Overlapping and separable activities of BRA-2 and HIM-17 promote occurrence and regulation of pairing and synapsis during Caenorhabditis elegans meiosis
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
GA23-04918S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
40082424
PubMed Central
PMC11906835
DOI
10.1038/s41467-025-57862-y
PII: 10.1038/s41467-025-57862-y
Knihovny.cz E-resources
- MeSH
- Caenorhabditis elegans * genetics metabolism cytology MeSH
- Meiosis * genetics physiology MeSH
- Mutation MeSH
- Chromosome Pairing * genetics MeSH
- Cell Cycle Proteins * metabolism genetics MeSH
- Caenorhabditis elegans Proteins * metabolism genetics MeSH
- Synaptonemal Complex metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Htp-1 protein, C elegans MeSH Browser
- Cell Cycle Proteins * MeSH
- Caenorhabditis elegans Proteins * MeSH
Faithful meiotic segregation requires pairwise alignment of the homologous chromosomes and their synaptonemal complex (SC) mediated stabilization. Here, we investigate factors that promote and coordinate these events during C. elegans meiosis. We identify BRA-2 (BMP Receptor Associated family member 2) as an interactor of HIM-17, previously shown to promote double-strand break formation. We found that loss of bra-2 impairs synapsis elongation without affecting homolog recognition, chromosome movement or SC maintenance. Epistasis analyses reveal previously unrecognized activities for HIM-17 in regulating homolog pairing and SC assembly in a partially overlapping manner with BRA-2. We show that removing bra-2 or him-17 restores nuclear clustering, recruitment of PLK-2 at the nuclear periphery, and abrogation of ectopic synapsis in htp-1 mutants, suggesting intact CHK-2-mediated signaling and presence of a barrier that prevents SC polymerization in the absence of homology. Our findings shed light on the regulatory mechanisms ensuring faithful pairing and synapsis.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Biology Faculty of Science McGill University Montreal QC Canada
Department of Biology University of Iowa Iowa City IA USA
Department of Biomedical Informatics University of Pittsburgh School of Medicine Pittsburgh PA USA
Magee Womens Research Institute Pittsburgh PA USA
Max Perutz Labs Vienna Biocenter Campus Vienna Biocenter Vienna Austria
See more in PubMed
Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet.33, 603–754 (1999). PubMed
Zickler, D. & Kleckner, N. Meiosis: Dances between homologs. Annu. Rev. Genet.57, 1–63 (2023). PubMed
Link, J. & Jantsch, V. Meiotic chromosomes in motion: a perspective from Mus musculus and Caenorhabditis elegans. Chromosoma128, 317–330, 10.1007/s00412-019-00698-5 (2019). PubMed PMC
Burke, B. LINC complexes as regulators of meiosis. Curr. Opin. Cell Biol.52, 22–29 (2018). PubMed
Alleva, B. & Smolikove, S. Moving and stopping: Regulation of chromosome movement to promote meiotic chromosome pairing and synapsis. Nucleus8, 613–624 (2017). PubMed PMC
Kim, H. J., Liu, C. & Dernburg, A. F. How and why chromosomes interact with the cytoskeleton during meiosis. Genes13, 901 (2022). PubMed PMC
Sato, A. et al. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell139, 907–919 (2009). PubMed PMC
Koszul, R. & Kleckner, N. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol.19, 716–724 (2009). PubMed PMC
Rog, O. & Dernburg, A. F. Direct visualization reveals kinetics of meiotic chromosome synapsis. Cell Rep.10, 1639–1645 (2015). PubMed PMC
Wynne, D. J., Rog, O., Carlton, P. M. & Dernburg, A. F. Dynein-dependent processive chromosome motions promote homologous pairing in C. elegans meiosis. J. Cell Biol.196, 47–64 (2012). PubMed PMC
Penkner, A. M. et al. Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell139, 920–933 (2009). PubMed
Baudrimont, A. et al. Leptotene/Zygotene chromosome movement via the SUN/KASH protein bridge in caenorhabditis elegans. PLoS Genet6, e1001219 (2010). PubMed PMC
