N4-acetylcytidine and other RNA modifications in epitranscriptome: insight into DNA repair and cancer development
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40040517
PubMed Central
PMC11980489
DOI
10.1080/17501911.2025.2473308
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage repair, N-acetylcytidine, NAT10, RNA modifications, epigenetics, epitranscriptomics,
- MeSH
- cytidin * analogy a deriváty metabolismus MeSH
- epigeneze genetická * MeSH
- lidé MeSH
- nádory * genetika metabolismus MeSH
- oprava DNA * MeSH
- posttranskripční úpravy RNA * MeSH
- regulace genové exprese u nádorů MeSH
- RNA * metabolismus genetika MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytidin * MeSH
- N-acetylcytidine MeSH Prohlížeč
- RNA * MeSH
N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification that plays a crucial role in the epitranscriptome, influencing gene expression and cellular function. This modification occurs at the cytosine base, where an acetyl group is installed to the nitrogen at the 4th position (N4). This co-transcription modification affects RNA stability, RNA structure, and translation efficiency. Recent studies have uncovered a potential link between RNA modifications and DNA repair mechanisms, suggesting that ac4C-modified or methylated RNAs may interact with factors involved in DNA repair pathways; thus, influencing the cellular response to DNA damage. Dysregulation of modified RNAs, including ac4C RNA, has been implicated in cancer development, where aberrant levels of these RNAs may contribute to oncogenic transformation by altering genome stability and the expression of key genes regulating cell proliferation, cell cycle progression, and apoptosis. Understanding the dynamics of modified RNAs offers promising insights into the role of epitranscriptome in DNA repair processes and cancer treatment.
Zobrazit více v PubMed
Cappannini A, Ray A, Purta E, et al. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res. 2024;52(D1):D239–D244. doi: 10.1093/nar/gkad1083 PubMed DOI PMC
Thomas JM, Briney CA, Nance KD, et al. A chemical signature for cytidine acetylation in RNA. J Am Chem Soc. 2018;140(40):12667–12670. doi: 10.1021/jacs.8b06636 PubMed DOI PMC
Schiffers S, Oberdoerffer S.. ac4C: a fragile modification with stabilizing functions in RNA metabolism. RNA. 2024;30(5):583–594. doi: 10.1261/rna.079948.124 PubMed DOI PMC
Ito S, Horikawa S, Suzuki T, et al. Human NAT10 is an atp-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J Biol Chem. 2014;289(52):35724–35730. doi: 10.1074/jbc.C114.602698 PubMed DOI PMC
Sharma S, Langhendries JL, Watzinger P, et al. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 2015;43(4):2242–2258. doi: 10.1093/nar/gkv075 PubMed DOI PMC
Bai Y, Zhang W, Hao L, et al. Acetyl-CoA-dependent ac(4)C acetylation promotes the osteogenic differentiation of lps-stimulated BMSCs. Int Immunopharmacol. 2024;133:112124. doi: 10.1016/j.intimp.2024.112124 PubMed DOI
Cheng J, Bassler J, Fischer P, et al. Thermophile 90S pre-ribosome structures reveal the reverse order of Co-transcriptional 18S rRNA subdomain integration. Mol Cell. 2019;75(6):1256–1269.e7. doi: 10.1016/j.molcel.2019.06.032 PubMed DOI
Xie L, Zhong X, Cao W, et al. Mechanisms of NAT10 as ac4C writer in diseases. Mol Ther Nucleic Acids. 2023;32:359–368. doi: 10.1016/j.omtn.2023.03.023 PubMed DOI PMC
Yu XM, Li SJ, Yao ZT, et al. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene. 2023;42(14):1101–1116. doi: 10.1038/s41388-023-02628-3 PubMed DOI
