 (IL-12) Family Cytokines: Role in Immune Pathogenesis and Treatment of CNS Autoimmune Disease. Cytokine 75(2): 249-255. DOI: 10.1016/j.cyto.2015.01.030. PubMed DOI

Sun Q, Gao G, Xiong J, Wu Q, Liu H (2012). Leukemia inhibitory factor receptor α-chain: a potential method for acute promyeloid leukemia therapy. Med Hypotheses 79(6): 864-866. DOI: 10.1016/j.mehy.2012.09.008. PubMed DOI

Sunderland MC, Roodman GD (1991). Interleukin-3. Its biology and potential uses in pediatric hematology/oncology. Am J Pediatr Hematol Oncol 13(4): 414-425. DOI: 10.1097/00043426-199124000-00005. PubMed DOI

Tal N, Shochat C, Geron I, Bercovich D, Izraeli S (2014). Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia. Cell Mol Life Sci 71(3): 365-378. DOI: 10.1007/s00018-013-1337-x. PubMed DOI

Tan SH, Bertulfo FC, Sanda T (2017). Leukemia-Initiating Cells in T-Cell Acute Lymphoblastic Leukemia. Front Oncol 7: 218. DOI: 10.3389/fonc.2017.00218. PubMed DOI

Tao Q, Pan Y, Wang Y, Wang H, Xiong S, Li Q, et al. (2015). Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts. Int J Cancer 137(10): 2384-2393. DOI: 10.1002/ijc.29563. PubMed DOI

Target - Acute Lymphoblastic Leukemia (ALL) | NCI Genomic Data Commons. [online] [cit. 2024-06-11]. Available from: https://gdc.cancer.gov/content/target-all-publications-summary

Tasian SK, Loh ML, Hunger SP (2017). Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 130(19): 2064-2072. DOI: 10.1182/blood-2017-06-743252. PubMed DOI

Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P, et al. (2002). Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 100(8): 2980-2988. DOI: 10.1182/blood-2002-03-0852. PubMed DOI

Tobler A, Moser B, Dewald B, Geiser T, Studer H, Baggiolini M, Fey MF (1993). Constitutive expression of interleukin-8 and its receptor in human myeloid and lymphoid leukemia. Blood 82(8): 2517-2525. DOI

Tong X, Zhang L, Zhang L, Hu M, Leng J, Yu B, et al. (2009). The mechanism of chemokine receptor 9 internalization triggered by interleukin 2 and interleukin 4. Cell Mol Immunol 6(3): 181-189. DOI: 10.1038/cmi.2009.25. PubMed DOI

Tran TH, Tasian SK (2022). Clinical screening for Ph-like ALL and the developing role of TKIs. Hematology Am Soc Hematol Educ Program 2022(1): 594-602. DOI: 10.1182/hematology.2022000357. PubMed DOI

Tremblay CS, Brown FC, Collett M, Saw J, Chiu SK, Sonderegger SE, et al. (2016). Loss-of-function mutations of Dynamin 2 promote T-ALL by enhancing IL-7 signalling. Leukemia 30(10): 1993-2001. DOI: 10.1038/leu.2016.100. PubMed DOI

Tsaouli G, Ferretti E, Bellavia D, Vacca A, Felli MP (2019). Notch/CXCR4 Partnership in Acute Lymphoblastic Leukemia Progression. J Immunol Res 2019: 5601396. DOI: 10.1155/2019/5601396. PubMed DOI

Tu S, Deng L, Huang R, Zhou X, Yang J, Zhou W, et al. (2018). A Novel Chimeric Antigen Receptor T Cells Therapy Strategy That Dual Targeting CD19 and CD123 to Treat Relapsed AcuteLymphoblastic Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation. Blood 132(Supplement 1): 4015. DOI: 10.1182/blood-2018-99-118526. DOI

Tu Z, Xiao R, Xiong J, Tembo KM, Deng X, Xiong M, et al. (2016). CCR9 in cancer: oncogenic role and therapeutic targeting. J Hematol Oncol 9: 10. DOI: 10.1186/s13045-016-0236-7. PubMed DOI

