• This record comes from PubMed

Overlapping and separable activities of BRA-2 and HIM-17 promote occurrence and regulation of pairing and synapsis during Caenorhabditis elegans meiosis

. 2025 Mar 13 ; 16 (1) : 2516. [epub] 20250313

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
GA23-04918S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Links

PubMed 40082424
PubMed Central PMC11906835
DOI 10.1038/s41467-025-57862-y
PII: 10.1038/s41467-025-57862-y
Knihovny.cz E-resources

Faithful meiotic segregation requires pairwise alignment of the homologous chromosomes and their synaptonemal complex (SC) mediated stabilization. Here, we investigate factors that promote and coordinate these events during C. elegans meiosis. We identify BRA-2 (BMP Receptor Associated family member 2) as an interactor of HIM-17, previously shown to promote double-strand break formation. We found that loss of bra-2 impairs synapsis elongation without affecting homolog recognition, chromosome movement or SC maintenance. Epistasis analyses reveal previously unrecognized activities for HIM-17 in regulating homolog pairing and SC assembly in a partially overlapping manner with BRA-2. We show that removing bra-2 or him-17 restores nuclear clustering, recruitment of PLK-2 at the nuclear periphery, and abrogation of ectopic synapsis in htp-1 mutants, suggesting intact CHK-2-mediated signaling and presence of a barrier that prevents SC polymerization in the absence of homology. Our findings shed light on the regulatory mechanisms ensuring faithful pairing and synapsis.

See more in PubMed

Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet.33, 603–754 (1999). PubMed

Zickler, D. & Kleckner, N. Meiosis: Dances between homologs. Annu. Rev. Genet.57, 1–63 (2023). PubMed

Link, J. & Jantsch, V. Meiotic chromosomes in motion: a perspective from Mus musculus and Caenorhabditis elegans. Chromosoma128, 317–330, 10.1007/s00412-019-00698-5 (2019). PubMed PMC

Burke, B. LINC complexes as regulators of meiosis. Curr. Opin. Cell Biol.52, 22–29 (2018). PubMed

Alleva, B. & Smolikove, S. Moving and stopping: Regulation of chromosome movement to promote meiotic chromosome pairing and synapsis. Nucleus8, 613–624 (2017). PubMed PMC

Kim, H. J., Liu, C. & Dernburg, A. F. How and why chromosomes interact with the cytoskeleton during meiosis. Genes13, 901 (2022). PubMed PMC

Sato, A. et al. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell139, 907–919 (2009). PubMed PMC

Koszul, R. & Kleckner, N. Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol.19, 716–724 (2009). PubMed PMC

Rog, O. & Dernburg, A. F. Direct visualization reveals kinetics of meiotic chromosome synapsis. Cell Rep.10, 1639–1645 (2015). PubMed PMC

Wynne, D. J., Rog, O., Carlton, P. M. & Dernburg, A. F. Dynein-dependent processive chromosome motions promote homologous pairing in C. elegans meiosis. J. Cell Biol.196, 47–64 (2012). PubMed PMC

Penkner, A. M. et al. Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell139, 920–933 (2009). PubMed

Baudrimont, A. et al. Leptotene/Zygotene chromosome movement via the SUN/KASH protein bridge in caenorhabditis elegans. PLoS Genet6, e1001219 (2010). PubMed PMC

Phillips, C. M. et al. Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nat. Cell Biol.11, 934–942 (2009). PubMed PMC

Phillips, C. M. et al. HIM-8 binds to the X Chromosome pairing center and mediates chromosome-specific meiotic synapsis. Cell123, 1051–1063 (2005). PubMed PMC

Harper, N. C. et al. Pairing centers recruit a polo-like kinase to orchestrate meiotic chromosome dynamics in C. elegans. Dev. Cell21, 934–947 (2011). PubMed PMC

Phillips, C. M. & Dernburg, A. F. A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev. Cell11, 817–829 (2006). PubMed

Kim, H. J., Liu, C., Zhang, L. & Dernburg, A. F. MJL-1 is a nuclear envelope protein required for homologous chromosome pairing and regulation of synapsis during meiosis in C. elegans. Sci. Adv.9, eadd1453 (2023). PubMed PMC

Penkner, A. et al. The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans Meiosis. Dev. Cell12, 873–885 (2007). PubMed

Liu, C. & Dernburg, A. F. Chemically induced proximity reveals a Piezo-dependent meiotic checkpoint at the oocyte nuclear envelope. Science. 386, eadm7969 (2024). PubMed

Labella, S., Woglar, A., Jantsch, V. & Zetka, M. Polo kinases establish links between meiotic chromosomes and cytoskeletal forces essential for homolog pairing. Dev. Cell21, 948–958 (2011). PubMed

Woglar, A. et al. Matefin/SUN-1 phosphorylation is part of a surveillance mechanism to coordinate chromosome synapsis and recombination with meiotic progression and chromosome movement. PLoS Genet9, e1003335 (2013). PubMed PMC

Page, S. L. & Hawley, R. S. The genetics and molecular biology of the synaptonemal complex. Annu. Rev. Cell Dev. Biol.20, 525–558 (2004). PubMed