Phillips, C. M. et al. Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nat. Cell Biol.11, 934–942 (2009). PubMed PMC
Phillips, C. M. et al. HIM-8 binds to the X Chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell123, 1051–1063 (2005). PubMed PMC
Harper, N. C. et al. Pairing centers recruit a polo-like kinase to orchestrate meiotic chromosome dynamics in C. elegans. Dev. Cell21, 934–947 (2011). PubMed PMC
Phillips, C. M. & Dernburg, A. F. A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev. Cell11, 817–829 (2006). PubMed
Kim, H. J., Liu, C., Zhang, L. & Dernburg, A. F. MJL-1 is a nuclear envelope protein required for homologous chromosome pairing and regulation of synapsis during meiosis in C. elegans. Sci. Adv.9, eadd1453 (2023). PubMed PMC
Penkner, A. et al. The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans Meiosis. Dev. Cell12, 873–885 (2007). PubMed
Liu, C. & Dernburg, A. F. Chemically induced proximity reveals a Piezo-dependent meiotic checkpoint at the oocyte nuclear envelope. Science. 386, eadm7969 (2024). PubMed
Labella, S., Woglar, A., Jantsch, V. & Zetka, M. Polo kinases establish links between meiotic chromosomes and cytoskeletal forces essential for homolog pairing. Dev. Cell21, 948–958 (2011). PubMed
Woglar, A. et al. Matefin/SUN-1 phosphorylation is part of a surveillance mechanism to coordinate chromosome synapsis and recombination with meiotic progression and chromosome movement. PLoS Genet9, e1003335 (2013). PubMed PMC
Page, S. L. & Hawley, R. S. The genetics and molecular biology of the synaptonemal complex. Annu. Rev. Cell Dev. Biol.20, 525–558 (2004). PubMed
Goodyer, W. et al. HTP-3 Links DSB formation with homolog pairing and crossing over during C. elegans Meiosis. Dev. Cell14, 263–274 (2008). PubMed
Severson, A. F., Ling, L., van Zuylen, V. & Meyer, B. J. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation. Genes Dev.23, 1763–1778 (2009). PubMed PMC
Couteau, F., Nabeshima, K., Villeneuve, A. & Zetka, M. A component of C. elegans meiotic chromosome axes at the interface of homolog alignment, synapsis, nuclear reorganization, and recombination. Curr. Biol.14, 585–592 (2004). PubMed
Martinez-Perez, E. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. Genes Dev.19, 2727–2743 (2005). PubMed PMC
Couteau, F. HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans. Genes Dev.19, 2744–2756 (2005). PubMed PMC
Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell88, 375–384 (1997). PubMed
Dernburg, A. F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell94, 387–398 (1998). PubMed
Lam, I. & Keeney, S. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb. Perspect. Biol.7, a016634 (2014). PubMed PMC
Janisiw, E. et al. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat. Commun.11, 4869 (2020). PubMed PMC
Trivedi, S., Blazícková, J. & Silva, N. PARG and BRCA1–BARD1 cooperative function regulates DNA repair pathway choice during gametogenesis. Nucleic Acids Res.50, 12291–12308 (2022). PubMed PMC
Guo, R. et al. BS69/ZMYND11 reads and connects Histone H3.3 Lysine 36 Trimethylation-decorated chromatin to regulated Pre-mRNA processing. Mol. Cell56, 298–310 (2014). PubMed PMC
Yates, T. M. et al. ZMYND11 ‐related syndromic intellectual disability: 16 patients delineating and expanding the phenotypic spectrum. Hum. Mutat.41, 1042–1050 (2020). PubMed
Yokoo, R. et al. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell149, 75–87 (2012). PubMed PMC
Morita, K., Shimizu, M., Shibuya, H. & Ueno, N. A DAF-1-binding protein BRA-1 is a negative regulator of DAF-7 TGF- signaling. Proc. Natl Acad. Sci.98, 6284–6288 (2001). PubMed PMC
Zhang, L., Ward, J.D., Cheng, Z. & Dernburg, A.F. (2015). The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development, dev.129635. 10.1242/dev.129635. PubMed PMC
Wagner, C. R., Kuervers, L., Baillie, D. L. & Yanowitz, J. L. xnd-1 regulates the global recombination landscape in Caenorhabditis elegans. Nature467, 839–843 (2010). PubMed PMC
