Low-dose irradiation of the gut improves the efficacy of PD-L1 blockade in metastatic cancer patients
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 CA271915
NCI NIH HHS - United States
U54 CA274291
NCI NIH HHS - United States
ZIA BC011343
Intramural NIH HHS - United States
ZIA BC011503
Intramural NIH HHS - United States
PubMed
40068595
PubMed Central
PMC11907695
DOI
10.1016/j.ccell.2025.02.010
PII: S1535-6108(25)00062-5
Knihovny.cz E-zdroje
- Klíčová slova
- Christensenella minuta, bile acids, cancer, dendritic cells, gut microbiota, metabolomics, radiotherapy, tumor immunosurveillance,
- MeSH
- antigeny CD274 * antagonisté a inhibitory MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- imunoterapie metody MeSH
- inhibitory kontrolních bodů * terapeutické užití farmakologie MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádory * imunologie patologie terapie radioterapie farmakoterapie MeSH
- retrospektivní studie MeSH
- střeva * účinky záření imunologie MeSH
- střevní mikroflóra účinky záření imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD274 * MeSH
- CD274 protein, human MeSH Prohlížeč
- inhibitory kontrolních bodů * MeSH
The mechanisms governing the abscopal effects of local radiotherapy in cancer patients remain an open conundrum. Here, we show that off-target intestinal low-dose irradiation (ILDR) increases the clinical benefits of immune checkpoint inhibitors or chemotherapy in eight retrospective cohorts of cancer patients and in tumor-bearing mice. The abscopal effects of ILDR depend on dosimetry (≥1 and ≤3 Gy) and on the metabolic and immune host-microbiota interaction at baseline allowing CD8+ T cell activation without exhaustion. Various strains of Christensenella minuta selectively boost the anti-cancer efficacy of ILDR and PD-L1 blockade, allowing emigration of intestinal PD-L1-expressing dendritic cells to tumor-draining lymph nodes. An interventional phase 2 study provides the proof-of-concept that ILDR can circumvent resistance to first- or second-line immunotherapy in cancer patients. Prospective clinical trials are warranted to define optimal dosimetry and indications for ILDR to maximize its therapeutic potential.
Cancer Signaling and Microenvironment Program Fox Chase Cancer Center Philadelphia PA 19111 2497 USA
Department of Clinical Oncology AC Camargo Cancer Center São Paulo 01509 900 Brazil
Department of Computational Cellular and Integrative Biology University of Trento 38123 Trento Italy
Department of Radiation Oncology AC Camargo Cancer Center São Paulo 01509 001 Brazil
Department of Radiation Oncology Gustave Roussy Cancer Campus 94805 Villejuif France
Department of Radiation Oncology University of Verona Hospital Trust 37126 Verona Italy
Department of Radiation Oncology Weill Cornell Medicine New York NY 10065 USA
Gustave Roussy Cancer Campus 94805 Villejuif France
Gustave Roussy Cancer Campus Clinicobiome 94805 Villejuif Cedex France
IHU Méditerranée Infection 13005 Marseille France
Medical Physics Unit Azienda Ospedaliero Universitaria Careggi 50134 Florence Italy
Radiation Oncology Unit Azienda Ospedaliero Universitaria Careggi 50134 Florence Italy
Zobrazit více v PubMed
Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, and Formenti SC (2005). Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11, 728–734. PubMed
Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, and Fu YX (2014). Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124, 687–695. 10.1172/JCI67313. PubMed DOI PMC
Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, et al. (2015). Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377. 10.1038/nature14292. PubMed DOI PMC