Turnis ME, Sawant DV, Szymczak-Workman AL, Andrews LP, Delgoffe GM, Yano H, et al. (2016). Interleukin-35 Limits Anti-Tumor Immunity. Immunity 44(2): 316-329. DOI: 10.1016/j.immuni.2016.01.013. PubMed DOI

Uckun FM, Myers DE, Fauci AS, Chandan-Langlie M, Ambrus JL (1989). Leukemic B-cell precursors constitutively express functional receptors for human interleukin-1. Blood 74(2): 761-776. DOI

Ullrich K, Blumenthal-Barby F, Lamprecht B, Köchert K, Lenze D, Hummel M, et al. (2015). The IL-15 cytokine system provides growth and survival signals in Hodgkin lymphoma and enhances the inflammatory phenotype of HRS cells. Leukemia 29: 1213-1218. DOI: 10.1038/leu.2014.345. PubMed DOI

Uy GL, Kadia TM, Stock W, Brammer JE, Bohana-Kashtan O, Vainstein A, et al. (2019). CXCR4 Inhibition with BL-8040 in Combination with Nelarabine in Patients with Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia / Lymphoblastic Lymphoma. Blood 134(Supplement_1): 2630. DOI: 10.1182/blood-2019-127121. DOI

Uzan B, Poglio S, Gerby B, Wu CL, Gross J, Armstrong F, et al. (2014). Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression. EMBO Mol Med 6(6): 821-834. DOI: 10.1002/emmm.201303286. PubMed DOI

Vainchenker W, Constantinescu SN (2013). JAK/STAT signaling in hematological malignancies. Oncogene 32(21): 2601-2613. DOI: 10.1038/onc.2012.347. PubMed DOI

Vicari AP, Chiodoni C, Vaure C, Aït-Yahia S, Dercamp C, Matsos F, et al. (2002). Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 196(4): 541-549. DOI: 10.1084/jem.20020732. PubMed DOI

Vigliano I, Palamaro L, Bianchino G, Fusco A, Vitiello L, Grieco V, et al. (2012). Role of the common γ chain in cell cycle progression of human malignant cell lines. Int Immunol 24(3): 159-167. DOI: 10.1093/intimm/dxr114. PubMed DOI

Vignali DAA, Kuchroo VK (2012). IL-12 family cytokines: immunological playmakers. Nat Immunol 13(8): 722-728. DOI: 10.1038/ni.2366. PubMed DOI

Vilchis-Ordoñez A, Contreras-Quiroz A, Vadillo E, Dorantes-Acosta E, Reyes-López A, Quintela-Nuñez del Prado HM, et al. (2015). Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates. Biomed Res Int 2015: 386165. DOI: 10.1155/2015/386165. PubMed DOI

Waldmann TA (1989). Multichain interleukin-2 receptor: a target for immunotherapy in lymphoma. J Natl Cancer Inst 81(12): 914-923. DOI: 10.1093/jnci/81.12.914. PubMed DOI

Waldmann TA (2017). JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics. Mol Cell Endocrinol 451: 66-70. DOI: 10.1016/j.mce.2017.02.019. PubMed DOI

Waldmann TA, Dubois S, Miljkovic MD, Conlon KC (2020). IL-15 in the Combination Immunotherapy of Cancer. Front Immunol 11: 868. DOI: 10.3389/fimmu.2020.00868. PubMed DOI

Wang H, Zhu JY, Liu CC, Zhu MY, Wang JH, Geng QR, Lu Y (2015a). Increased serum levels of interleukin-15 correlate with negative prognostic factors in extranodal NK/T cell lymphoma. Med Oncol 32(1): 370. DOI: 10.1007/s12032-014-0370-4. PubMed DOI

Wang J, Tao Q, Wang H, Wang Z, Wu F, Pan Y, et al. (2015b). Elevated IL-35 in bone marrow of the patients with acute myeloid leukemia. Hum Immunol 76(9): 681-686. DOI: 10.1016/j.humimm.2015.09.020. PubMed DOI