Zhang X, Zeng J, Wang J, et al. Revealing the potential markers of N(4)-acetylcytidine through acRIP-seq in triple-negative breast cancer. Genes (Basel). 2022;13(12):2400. doi: 10.3390/genes13122400 PubMed DOI PMC
Arango D, Sturgill D, Yang R, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell. 2022;82(15):2797–2814.e11. doi: 10.1016/j.molcel.2022.05.016 PubMed DOI PMC
Zhang W, Gao J, Fan L, et al. ac4C acetylation regulates mRNA stability and translation efficiency in osteosarcoma. Heliyon. 2023;9(6):e17103. doi: 10.1016/j.heliyon.2023.e17103 PubMed DOI PMC
Wu Q, Bazzini AA.. Translation and mRNA stability control. Annu Rev Biochem. 2023;92(1):227–245. doi: 10.1146/annurev-biochem-052621-091808 PubMed DOI
Arango D, Sturgill D, Alhusaini N, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175(7):1872–1886.e24. doi: 10.1016/j.cell.2018.10.030 PubMed DOI PMC
Stern L, Schulman LH. The role of the minor base N4-acetylcytidine in the function of the Escherichia coli noninitiator methionine transfer RNA. J Biol Chem. 1978;253(17):6132–6139. doi: 10.1016/S0021-9258(17)34590-8 PubMed DOI
Ou X, Cao J, Cheng A, et al. Errors in translational decoding: tRNA wobbling or misincorporation? PloS Genet. 2019;15(3):e1008017. doi: 10.1371/journal.pgen.1008017 PubMed DOI PMC
Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187–1200. doi: 10.1016/j.cell.2017.05.045 PubMed DOI PMC
Anazco-Guenkova AM, Miguel-Lopez B, Monteagudo-Garcia O, et al. The impact of tRNA modifications on translation in cancer: identifying novel therapeutic avenues. NAR Cancer. 2024;6(1):zcae012. doi: 10.1093/narcan/zcae012 PubMed DOI PMC
Kudrin P, Singh A, Meierhofer D, et al. N4-acetylcytidine (ac4C) promotes mRNA localization to stress granules. EMBO Rep. 2024;25(4):1814–1834. doi: 10.1038/s44319-024-00098-6 PubMed DOI PMC
Flynn RL, Zou L. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci. 2011;36(3):133–140. doi: 10.1016/j.tibs.2010.09.005 PubMed DOI PMC
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Sig Transduct Target Ther. 2021;6(1):254. doi: 10.1038/s41392-021-00648-7 PubMed DOI PMC
Stracker TH, Usui T, Petrini JH. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst). 2009;8(9):1047–1054. doi: 10.1016/j.dnarep.2009.04.012 PubMed DOI PMC
Senturk E, Manfredi JJ. In: Deb S. P53 and cell cycle effects after DNA damage. In: Deb S, editor. Methods mol. Biol. p53 protocols. Vol. 962. Totowa (NJ): Humana Press; 2013. p. 49–61. PubMed PMC
Mao Z, Bozzella M, Seluanov A, et al. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 2008;7(18):2902–2906. doi: 10.4161/cc.7.18.6679 PubMed DOI PMC
Goldstein M, Kastan MB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 2015;66(1):129–143. doi: 10.1146/annurev-med-081313-121208 PubMed DOI
Dale Rein I, Solberg Landsverk K, Micci F, et al. Replication-induced DNA damage after PARP inhibition causes G2 delay, and cell line-dependent apoptosis, necrosis and multinucleation. Cell Cycle. 2015;14(20):3248–3260. doi: 10.1080/15384101.2015.1085137 PubMed DOI PMC
Scharer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 2013;5(10):a012609. doi: 10.1101/cshperspect.a012609 PubMed DOI PMC
Apelt K, Lans H, Scharer OD, et al. Nucleotide excision repair leaves a mark on chromatin: DNA damage detection in nucleosomes. Cell Mol Life Sci. 2021;78(24):7925–7942. doi: 10.1007/s00018-021-03984-7 PubMed DOI PMC
Shah P, Zhao B, Qiang L, et al. Phosphorylation of xeroderma pigmentosum group C regulates ultraviolet-induced DNA damage repair. Nucleic Acids Res. 2018;46(10):5050–5060. doi: 10.1093/nar/gky239 PubMed DOI PMC