Formenti SC, Rudqvist NP, Golden E, Cooper B, Wennerberg E, Lhuillier C, Vanpouille-Box C, Friedman K, Ferrari de Andrade L, Wucherpfennig KW, et al. (2018). Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med 24, 1845–1851. 10.1038/s41591-018-0232-2. PubMed DOI PMC
Luke JJ, Lemons JM, Karrison TG, Pitroda SP, Melotek JM, Zha Y, Al-Hallaq HA, Arina A, Khodarev NN, Janisch L, et al. (2018). Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors. J Clin Oncol 36, 1611–1618. 10.1200/JCO.2017.76.2229. PubMed DOI PMC
Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, et al. (2014). Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184–043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15, 700–712. 10.1016/S1470-2045(14)70189-5. PubMed DOI PMC
Ho AY, Barker CA, Arnold BB, Powell SN, Hu ZI, Gucalp A, Lebron-Zapata L, Wen HY, Kallman C, D’Agnolo A, et al. (2020). A phase 2 clinical trial assessing the efficacy and safety of pembrolizumab and radiotherapy in patients with metastatic triple-negative breast cancer. Cancer 126, 850–860. 10.1002/cncr.32599. PubMed DOI
Fizazi K, Drake CG, Beer TM, Kwon ED, Scher HI, Gerritsen WR, Bossi A, den Eertwegh A, Krainer M, Houede N, et al. (2020). Final Analysis of the Ipilimumab Versus Placebo Following Radiotherapy Phase III Trial in Postdocetaxel Metastatic Castration-resistant Prostate Cancer Identifies an Excess of Long-term Survivors. Eur Urol 78, 822–830. 10.1016/j.eururo.2020.07.032. PubMed DOI PMC
Parikh AR, Szabolcs A, Allen JN, Clark JW, Wo JY, Raabe M, Thel H, Hoyos D, Mehta A, Arshad S, et al. (2021). Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat Cancer 2, 1124–1135. 10.1038/s43018-021-00269-7. PubMed DOI PMC
Kwan EM, Spain L, Anton A, Gan CL, Garrett L, Chang D, Liow E, Bennett C, Zheng T, Yu J, et al. (2022). Avelumab Combined with Stereotactic Ablative Body Radiotherapy in Metastatic Castration-resistant Prostate Cancer: The Phase 2 ICE-PAC Clinical Trial. Eur Urol 81, 253–262. 10.1016/j.eururo.2021.08.011. PubMed DOI
Siva S, Bressel M, Wood ST, Shaw MG, Loi S, Sandhu SK, Tran B, A AA, Lewin JH, Cuff KE, et al. (2022). Stereotactic Radiotherapy and Short-course Pembrolizumab for Oligometastatic Renal Cell Carcinoma-The RAPPORT Trial. Eur Urol 81, 364–372. 10.1016/j.eururo.2021.12.006. PubMed DOI
McBride S, Sherman E, Tsai CJ, Baxi S, Aghalar J, Eng J, Zhi WI, McFarland D, Michel LS, Young R, et al. (2021). Randomized Phase II Trial of Nivolumab With Stereotactic Body Radiotherapy Versus Nivolumab Alone in Metastatic Head and Neck Squamous Cell Carcinoma. J Clin Oncol 39, 30–37. 10.1200/JCO.20.00290. PubMed DOI PMC
Mahmood U, Bang A, Chen YH, Mak RH, Lorch JH, Hanna GJ, Nishino M, Manuszak C, Thrash EM, Severgnini M, et al. (2021). A Randomized Phase 2 Study of Pembrolizumab With or Without Radiation in Patients With Recurrent or Metastatic Adenoid Cystic Carcinoma. Int J Radiat Oncol Biol Phys 109, 134–144. 10.1016/j.ijrobp.2020.08.018. PubMed DOI PMC
Segal NH, Cercek A, Ku G, Wu AJ, Rimner A, Khalil DN, Reidy-Lagunes D, Cuaron J, Yang TJ, Weiser MR, et al. (2021). Phase II Single-arm Study of Durvalumab and Tremelimumab with Concurrent Radiotherapy in Patients with Mismatch Repair-proficient Metastatic Colorectal Cancer. Clin Cancer Res 27, 2200–2208. 10.1158/1078-0432.CCR-20-2474. PubMed DOI PMC
Masini C, Iotti C, De Giorgi U, Bellia RS, Buti S, Salaroli F, Zampiva I, Mazzarotto R, Mucciarini C, Vitale MG, et al. (2022). Nivolumab in Combination with Stereotactic Body Radiotherapy in Pretreated Patients with Metastatic Renal Cell Carcinoma. Results of the Phase II NIVES Study. Eur Urol 81, 274–282. 10.1016/j.eururo.2021.09.016. PubMed DOI