Kelly, W. G. et al. X-chromosome silencing in the germline of C. elegans. Development129, 479–492 (2002). PubMed PMC
Larson, B. J., Van, M. V., Nakayama, T. & Engebrecht, J. Plasticity in the meiotic epigenetic landscape of sex chromosomes in caenorhabditis species. Genetics203, 1641–1658 (2016). PubMed PMC
Reddy, K. C. & Villeneuve, A. M. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell118, 439–452 (2004). PubMed
Colaiácovo, M. P. et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell5, 463–474 (2003). PubMed
Kelly, K. O., Dernburg, A. F., Stanfield, G. M. & Villeneuve, A. M. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics156, 617–630 (2000). PubMed PMC
MacQueen, A. J. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev.16, 2428–2442 (2002). PubMed PMC
MacQueen, A. J. Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev.15, 1674–1687 (2001). PubMed PMC
Crawley, O. et al. Cohesin-interacting protein WAPL-1 regulates meiotic chromosome structure and cohesion by antagonizing specific cohesin complexes. eLife5, e10851 (2016). PubMed PMC
Brodigan, T. M., Liu, J. I., Park, M., Kipreos, E. T. & Krause, M. Cyclin E expression during development in caenorhabditis elegans. Dev. Biol.254, 102–115 (2003). PubMed
Alleva, B., Clausen, S., Koury, E., Hefel, A. & Smolikove, S. CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline. PLoS Genet15, e1008486 (2019). PubMed PMC
Hayashi, M., Mlynarczyk-Evans, S. & Villeneuve, A. M. The synaptonemal complex shapes the crossover landscape through cooperative assembly, crossover promotion and crossover inhibition during Caenorhabditis elegans Meiosis. Genetics186, 45–58 (2010). PubMed PMC
Libuda, D. E., Uzawa, S., Meyer, B. J. & Villeneuve, A. M. Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature502, 703–706 (2013). PubMed PMC
Cahoon, C. K., Richter, C. M., Dayton, A. E. & Libuda, D. E. Sexual dimorphic regulation of recombination by the synaptonemal complex in C. elegans. eLife12, e84538 (2023). PubMed PMC
Carelli, F. N. et al. Widespread transposon co-option in the Caenorhabditis germline regulatory network. Sci. Adv.8, eabo4082 (2022). PubMed PMC
Jaramillo-Lambert, A., Ellefson, M., Villeneuve, A. M. & Engebrecht, J. Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev. Biol.308, 206–221 (2007). PubMed
Tolkin, T. & Hubbard, E. J. A. Germline stem and progenitor cell aging in C. elegans. Front. Cell Dev. Biol.9, 699671 (2021). PubMed PMC
Hillers, K.J. (2017). Meiosis. WormBook, 1–43. 10.1895/wormbook.1.178.1. PubMed PMC
Hicks, T. et al. Continuous double-strand break induction and their differential processing sustain chiasma formation during Caenorhabditis elegans meiosis. Cell Rep.40, 111403 (2022). PubMed
Meneely, P. M., McGovern, O. L., Heinis, F. I. & Yanowitz, J. L. Crossover distribution and frequency are regulated by him-5 in Caenorhabditis elegans. Genetics190, 1251–1266 (2012). PubMed PMC
Rinaldo, C., Bazzicalupo, P., Ederle, S., Hilliard, M. & La Volpe, A. Roles for Caenorhabditis elegans rad-51 in meiosis and in resistance to ionizing radiation during development. Genetics160, 471–479 (2002). PubMed PMC
Alpi, A., Pasierbek, P., Gartner, A. & Loidl, J. Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma112, 6–16 (2003). PubMed
Zhang, L. et al. Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2. Elife12, e84492 (2023). PubMed PMC
Silva, N. et al. The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression. Dev. Cell31, 503–511 (2014). PubMed
Kim, Y., Kostow, N. & Dernburg, A. F. The chromosome axis mediates feedback control of CHK-2 to ensure crossover formation in C. elegans. Dev. Cell35, 247–261 (2015). PubMed PMC
Castellano-Pozo, M. et al. Surveillance of cohesin-supported chromosome structure controls meiotic progression. Nat. Commun.11, 4345 (2020). PubMed PMC
Barroso, C. et al. (2024). Two structurally mobile regions control the conformation and function of metamorphic meiotic HORMAD proteins. Preprint, 10.1101/2024.08.05.606648.
