Near-lossless EEG signal compression using a convolutional autoencoder: Case study for 256-channel binocular rivalry dataset
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, dataset
PubMed
40048899
DOI
10.1016/j.compbiomed.2025.109888
PII: S0010-4825(25)00239-2
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial neural networks, Data compression, Electroencephalography, Machine learning, Neuroinformatics,
- MeSH
- autoenkodér MeSH
- elektroencefalografie * metody MeSH
- komprese dat * metody MeSH
- lidé MeSH
- neuronové sítě * MeSH
- počítačové zpracování signálu * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
Electroencephalography (EEG) experiments typically generate vast amounts of data due to the high sampling rates and the use of multiple electrodes to capture brain activity. Consequently, storing and transmitting these large datasets is challenging, necessitating the creation of specialized compression techniques tailored to this data type. This study proposes one such method, which at its core uses an artificial neural network (specifically a convolutional autoencoder) to learn the latent representations of modelled EEG signals to perform lossy compression, which gets further improved with lossless corrections based on the user-defined threshold for the maximum tolerable amplitude loss, resulting in a flexible near-lossless compression scheme. To test the viability of our approach, a case study was performed on the 256-channel binocular rivalry dataset, which also describes mostly data-specific statistical analyses and preprocessing steps. Compression results, evaluation metrics, and comparisons with baseline general compression methods suggest that the proposed method can achieve substantial compression results and speed, making it one of the potential research topics for follow-up studies.
Faculty of Applied Sciences University of West Bohemia in Pilsen Pilsen 301 00 Czech Republic
Faculty of Electrical Engineering and Computer Science University of Maribor Maribor 2000 Slovenia
National Institute of Mental Health Klecany 250 67 Czech Republic
Citace poskytuje Crossref.org