Kim S, Wuthrick E, Blakaj D, Eroglu Z, Verschraegen C, Thapa R, Mills M, Dibs K, Liveringhouse C, Russell J, et al. (2022). Combined nivolumab and ipilimumab with or without stereotactic body radiation therapy for advanced Merkel cell carcinoma: a randomised, open label, phase 2 trial. Lancet 400, 1008–1019. 10.1016/S0140-6736(22)01659-2. PubMed DOI PMC
Schoenfeld JD, Giobbie-Hurder A, Ranasinghe S, Kao KZ, Lako A, Tsuji J, Liu Y, Brennick RC, Gentzler RD, Lee C, et al. (2022). Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol 23, 279–291. 10.1016/S1470-2045(21)00658-6. PubMed DOI PMC
Omuro A, Brandes AA, Carpentier AF, Idbaih A, Reardon DA, Cloughesy T, Sumrall A, Baehring J, van den Bent M, Bahr O, et al. (2023). Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: An international randomized phase III trial. Neuro Oncol 25, 123–134. 10.1093/neuonc/noac099. PubMed DOI PMC
Spaas M, Sundahl N, Kruse V, Rottey S, De Maeseneer D, Duprez F, Lievens Y, Surmont V, Brochez L, Reynders D, et al. (2023). Checkpoint Inhibitors in Combination With Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors: The CHEERS Phase 2 Randomized Clinical Trial. JAMA Oncol 9, 1205–1213. 10.1001/jamaoncol.2023.2132. PubMed DOI PMC
Kavanagh BD, Pan CC, Dawson LA, Das SK, Li XA, Ten Haken RK, and Miften M (2010). Radiation dose-volume effects in the stomach and small bowel. Int J Radiat Oncol Biol Phys 76, S101–107. 10.1016/j.ijrobp.2009.05.071. PubMed DOI
Diez P, Hanna GG, Aitken KL, van As N, Carver A, Colaco RJ, Conibear J, Dunne EM, Eaton DJ, Franks KN, et al. (2022). UK 2022 Consensus on Normal Tissue Dose-Volume Constraints for Oligometastatic, Primary Lung and Hepatocellular Carcinoma Stereotactic Ablative Radiotherapy. Clin Oncol (R Coll Radiol) 34, 288–300. 10.1016/j.clon.2022.02.010. PubMed DOI
Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al. (2021). Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602. 10.1126/science.abf3363. PubMed DOI PMC
Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, et al. (2021). Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609. 10.1126/science.abb5920. PubMed DOI
Routy B, Lenehan JG, Miller WH Jr., Jamal R, Messaoudene M, Daisley BA, Hes C, Al KF, Martinez-Gili L, Puncochar M, et al. (2023). Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat Med 29, 2121–2132. 10.1038/s41591-023-02453-x. PubMed DOI
Smith M, Dai A, Ghilardi G, Amelsberg KV, Devlin SM, Pajarillo R, Slingerland JB, Beghi S, Herrera PS, Giardina P, et al. (2022). Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat Med 28, 713–723. 10.1038/s41591-022-01702-9. PubMed DOI PMC
Stein-Thoeringer CK, Saini NY, Zamir E, Blumenberg V, Schubert ML, Mor U, Fante MA, Schmidt S, Hayase E, Hayase T, et al. (2023). A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat Med 29, 906–916. 10.1038/s41591-023-02234-6. PubMed DOI PMC
Weber D, Oefner PJ, Hiergeist A, Koestler J, Gessner A, Weber M, Hahn J, Wolff D, Stammler F, Spang R, et al. (2015). Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood 126, 1723–1728. 10.1182/blood-2015-04-638858. PubMed DOI
Peled JU, Gomes ALC, Devlin SM, Littmann ER, Taur Y, Sung AD, Weber D, Hashimoto D, Slingerland AE, Slingerland JB, et al. (2020). Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. N Engl J Med 382, 822–834. 10.1056/NEJMoa1900623. PubMed DOI PMC
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97. 10.1126/science.aan3706. PubMed DOI
Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al. (2015). Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084. 10.1126/science.aad1329. PubMed DOI PMC