Nadarajan, S., Altendorfer, E., Saito, T. T., Martinez-Garcia, M. & Colaiácovo, M. P. HIM-17 regulates the position of recombination events and GSP-1/2 localization to establish short arm identity on bivalents in meiosis. Proc. Natl Acad. Sci. USA118, e2016363118 (2021). PubMed PMC
Rosu, S. et al. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance. PLoS Genet9, e1003674 (2013). PubMed PMC
Hurlock, M. E. et al. Identification of novel synaptonemal complex components in C. elegans. J. Cell Biol.219, e201910043 (2020). PubMed PMC
Zhang, Z. et al. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J. Cell Biol.219, e201910086 (2020). PubMed PMC
Smolikov, S., Schild-Prüfert, K. & Colaiácovo, M. P. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and Chiasma Formation in Caenorhabditis elegans Meiosis. PLoS Genet5, e1000669 (2009). PubMed PMC
Smolikov, S. et al. SYP-3 restricts synaptonemal complex assembly to bridge paired chromosome axes during meiosis in Caenorhabditis elegans. Genetics176, 2015–2025 (2007). PubMed PMC
Blundon, J. M. et al. Skp1 proteins are structural components of the synaptonemal complex in C. elegans. Sci. Adv.10, eadl4876 (2024). PubMed PMC
Jantsch, V. et al. Caenorhabditis elegans prom-1 is required for meiotic prophase progression and homologous chromosome pairing. MBoC18, 4911–4920 (2007). PubMed PMC
Tang, L. et al. Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age. MBoC21, 885–896 (2010). PubMed PMC
Kleckner, N. et al. A mechanical basis for chromosome function. Proc. Natl Acad. Sci. USA.101, 12592–12597 (2004). PubMed PMC
Börner, G. V., Kleckner, N. & Hunter, N. Crossover/Noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the Leptotene/Zygotene transition of meiosis. Cell117, 29–45 (2004). PubMed
Zickler, D. & Kleckner, N. The Leptotene-Zygotene transition of meiosis. Annu. Rev. Genet.32, 619–697 (1998). PubMed
Brenner, S. The genetics of Caenorhabditis elegans. Genetics77, 71–94 (1974). PubMed PMC
Stejskal, K., Potěšil, D. & Zdráhal, Z. Suppression of Peptide sample losses in autosampler vials. J. Proteome Res.12, 3057–3062 (2013). PubMed
Almanzar, D. E., Hamrick, A. & Rog, O. Single-sister labeling in the C. elegans germline using the nucleotide analog EdU. STAR Protoc.3, 101344 (2022). PubMed PMC
Das, D., Trivedi, S., Blazícková, J., Arur, S. & Silva, N. (2022). Phosphorylation of HORMA-domain protein HTP-3 at Serine 285 is dispensable for crossover formation. G3 Genes|Genomes|Genetics, jkac079. 10.1093/g3journal/jkac079. PubMed PMC
Adilardi, R. S. & Dernburg, A. F. Robust, versatile DNA FISH probes for chromosome-specific repeats in Caenorhabditis elegans and Pristionchus pacificus. G3 Genes|Genomes|Genet.12, jkac121 (2022). PubMed PMC
Cockrum, C. S. & Strome, S. Maternal H3K36 and H3K27 HMTs protect germline development via regulation of the transcription factor LIN-15B. eLife11, e77951 (2022). PubMed PMC
Thomas, P. D. et al. PANTHER: Making genome‐scale phylogenetics accessible to all. Protein Sci.31, 8–22 (2022). PubMed PMC