Wang RX, Yu CR, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, et al. (2014). Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med 20(6): 633-641. DOI: 10.1038/nm.3554. PubMed DOI

Wang TT, Yang J, Zhang Y, Zhang M, Dubois S, Conlon KC, et al. (2019). IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective γ-chain cytokines, decreases leukemic T-cell viability. Leukemia 33(5): 1243-1255. DOI: 10.1038/s41375-018-0290-y. PubMed DOI

Wang Z, Liu JQ, Liu Z, Shen R, Zhang G, et al. (2013). Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis. J Immunol 190(5): 2415-2423. DOI: 10.4049/jimmunol.1202535. PubMed DOI

Warda W, Larosa F, Neto Da Rocha M, Trad R, Deconinck E, Fajloun Z, et al. (2019). CML Hematopoietic Stem Cells Expressing IL1RAP Can Be Targeted by Chimeric Antigen Receptor-Engineered T Cells. Cancer Res 79(3): 663-675. DOI: 10.1158/0008-5472.CAN-18-1078. PubMed DOI

Waugh DJJ, Wilson C (2008). The interleukin-8 pathway in cancer. Clin Cancer Res 14(21): 6735-6741. DOI: 10.1158/1078-0432.CCR-07-4843. PubMed DOI

Welschinger R, Liedtke F, Basnett J, Dela Pena A, Juarez JG, Bradstock KF, Bendall LJ (2013). Plerixafor (AMD3100) induces prolonged mobilization of acute lymphoblastic leukemia cells and increases the proportion of cycling cells in the blood in mice. Exp Hematol 41(3): 293-302.e1. DOI: 10.1016/j.exphem.2012.11.004. PubMed DOI

Whangbo JS, Kim HT, Mirkovic N, Leonard L, Poryanda S, Silverstein S, et al. (2019). Dose-escalated interleukin-2 therapy for refractory chronic graft-versus-host disease in adults and children. Blood Adv 3(17): 2550-2561. DOI: 10.1182/bloodadvances.2019000631. PubMed DOI

Wierda WG, Johnson MM, Do KA, Manshouri T, Dey A, O'Brien S, et al. (2003). Plasma interleukin 8 level predicts for survival in chronic lymphocytic leukaemia. Br J Haematol 120(3): 452-456. DOI: 10.1046/j.1365-2141.2003.04118.x. PubMed DOI

Wiernik PH, Dutcher JP, Yao X, Venkatraj U, Falkson CI, Rowe JM, Cassileth PA (2010). Phase II study of interleukin-4 in indolent B-cell non-Hodgkin lymphoma and B-cell chronic lymphocytic leukemia: a study of the Eastern Cooperative Oncology Group (E5Y92). J Immunother 33(9): 1006-1009. DOI: 10.1097/CJI.0b013e3181f5dfc5. PubMed DOI

Williams MT, Yousafzai Y, Cox C, Blair A, Carmody R, Sai S, et al. (2014). Interleukin-15 enhances cellular proliferation and upregulates CNS homing molecules in pre-B acute lymphoblastic leukemia. Blood 123(20): 3116-3127. DOI: 10.1182/blood-2013-05-499970. PubMed DOI

Winer H, Rodrigues GOL, Hixon JA, Aiello FB, Hsu TC, Wachter BT, et al. (2022). IL-7: Comprehensive review. Cytokine 160: 156049. DOI: 10.1016/j.cyto.2022.156049. PubMed DOI

Wobma H, Kapadia M, Kim HT, Alvarez-Calderon F, Baumeister SHC, Duncan C, et al. (2023). Real-world experience with low-dose IL-2 for children and young adults with refractory chronic graft-versus-host disease. Blood Adv 7(16): 4647-4657. DOI: 10.1182/bloodadvances.2023009729. PubMed DOI

Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG, et al. (2018). ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol 19(5): 694-704. DOI: 10.1016/S1470-2045(18)30148-7. PubMed DOI