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. (2018). Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103. 10.1126/science.aan4236. PubMed DOI PMC
Zitvogel L, Ma Y, Raoult D, Kroemer G, and Gajewski TF (2018). The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science 359, 1366–1370. 10.1126/science.aar6918. PubMed DOI
Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, and Zitvogel L (2016). Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity 44, 1255–1269. 10.1016/j.immuni.2016.06.001. PubMed DOI
Teng H, Wang Y, Sui X, Fan J, Li S, Lei X, Shi C, Sun W, Song M, Wang H, et al. (2023). Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer. Cancer Cell 41, 124–138 e126. 10.1016/j.ccell.2022.11.013. PubMed DOI
Derosa L, Routy B, Desilets A, Daillere R, Terrisse S, Kroemer G, and Zitvogel L (2021). Microbiota-Centered Interventions: The Next Breakthrough in Immuno-Oncology? Cancer Discov 11, 2396–2412. 10.1158/2159-8290.CD-21-0236. PubMed DOI
Roberti MP, Yonekura S, Duong CPM, Picard M, Ferrere G, Tidjani Alou M, Rauber C, Iebba V, Lehmann CHK, Amon L, et al. (2020). Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med 26, 919–931. 10.1038/s41591-020-0882-8. PubMed DOI
Fidelle M, Rauber C, Alves Costa Silva C, Tian AL, Lahmar I, de La Varende AM, Zhao L, Thelemaque C, Lebhar I, Messaoudene M, et al. (2023). A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 380, eabo2296. 10.1126/science.abo2296. PubMed DOI
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al. (2013). Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970. 10.1126/science.1240527. PubMed DOI PMC
Bender MJ, McPherson AC, Phelps CM, Pandey SP, Laughlin CR, Shapira JH, Medina Sanchez L, Rana M, Richie TG, Mims TS, et al. (2023). Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 186, 1846–1862 e1826. 10.1016/j.cell.2023.03.011. PubMed DOI PMC
Yan C, Zheng L, Jiang S, Yang H, Guo J, Jiang LY, Li T, Zhang H, Bai Y, Lou Y, et al. (2023). Exhaustion-associated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity. Cancer Cell 41, 1276–1293 e1211. 10.1016/j.ccell.2023.04.016. PubMed DOI
Colbert LE, El Alam MB, Wang R, Karpinets T, Lo D, Lynn EJ, Harris TA, Elnaggar JH, Yoshida-Court K, Tomasic K, et al. (2023). Tumor-resident Lactobacillus iners confer chemoradiation resistance through lactate-induced metabolic rewiring. Cancer Cell 41, 1945–1962 e1911. 10.1016/j.ccell.2023.09.012. PubMed DOI PMC
Levy A, Morel D, Texier M, Sun R, Durand-Labrunie J, Rodriguez-Ruiz ME, Racadot S, Supiot S, Magne N, Cyrille S, et al. (2024). An international phase II trial and immune profiling of SBRT and atezolizumab in advanced pretreated colorectal cancer. Mol Cancer 23, 61. 10.1186/s12943-024-01970-8. PubMed DOI PMC
Derosa L, Routy B, Thomas AM, Iebba V, Zalcman G, Friard S, Mazieres J, Audigier-Valette C, Moro-Sibilot D, Goldwasser F, et al. (2022). Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat Med 28, 315–324. 10.1038/s41591-021-01655-5. PubMed DOI PMC
Yonekura S, Terrisse S, Alves Costa Silva C, Lafarge A, Iebba V, Ferrere G, Goubet AG, Fahrner JE, Lahmar I, Ueda K, et al. (2022). Cancer Induces a Stress Ileopathy Depending on beta-Adrenergic Receptors and Promoting Dysbiosis that Contributes to Carcinogenesis. Cancer Discov 12, 1128–1151. 10.1158/2159-8290.CD-21-0999. PubMed DOI
Ruaud A, Esquivel-Elizondo S, de la Cuesta-Zuluaga J, Waters JL, Angenent LT, Youngblut ND, and Ley RE (2020). Syntrophy via Interspecies H(2) Transfer between Christensenella and Methanobrevibacter Underlies Their Global Cooccurrence in the Human Gut. mBio 11. 10.1128/mBio.03235-19. PubMed DOI PMC
Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong DT, Beghini F, Malik F, Ramos M, Dowd JB, et al. (2017). Accessible, curated metagenomic data through ExperimentHub. Nat Methods 14, 1023–1024. 10.1038/nmeth.4468. PubMed DOI PMC
Canale FP, Basso C, Antonini G, Perotti M, Li N, Sokolovska A, Neumann J, James MJ, Geiger S, Jin W, et al. (2021). Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666. 10.1038/s41586-021-04003-2. PubMed DOI
Peyraud F, Guegan JP, Bodet D, Nafia I, Fontan L, Auzanneau C, Cousin S, Roubaud G, Cabart M, Chomy F, et al. (2022). Circulating L-arginine predicts the survival of cancer patients treated with immune checkpoint inhibitors. Ann Oncol 33, 1041–1051. 10.1016/j.annonc.2022.07.001. PubMed DOI
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, et al. (2022). Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 74, 506–551. 10.1124/pharmrev.121.000408. PubMed DOI
Derosa L, Iebba V, Silva CAC, Piccinno G, Wu G, Lordello L, Routy B, Zhao N, Thelemaque C, Birebent R, et al. (2024). Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome. Cell 187, 3373–3389 e3316. 10.1016/j.cell.2024.05.029. PubMed DOI
Gacesa R, Kurilshikov A, Vich Vila A, Sinha T, Klaassen MAY, Bolte LA, Andreu-Sanchez S, Chen L, Collij V, Hu S, et al. (2022). Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739. 10.1038/s41586-022-04567-7. PubMed DOI
Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, Rizvi SM, Qin A, Waninger JJ, Lang X, et al. (2021). Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med 27, 152–164. 10.1038/s41591-020-1131-x. PubMed DOI PMC
Damron TA, and Heiner J (2000). Distant soft tissue metastases: a series of 30 new patients and 91 cases from the literature. Ann Surg Oncol 7, 526–534. 10.1007/s10434-000-0526-7. PubMed DOI
Buque A, Bloy N, Perez-Lanzon M, Iribarren K, Humeau J, Pol JG, Levesque S, Mondragon L, Yamazaki T, Sato A, et al. (2020). Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat Commun 11, 3819. 10.1038/s41467-020-17644-0. PubMed DOI PMC
Zhang X, Yu D, Wu D, Gao X, Shao F, Zhao M, Wang J, Ma J, Wang W, Qin X, et al. (2023). Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance. Cell Host Microbe 31, 418–432 e418. 10.1016/j.chom.2023.01.013. PubMed DOI
Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, Hurley E, O’Riordain M, Shanahan F, and O’Toole PW (2018). The oral microbiota in colorectal cancer is distinctive and predictive. Gut 67, 1454–1463. 10.1136/gutjnl-2017-314814. PubMed DOI PMC
Xing C, Wang M, Ajibade AA, Tan P, Fu C, Chen L, Zhu M, Hao ZZ, Chu J, Yu X, et al. (2021). Microbiota regulate innate immune signaling and protective immunity against cancer. Cell Host Microbe 29, 959–974 e957. 10.1016/j.chom.2021.03.016. PubMed DOI PMC
Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, Suda W, Takeshita K, Sasaki T, Okamoto S, et al. (2021). Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464. 10.1038/s41586-021-03832-5. PubMed DOI
Julliand V, de Vaux A, Millet L, and Fonty G (1999). Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol 65, 3738–3741. 10.1128/AEM.65.8.3738-3741.1999. PubMed DOI PMC
Marion S, Desharnais L, Studer N, Dong Y, Notter MD, Poudel S, Menin L, Janowczyk A, Hettich RL, Hapfelmeier S, and Bernier-Latmani R (2020). Biogeography of microbial bile acid transformations along the murine gut. J Lipid Res 61, 1450–1463. 10.1194/jlr.RA120001021. PubMed DOI PMC
Choi Y, Lichterman JN, Coughlin LA, Poulides N, Li W, Del Valle P, Palmer SN, Gan S, Kim J, Zhan X, et al. (2023). Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity. Sci Immunol 8, eabo2003. 10.1126/sciimmunol.abo2003. PubMed DOI PMC