Duan M, Speer RM, Ulibarri J, et al. Transcription-coupled nucleotide excision repair: new insights revealed by genomic approaches. DNA Repair (Amst). 2021;103:103126. doi: 10.1016/j.dnarep.2021.103126 PubMed DOI PMC
Fuss JO, Tainer JA. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst). 2011;10(7):697–713. doi: 10.1016/j.dnarep.2011.04.028 PubMed DOI PMC
Friedberg EC. Rous-Whipple award lecture. Nucleotide excision repair and cancer predisposition: a journey from man to yeast to mice. Am J Pathol. 2000;157(3):693–701. doi: 10.1016/S0002-9440(10)64581-6 PubMed DOI PMC
Li LY, Guan YD, Chen XS, et al. DNA repair pathways in cancer therapy and resistance. Front Pharmacol. 2020;11:629266. doi: 10.3389/fphar.2020.629266 PubMed DOI PMC
Marteijn JA, Lans H, Vermeulen W, et al. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465–481. doi: 10.1038/nrm3822 PubMed DOI
Krokan HE, Bjoras M. Base excision repair. Cold Spring Harb Perspect Biol. 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583 PubMed DOI PMC
Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 2008;18(1):27–47. doi: 10.1038/cr.2008.8 PubMed DOI PMC
Fromme JC, Banerjee A, Verdine GL. DNA glycosylase recognition and catalysis. Curr Opin Struct Biol. 2004;14(1):43–49. doi: 10.1016/j.sbi.2004.01.003 PubMed DOI
McNeill DR, Whitaker AM, Stark WJ, et al. Functions of the major abasic endonuclease (APE1) in cell viability and genotoxin resistance. Mutagenesis. 2020;35(1):27–38. doi: 10.1093/mutage/gez046 PubMed DOI PMC
Kumar A, Reed AJ, Zahurancik WJ, et al. Interlocking activities of DNA polymerase β in the base excision repair pathway. Proc Natl Acad Sci USA. 2022;119(10):e2118940119. doi: 10.1073/pnas.2118940119 PubMed DOI PMC
Huggins CF, Chafin DR, Aoyagi S, et al. Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell. 2002;10(5):1201–1211. doi: 10.1016/S1097-2765(02)00736-0 PubMed DOI
Tomkinson AE, Chen L, Dong Z, et al. Completion of base excision repair by mammalian DNA ligases. Prog Nucleic Acid Res Mol Biol. 2001;68:151–164. PubMed
Dabin J, Mori M, Polo SE. The DNA damage response in the chromatin context: a coordinated process. Curr Opin Cell Biol. 2023;82:102176. doi: 10.1016/j.ceb.2023.102176 PubMed DOI
Sanford EJ, Smolka MB. A field guide to the proteomics of post-translational modifications in DNA repair. Proteomics. 2022;22(15–16):e2200064. doi: 10.1002/pmic.202200064 PubMed DOI PMC
Ba X, Boldogh I. 8-oxoguanine DNA glycosylase 1: beyond repair of the oxidatively modified base lesions. Redox Biol. 2018;14:669–678. doi: 10.1016/j.redox.2017.11.008 PubMed DOI PMC
Pei DS, Jia PP, Luo JJ, et al. AP endonuclease 1 (Apex1) influences brain development linking oxidative stress and DNA repair. Cell Death Dis. 2019;10(5):348. doi: 10.1038/s41419-019-1578-1 PubMed DOI PMC
Srinivasan A, Gold B. Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Future Med Chem. 2012;4(9):1093–1111. doi: 10.4155/fmc.12.58 PubMed DOI PMC
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395. doi: 10.1038/cr.2011.22 PubMed DOI PMC
Bonner WM, Redon CE, Dickey JS, et al. γH2AX and cancer. Nat Rev Cancer. 2008;8(12):957–967. doi: 10.1038/nrc2523 PubMed DOI PMC
Bonner WM, West MH, Stedman JD. Two-dimensional gel analysis of histones in acid extracts of nuclei, cells, and tissues. Eur J Biochem. 1980;109(1):17–23. doi: 10.1111/j.1432-1033.1980.tb04762.x PubMed DOI
Mah LJ, El-Osta A, Karagiannis TC. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679–686. doi: 10.1038/leu.2010.6 PubMed DOI
Paull TT, Rogakou EP, Yamazaki V, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10(15):886–895. doi: 10.1016/S0960-9822(00)00610-2 PubMed DOI