Wu H, Li P, Shao N, Ma J, Ji M, Sun X, et al. (2012). Aberrant expression of Treg-associated cytokine IL-35 along with IL-10 and TGF-β in acute myeloid leukemia. Oncol Lett 3(5): 1119-1123. DOI: 10.3892/ol.2012.614. PubMed DOI

Wu S, Fischer L, Gökbuget N, Schwartz S, Burmeister T, Notter M, et al. (2010a). Expression of interleukin 15 in primary adult acute lymphoblastic leukemia. Cancer 116(2): 387-392. DOI: 10.1002/cncr.24729. PubMed DOI

Wu S, Gessner R, Taube T, Korte A, von Stackelberg A, Kirchner R, et al. (2006). Chemokine IL-8 and chemokine receptor CXCR3 and CXCR4 gene expression in childhood acute lymphoblastic leukemia at first relapse. J Pediatr Hematol Oncol 28(4): 216-220. DOI: 10.1097/01.mph.0000212908.14642.a5. PubMed DOI

Wu YY, Wang JS, Fang Q (2010b). [Preliminary evaluation of immunological function in patients with acute lymphocytic leukemia]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 18(3): 718-720 (Chinese).

Xu W, Tian F, Tai X, Song G, Liu Y, Fan L, et al. (2024). ETV6::ACSL6 translocation-driven super-enhancer activation leads to eosinophilia in acute lymphoblastic leukemia through IL-3 overexpression. Haematologica 109(8): 2445-2458. DOI: 10.3324/haematol.2023.284121. PubMed DOI

Yang PX, Wang P, Fang L, Wang Q (2022). [Expression of Tregs and IL-35 in Peripheral Blood of Patients with Newly Diagnosed Acute Myeloid Leukemia]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 30(6): 1688-1692. DOI: 10.19746/j.cnki.issn.1009-2137.2022.06.010 (Chinese). PubMed DOI

Yasuda K, Nakanishi K, Tsutsui H (2019). Interleukin-18 in Health and Disease. Int J Mol Sci 20(3): 649. DOI: 10.3390/ijms20030649. PubMed DOI

Ye C, Yano H, Workman CJ, Vignali DAA (2021). Interleukin-35: Structure, Function and Its Impact on Immune-Related Diseases. J Interferon Cytokine Res 41(11): 391-406. DOI: 10.1089/jir.2021.0147. PubMed DOI

Yin HQ, Qiao ZH, Zhu L, Zhang L, Su LP, Lu YJ (2006). [Levels of intracellular IL-6 and IFN-gamma in children with acute lymphoblastic leukemia]. Zhongguo Dang Dai Er Ke Za Zhi 8(6): 461-463 (Chinese).

Yoda A, Yoda Y, Chiaretti S, Bar-Natan M, Mani K, Rodig SJ, et al. (2010). Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 107(1): 252-257. DOI: 10.1073/pnas.0911726107. PubMed DOI

Yu M, Gang EJ, Parameswaran R, Stoddart S, Fei F, Schmidhuber S, et al. (2011). AMD3100 sensitizes acute lymphoblastic leukemia cells to chemotherapy in vivo. Blood Cancer J 1(4): e14. DOI: 10.1038/bcj.2011.13. PubMed DOI

Zampogiannis A, Piperi C, Baka M, Zoi I, Papavassiliou AG, Moschovi M (2021). Low IL-23 levels in peripheral blood and bone marrow at diagnosis of acute leukemia in children increased with the elimination of leukemic burden. J Cell Mol Med 25(15): 7426-7435. DOI: 10.1111/jcmm.16772. PubMed DOI

Zareinejad M, Samiei A, Valibeigi B, Gholami T, Zareifar S, Amirghofran Z (2017). Interleukin-23 Receptor Gene Variants in Acute Lymphoblastic Leukemia and Their Relation to Prognostic Factors. Iran J Immunol 14(1): 59-72.

Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M, et al. (2011). Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 43: 932-939. DOI: 10.1038/ng.924 PubMed DOI

Zhang B, Wang Y, Zheng GG, Ma XT, Li G, Zhang FK, Wu KF (2002). Clinical significance of IL-18 gene over-expression in AML. Leuk Res 26(10): 887-892. DOI: 10.1016/s0145-2126(02)00025-5. PubMed DOI

Zhang B, Wu KF, Cao ZY, Rao Q, Ma XT, Zheng GG, Li G (2004). IL-18 increases invasiveness of HL-60 myeloid leukemia cells: up-regulation of matrix metalloproteinases-9 (MMP-9) expression. Leuk Res 28(1): 91-95. DOI: 10.1016/s0145-2126(03)00121-8. PubMed DOI

Zhang C, Zhang X, Chen XH (2013a). Interleukin-2 priming chemotherapy: a strategy to improve the remission of refractory/relapsed T cell acute lymphoblastic leukemia. Med Hypotheses 81(5): 878-880. DOI: 10.1016/j.mehy.2013.08.037. PubMed DOI

Zhang J, Zhang Y, Wang Q, Li C, Deng H, Si C, Xiong H (2019). Interleukin-35 in immune-related diseases: protection or destruction. Immunology 157(1): 13-20. DOI: 10.1111/imm.13044. PubMed DOI

Zhang K, Li X, Huang R, Chen C, Hu W (2021). IL-10 as an Indicator for Predicting Clinical Progression in Acute Lymphoblastic Leukemia Patients. Clin Lab 67(10). DOI: 10.7754/Clin.Lab.2021.210122. PubMed DOI

Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME, Kassim SH, et al. (2015a). Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res 21(10): 2278-2288. DOI: 10.1158/1078-0432.CCR-14-2085. PubMed DOI

Zhang L, Xiao R, Xiong J, Leng J, Ehtisham A, Hu Y, et al. (2013b). Activated ERM protein plays a critical role in drug resistance of MOLT4 cells induced by CCL25. PLoS One 8(1): e52384. DOI: 10.1371/journal.pone.0052384. PubMed DOI

Zhang M, Mathews Griner LA, Ju W, Duveau DY, Guha R, et al. (2015b). Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2-dependent adult T-cell leukemia. Proc Natl Acad Sci U S A 112(40): 12480-12485. DOI: 10.1073/pnas.1516208112. PubMed DOI

Zhang M, Wen B, Anton OM, Yao Z, Dubois S, Ju W, et al. (2018). IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci U S A 115(46): E10915-E10924. DOI: 10.1073/pnas.1811615115. PubMed DOI

Zhang Y, Yu X, Lin D, Lei L, Hu B, Cao F, et al. (2017). Propiece IL-1α facilitates the growth of acute T-lymphocytic leukemia cells through the activation of NF-κB and SP1. Oncotarget 8(9): 15677-15688. DOI: 10.18632/oncotarget.14934. PubMed DOI

Zhao K, Yin LL, Zhao DM, Pan B, Chen W, Cao J, et al. (2014). IL1RAP as a surface marker for leukemia stem cells is related to clinical phase of chronic myeloid leukemia patients. Int J Clin Exp Med 7(12): 4787-4798.

Zi J, Yuan S, Qiao J, Zhao K, Xu L, Qi K, et al. (2017). Treatment with the C-C chemokine receptor type 5 (CCR5)-inhibitor maraviroc suppresses growth and induces apoptosis of acute lymphoblastic leukemia cells. Am J Cancer Res 7(4): 869-880.

Zorzoli A, Di Carlo E, Cocco C, Ognio E, Ribatti D, Ferretti E, et al. (2012). Interleukin-27 inhibits the growth of pediatric acute myeloid leukemia in NOD/SCID/Il2rg-/- mice. Clin Cancer Res 18(6): 1630-1640. DOI: 10.1158/1078-0432.CCR-11-2432. PubMed DOI

Zou W, Restifo NP (2010). TH17 cells in tumour immunity and immunotherapy. Nature reviews. Immunology 10(4): 248-256. DOI: 10.1038/nri2742. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...