Belarif L, Danger R, Kermarrec L, Nerriere-Daguin V, Pengam S, Durand T, Mary C, Kerdreux E, Gauttier V, Kucik A, et al. (2019). IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J Clin Invest 129, 1910–1925. 10.1172/JCI121668. PubMed DOI PMC
Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, and Surh CD (2001). IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A 98, 8732–8737. 10.1073/pnas.161126098. PubMed DOI PMC
Merrick A, Errington F, Milward K, O’Donnell D, Harrington K, Bateman A, Pandha H, Vile R, Morrison E, Selby P, and Melcher A (2005). Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br J Cancer 92, 1450–1458. 10.1038/sj.bjc.6602518. PubMed DOI PMC
Liao YP, Wang CC, Butterfield LH, Economou JS, Ribas A, Meng WS, Iwamoto KS, and McBride WH (2004). Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol 173, 2462–2469. 10.4049/jimmunol.173.4.2462. PubMed DOI
Maier B, Leader AM, Chen ST, Tung N, Chang C, LeBerichel J, Chudnovskiy A, Maskey S, Walker L, Finnigan JP, et al. (2020). A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262. 10.1038/s41586-020-2134-y. PubMed DOI PMC
Yang K, Hou Y, Zhang Y, Liang H, Sharma A, Zheng W, Wang L, Torres R, Tatebe K, Chmura SJ, et al. (2021). Suppression of local type I interferon by gut microbiota-derived butyrate impairs antitumor effects of ionizing radiation. J Exp Med 218. 10.1084/jem.20201915. PubMed DOI PMC
Uribe-Herranz M, Rafail S, Beghi S, Gil-de-Gomez L, Verginadis I, Bittinger K, Pustylnikov S, Pierini S, Perales-Linares R, Blair IA, et al. (2020). Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J Clin Invest 130, 466–479. 10.1172/JCI124332. PubMed DOI PMC
Yuan X, Duan Y, Xiao Y, Sun K, Qi Y, Zhang Y, Ahmed Z, Moiani D, Yao J, Li H, et al. (2022). Vitamin E Enhances Cancer Immunotherapy by Reinvigorating Dendritic Cells via Targeting Checkpoint SHP1. Cancer Discov 12, 1742–1759. 10.1158/2159-8290.CD-21-0900. PubMed DOI PMC
Zhao L, Liu P, Mao M, Zhang S, Bigenwald C, Dutertre CA, Lehmann CHK, Pan H, Paulhan N, Amon L, et al. (2023). BCL2 inhibition reveals a dendritic cell-specific immune checkpoint that controls tumor immunosurveillance. Cancer Discov. 10.1158/2159-8290.CD-22-1338. PubMed DOI PMC
Dejean G, Tudela H, Bruno L, Kissi D, Rawadi G, and Claus SP (2021). Identifying a Novel Bile Salt Hydrolase from the Keystone Gut Bacterium Christensenella minuta. Microorganisms 9. 10.3390/microorganisms9061252. PubMed DOI PMC
Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, et al. (2016). L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 167, 829–842 e813. 10.1016/j.cell.2016.09.031. PubMed DOI PMC
Ban Y, Markowitz GJ, Zou Y, Ramchandani D, Kraynak J, Sheng J, Lee SB, Wong STC, Altorki NK, Gao D, and Mittal V (2021). Radiation-activated secretory proteins of Scgb1a1(+) club cells increase the efficacy of immune checkpoint blockade in lung cancer. Nat Cancer 2, 919–931. 10.1038/s43018-021-00245-1. PubMed DOI PMC
Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, Carmona SJ, Scarpellino L, Gfeller D, Pradervand S, et al. (2019). Intratumoral Tcf1(+)PD-1(+)CD8(+) T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity 50, 195–211 e110. 10.1016/j.immuni.2018.12.021. PubMed DOI
Gill AL, Wang PH, Lee J, Hudson WH, Ando S, Araki K, Hu Y, Wieland A, Im S, Gavora A, et al. (2023). PD-1 blockade increases the self-renewal of stem-like CD8 T cells to compensate for their accelerated differentiation into effectors. Sci Immunol 8, eadg0539. 10.1126/sciimmunol.adg0539. PubMed DOI PMC
Di Pilato M, Kfuri-Rubens R, Pruessmann JN, Ozga AJ, Messemaker M, Cadilha BL, Sivakumar R, Cianciaruso C, Warner RD, Marangoni F, et al. (2021). CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530 e4522. 10.1016/j.cell.2021.07.015. PubMed DOI PMC