Downs JA. Histone H3 K56 acetylation, chromatin assembly, and the DNA damage checkpoint. DNA Repair (Amst). 2008;7(12):2020–2024. doi: 10.1016/j.dnarep.2008.08.016 PubMed DOI
Aricthota S, Rana PP, Haldar D. Histone acetylation dynamics in repair of DNA double-strand breaks. Front Genet. 2022;13:926577. doi: 10.3389/fgene.2022.926577 PubMed DOI PMC
Sun Y, Jiang X, Price BD. Tip60: connecting chromatin to DNA damage signaling. Cell Cycle. 2010;9(5):930–936. doi: 10.4161/cc.9.5.10931 PubMed DOI PMC
Botuyan MV, Lee J, Ward IM, et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 2006;127(7):1361–1373. doi: 10.1016/j.cell.2006.10.043 PubMed DOI PMC
Stixova L, Komurkova D, Svobodova Kovarikova A, et al. UVA irradiation strengthened an interaction between UBF1/2 proteins and H4K20 di-/tri-methylation. Chromosome Res. 2019;27(1–2):41–55. doi: 10.1007/s10577-018-9596-x PubMed DOI
Svobodova Kovarikova A, Legartova S, Krejci J, et al. H3K9me3 and H4K20me3 represent the epigenetic landscape for 53BP1 binding to DNA lesions. Aging (Albany NY). 2018;10(10):2585–2605. doi: 10.18632/aging.101572 PubMed DOI PMC
Wang Z, Zhang H, Liu J, et al. USP51 deubiquitylates H2AK13,15ub and regulates DNA damage response. Genes Dev. 2016;30(8):946–959. doi: 10.1101/gad.271841.115 PubMed DOI PMC
Driscoll G, Yan S. Maintaining chromosome and genome stability by the RPA–RNF20–SNF2H cascade. Proc Natl Acad Sci USA. 2023;120(24):e2306455120. doi: 10.1073/pnas.2306455120 PubMed DOI PMC
Giallongo S, Lo Re O, Vinciguerra M. DNA damage and histone variants. In: Jasiulionis M, editor. Epigenetics and DNA damage. Vol. 33. Academic Press; 2022. p. 33–53. doi: 10.1016/B978-0-323-91081-1.00004-2 DOI
Wei S, Li C, Yin Z, et al. Histone methylation in DNA repair and clinical practice: new findings during the past 5-years. J Cancer. 2018;9(12):2072–2081. doi: 10.7150/jca.23427 PubMed DOI PMC
Luo J, Cao J, Chen C, et al. Emerging role of RNA acetylation modification ac4C in diseases: current advances and future challenges. Biochem Pharmacol. 2023;213:115628. doi: 10.1016/j.bcp.2023.115628 PubMed DOI
Svobodova Kovarikova A, Stixova L, Kovarik A, et al. Parp-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin. Epigenetics chromatin. Epigenet Chromatin. 2023;16(1):26. doi: 10.1186/s13072-023-00501-x PubMed DOI PMC
Yang Z, Wilkinson E, Cui YH, et al. NAT10 regulates the repair of uvb-induced DNA damage and tumorigenicity. Toxicol Appl Pharmacol. 2023;477:116688. doi: 10.1016/j.taap.2023.116688 PubMed DOI PMC
Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res. 2020;48(20):11227–11243. doi: 10.1093/nar/gkaa777 PubMed DOI PMC
Bader AS, Bushell M. DNA: RNA hybrids form at DNA double-strand breaks in transcriptionally active loci. Cell death dis. Cell Death Disease. 2020;11(4):280. doi: 10.1038/s41419-020-2464-6 PubMed DOI PMC
Jimeno S, Prados-Carvajal R, Huertas P. The role of RNA and RNA-related proteins in the regulation of DNA double strand break repair pathway choice. DNA Repair (Amst). 2019;81:102662. doi: 10.1016/j.dnarep.2019.102662 PubMed DOI
Thapar R. Regulation of DNA double-strand break repair by non-coding RNAs. Molecules. 2018;23(11):2789. doi: 10.3390/molecules23112789 PubMed DOI PMC
Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20(6):303–322. doi: 10.1038/s41568-020-0253-2 PubMed DOI
Cui L, Ma R, Cai J, et al. RNA modifications: importance in immune cell biology and related diseases. Sig Transduct Target Ther. 2022;7(1):334. doi: 10.1038/s41392-022-01175-9 PubMed DOI PMC