Tadepalli S, Clements DR, Saravanan S, Arroyo Hornero R, Ludtke A, Blackmore B, Paulo JA, Gottfried-Blackmore A, Seong D, Park S, et al. (2023). Rapid recruitment and IFN-I-mediated activation of monocytes dictate focal radiotherapy efficacy. Sci Immunol 8, eadd7446. 10.1126/sciimmunol.add7446. PubMed DOI PMC
Ito A, Hong C, Oka K, Salazar JV, Diehl C, Witztum JL, Diaz M, Castrillo A, Bensinger SJ, Chan L, and Tontonoz P (2016). Cholesterol Accumulation in CD11c(+) Immune Cells Is a Causal and Targetable Factor in Autoimmune Disease. Immunity 45, 1311–1326. 10.1016/j.immuni.2016.11.008. PubMed DOI PMC
Westerterp M, Gautier EL, Ganda A, Molusky MM, Wang W, Fotakis P, Wang N, Randolph GJ, D’Agati VD, Yvan-Charvet L, and Tall AR (2017). Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity. Cell Metab 25, 1294–1304 e1296. 10.1016/j.cmet.2017.04.005. PubMed DOI PMC
Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, et al. (2010). Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16, 880–886. 10.1038/nm.2172. PubMed DOI PMC
Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, Donthireddy L, Hashimoto A, Kapralov A, Amoscato A, Angelini R, et al. (2017). Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun 8, 2122. 10.1038/s41467-017-02186-9. PubMed DOI PMC
Ramakrishnan R, Tyurin VA, Veglia F, Condamine T, Amoscato A, Mohammadyani D, Johnson JJ, Zhang LM, Klein-Seetharaman J, Celis E, et al. (2014). Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol 192, 2920–2931. 10.4049/jimmunol.1302801. PubMed DOI PMC
Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, Bondanza A, Bordignon C, Peccatori J, Ciceri F, et al. (2013). IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121, 573–584. 10.1182/blood-2012-05-431718. PubMed DOI
Pai CS, Huang JT, Lu X, Simons DM, Park C, Chang A, Tamaki W, Liu E, Roybal KT, Seagal J, et al. (2019). Clonal Deletion of Tumor-Specific T Cells by Interferon-gamma Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade. Immunity 50, 477–492 e478. 10.1016/j.immuni.2019.01.006. PubMed DOI PMC
Chen J, Cao Y, Markelc B, Kaeppler J, Vermeer JA, and Muschel RJ (2019). Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation. J Clin Invest 129, 4224–4238. 10.1172/JCI127458. PubMed DOI PMC
Benci JL, Johnson LR, Choa R, Xu Y, Qiu J, Zhou Z, Xu B, Ye D, Nathanson KL, June CH, et al. (2019). Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell 178, 933–948 e914. 10.1016/j.cell.2019.07.019. PubMed DOI PMC
Li G, Choi JE, Kryczek I, Sun Y, Liao P, Li S, Wei S, Grove S, Vatan L, Nelson R, et al. (2023). Intersection of immune and oncometabolic pathways drives cancer hyperprogression during immunotherapy. Cancer Cell 41, 304–322 e307. 10.1016/j.ccell.2022.12.008. PubMed DOI PMC
Chen J, Chen C, Zhan Y, Zhou L, Chen J, Cai Q, Wu Y, Sui Z, Zeng C, Wei X, and Muschel R (2021). Heterogeneity of IFN-Mediated Responses and Tumor Immunogenicity in Patients with Cervical Cancer Receiving Concurrent Chemoradiotherapy. Clin Cancer Res 27, 3990–4002. 10.1158/1078-0432.CCR-20-4521. PubMed DOI PMC
Xie C, Duffy AG, Brar G, Fioravanti S, Mabry-Hrones D, Walker M, Bonilla CM, Wood BJ, Citrin DE, Gil Ramirez EM, et al. (2020). Immune Checkpoint Blockade in Combination with Stereotactic Body Radiotherapy in Patients with Metastatic Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 26, 2318–2326. 10.1158/1078-0432.CCR-19-3624. PubMed DOI PMC
Durand S, Grajeda-Iglesias C, Aprahamian F, Nirmalathasan N, Kepp O, and Kroemer G (2021). The intracellular metabolome of starving cells. Methods Cell Biol 164, 137–156. 10.1016/bs.mcb.2021.04.001. PubMed DOI