Flamand MN, Tegowski M, Meyer KD. The proteins of mRNA modification: writers, readers, and erasers. Annu Rev Biochem. 2023;92(1):145–173. doi: 10.1146/annurev-biochem-052521-035330 PubMed DOI PMC
Liu J, Yue Y, Han D, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–95. doi: 10.1038/nchembio.1432 PubMed DOI PMC
Ma H, Wang X, Cai J, et al. N(6-)methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019;15(1):88–94. doi: 10.1038/s41589-018-0184-3 PubMed DOI PMC
Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m(6)A Methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169(5):824–835.e14. doi: 10.1016/j.cell.2017.05.003 PubMed DOI PMC
van Tran N, Ernst FGM, Hawley BR, et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 2019;47(15):7719–7733. doi: 10.1093/nar/gkz619 PubMed DOI PMC
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–887. doi: 10.1038/nchembio.687 PubMed DOI PMC
Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29. doi: 10.1016/j.molcel.2012.10.015 PubMed DOI PMC
Alarcon CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a Mediator of m(6)A-Dependent nuclear RNA processing events. Cell. 2015;162(6):1299–1308. doi: 10.1016/j.cell.2015.08.011 PubMed DOI PMC
Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–295. doi: 10.1038/s41556-018-0045-z PubMed DOI PMC
Liao S, Sun H, Xu C. YTH domain: a family of N 6 -methyladenosine (m 6 A) readers. Genomics Proteomics Bioinformatics. 2018;16(2):99–107. doi: 10.1016/j.gpb.2018.04.002 PubMed DOI PMC
Wu R, Li A, Sun B, et al. A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29(1):23–41. doi: 10.1038/s41422-018-0113-8 PubMed DOI PMC
Svobodova Kovarikova A, Stixova L, Kovarik A, et al. N(6)-adenosine methylation in RNA and a reduced m(3)G/TMG level in non-coding RNAs appear at microirradiation-induced DNA lesions. Cells. 2020;9(2):360. doi: 10.3390/cells9020360 PubMed DOI PMC
Legartova S, Svobodova Kovarikova A, Behalova Suchankova J, et al. Early recruitment of parp-dependent m 8 a RNA methylation at DNA lesions is subsequently accompanied by active DNA demethylation. RNA Biol. 2022;19(1):1153–1171. doi: 10.1080/15476286.2022.2139109 PubMed DOI PMC
Stixova L, Tichy V, Bartova E. RNA-related DNA damage and repair: the role of N7-methylguanosine in the cell nucleus exposed to UV light. Heliyon. 2024;10(4):e25599. doi: 10.1016/j.heliyon.2024.e25599 PubMed DOI PMC
Petrov AS, Bernier CR, Gulen B, et al. Secondary structures of rRNAs from all three domains of life. PLoS One. 2014;9(2):e88222. doi: 10.1371/journal.pone.0088222 PubMed DOI PMC
Cohen S, Puget N, Lin YL, et al. Senataxin resolves RNA: DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat Commun. 2018;9(1):533. doi: 10.1038/s41467-018-02894-w PubMed DOI PMC
Costantino L, Koshland D. Genome-wide map of R-Loop-induced damage reveals how a subset of R-Loops contributes to genomic instability. Mol Cell. 2018;71(4):487–497.e3. doi: 10.1016/j.molcel.2018.06.037 PubMed DOI PMC
Domingo-Prim J, Bonath F, Visa N. RNA at DNA double-strand breaks: the challenge of dealing with DNA: RNA hybrids. Bioessays. 2020;42(5):e1900225. doi: 10.1002/bies.201900225 PubMed DOI
Garcia-Muse T, Aguilera A. R loops: from physiological to pathological roles. Cell. 2019;179(3):604–618. doi: 10.1016/j.cell.2019.08.055 PubMed DOI
Lu WT, Hawley BR, Skalka GL, et al. Drosha drives the formation of DNA: RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun. 2018;9(1):532. doi: 10.1038/s41467-018-02893-x PubMed DOI PMC
Ohle C, Tesorero R, Schermann G, et al. Transient RNA-DNA hybrids are required for efficient double-strand break repair. Cell. 2016;167(4):1001–1013.e7. doi: 10.1016/j.cell.2016.10.001 PubMed DOI
Paull TT. RNA–DNA hybrids and the convergence with DNA repair. Crit Rev Biochem Mol Biol. 2019;54(4):371–384. doi: 10.1080/10409238.2019.1670131 PubMed DOI
Puget N, Miller KM, Legube G. Non-canonical DNA/RNA structures during transcription-coupled double-strand break repair: roadblocks or bona fide repair intermediates? DNA Repair (Amst). 2019;81:102661. doi: 10.1016/j.dnarep.2019.102661 PubMed DOI PMC
Liu HY, Liu YY, Zhang YL, et al. Poly(ADP-ribosyl)ation of acetyltransferase NAT10 by PARP1 is required for its nucleoplasmic translocation and function in response to DNA damage. Cell Commun Signal. 2022;20(1):127. doi: 10.1186/s12964-022-00932-1 PubMed DOI PMC
Sarkar S, Gaddameedhi S. Solar ultraviolet-induced DNA damage response: melanocytes story in transformation to environmental melanomagenesis. Environ Mol Mutagen. 2020;61(7):736–751. doi: 10.1002/em.22370 PubMed DOI PMC
Sun C, Limbach PA, Addepalli B. Characterization of UVA-Induced alterations to transfer RNA sequences. Biomolecules. 2020;10(11):1527. doi: 10.3390/biom10111527 PubMed DOI PMC
Wang C, Yao S, Zhang T, et al. RNA N6-methyladenosine modification in DNA damage response and cancer radiotherapy. IJMS. 2024;25(5):2597. doi: 10.3390/ijms25052597 PubMed DOI PMC
Xiang Y, Laurent B, Hsu CH, et al. RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543(7646):573–576. doi: 10.1038/nature21671 PubMed DOI PMC
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–624. doi: 10.1038/s41580-019-0168-5 PubMed DOI
Akhtar J, Lugoboni M, Junion G. M 6 a RNA modification in transcription regulation. Transcription. 2021;12(5):266–276. doi: 10.1080/21541264.2022.2057177 PubMed DOI PMC
Lin Y, Sun Y, Hou W, et al. Fto-mediated regulation of m6A methylation is closely related to apoptosis induced by repeated UV irradiation. J Dermatol Sci. 2024;114(3):124–132. doi: 10.1016/j.jdermsci.2024.01.001 PubMed DOI
Zhang C, Chen L, Peng D, et al. METTL3 and N6-Methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol Cell. 2020;79(3):425–442.e7. doi: 10.1016/j.molcel.2020.06.017 PubMed DOI
Chen S, Dong R, Li Y, et al. m(7)G-Related DNA damage repair genes are potential biomarkers for predicting prognosis and immunotherapy effectiveness in colon cancer patients. Front Genet. 2022;13:918159. doi: 10.3389/fgene.2022.918159 PubMed DOI PMC
Zhang T, Mi J, Qin X, et al. Rosmarinic acid alleviates radiation-induced pulmonary fibrosis by downregulating the tRNA N7-Methylguanosine modification-regulated fibroblast-to-Myofibroblast transition through the exosome pathway. J Inflamm Res. 2024;17:5567–5586. doi: 10.2147/JIR.S458794 PubMed DOI PMC
Liu H, Ling Y, Gong Y, et al. DNA damage induces N-acetyltransferase NAT10 gene expression through transcriptional activation. Mol Cell Biochem. 2007;300(1–2):249–258. doi: 10.1007/s11010-006-9390-5 PubMed DOI
Xie R, Cheng L, Huang M, et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-Associated DNA repair in bladder cancer. Cancer Res. 2023;83(10):1666–1683. doi: 10.1158/0008-5472.CAN-22-2233 PubMed DOI
Cao Y, Yao M, Wu Y, et al. N-Acetyltransferase 10 promotes micronuclei formation to activate the senescence-associated secretory phenotype machinery in colorectal cancer cells. Transl Oncol. 2020;13(8):100783. doi: 10.1016/j.tranon.2020.100783 PubMed DOI PMC
Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597–601. doi: 10.1038/s41586-021-03536-w PubMed DOI PMC
Chen H, Liu H, Zhang C, et al. RNA methylation-related inhibitors: biological basis and therapeutic potential for cancer therapy. Clin Transl Med. 2024;14(4):e1644. doi: 10.1002/ctm2.1644 PubMed DOI PMC