Goodyer, W. et al. HTP-3 Links DSB formation with homolog pairing and crossing over during C. elegans Meiosis. Dev. Cell14, 263–274 (2008). PubMed

Severson, A. F., Ling, L., van Zuylen, V. & Meyer, B. J. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation. Genes Dev.23, 1763–1778 (2009). PubMed PMC

Couteau, F., Nabeshima, K., Villeneuve, A. & Zetka, M. A component of C. elegans meiotic chromosome axes at the interface of homolog alignment, synapsis, nuclear reorganization, and recombination. Curr. Biol.14, 585–592 (2004). PubMed

Martinez-Perez, E. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. Genes Dev.19, 2727–2743 (2005). PubMed PMC

Couteau, F. HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans. Genes Dev.19, 2744–2756 (2005). PubMed PMC

Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell88, 375–384 (1997). PubMed

Dernburg, A. F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell94, 387–398 (1998). PubMed

Lam, I. & Keeney, S. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb. Perspect. Biol.7, a016634 (2014). PubMed PMC

Janisiw, E. et al. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat. Commun.11, 4869 (2020). PubMed PMC

Trivedi, S., Blazícková, J. & Silva, N. PARG and BRCA1–BARD1 cooperative function regulates DNA repair pathway choice during gametogenesis. Nucleic Acids Res.50, 12291–12308 (2022). PubMed PMC

Guo, R. et al. BS69/ZMYND11 reads and connects Histone H3.3 Lysine 36 Trimethylation-decorated chromatin to regulated Pre-mRNA processing. Mol. Cell56, 298–310 (2014). PubMed PMC

Yates, T. M. et al. ZMYND11 ‐related syndromic intellectual disability: 16 patients delineating and expanding the phenotypic spectrum. Hum. Mutat.41, 1042–1050 (2020). PubMed

Yokoo, R. et al. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell149, 75–87 (2012). PubMed PMC

Morita, K., Shimizu, M., Shibuya, H. & Ueno, N. A DAF-1-binding protein BRA-1 is a negative regulator of DAF-7 TGF- signaling. Proc. Natl Acad. Sci.98, 6284–6288 (2001). PubMed PMC

Zhang, L., Ward, J.D., Cheng, Z. & Dernburg, A.F. (2015). The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development, dev.129635. 10.1242/dev.129635. PubMed PMC

Wagner, C. R., Kuervers, L., Baillie, D. L. & Yanowitz, J. L. xnd-1 regulates the global recombination landscape in Caenorhabditis elegans. Nature467, 839–843 (2010). PubMed PMC

Kelly, W. G. et al. X-chromosome silencing in the germline of C. elegans. Development129, 479–492 (2002). PubMed PMC

Larson, B. J., Van, M. V., Nakayama, T. & Engebrecht, J. Plasticity in the meiotic epigenetic landscape of sex chromosomes in caenorhabditis species. Genetics203, 1641–1658 (2016). PubMed PMC

Reddy, K. C. & Villeneuve, A. M. C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell118, 439–452 (2004). PubMed

Colaiácovo, M. P. et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell5, 463–474 (2003). PubMed

Kelly, K. O., Dernburg, A. F., Stanfield, G. M. & Villeneuve, A. M. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics156, 617–630 (2000). PubMed PMC

MacQueen, A. J. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev.16, 2428–2442 (2002). PubMed PMC

MacQueen, A. J. Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev.15, 1674–1687 (2001). PubMed PMC

Crawley, O. et al. Cohesin-interacting protein WAPL-1 regulates meiotic chromosome structure and cohesion by antagonizing specific cohesin complexes. eLife5, e10851 (2016). PubMed PMC

Brodigan, T. M., Liu, J. I., Park, M., Kipreos, E. T. & Krause, M. Cyclin E expression during development in caenorhabditis elegans. Dev. Biol.254, 102–115 (2003). PubMed

Alleva, B., Clausen, S., Koury, E., Hefel, A. & Smolikove, S. CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline. PLoS Genet15, e1008486 (2019). PubMed PMC

Hayashi, M., Mlynarczyk-Evans, S. & Villeneuve, A. M. The synaptonemal complex shapes the crossover landscape through cooperative assembly, crossover promotion and crossover inhibition during Caenorhabditis elegans Meiosis. Genetics186, 45–58 (2010). PubMed PMC

Libuda, D. E., Uzawa, S., Meyer, B. J. & Villeneuve, A. M. Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature502, 703–706 (2013). PubMed PMC

Cahoon, C. K., Richter, C. M., Dayton, A. E. & Libuda, D. E. Sexual dimorphic regulation of recombination by the synaptonemal complex in C. elegans. eLife12, e84538 (2023). PubMed PMC

Carelli, F. N. et al. Widespread transposon co-option in the Caenorhabditis germline regulatory network. Sci. Adv.8, eabo4082 (2022). PubMed PMC

Jaramillo-Lambert, A., Ellefson, M., Villeneuve, A. M. & Engebrecht, J. Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev. Biol.308, 206–221 (2007). PubMed

Tolkin, T. & Hubbard, E. J. A. Germline stem and progenitor cell aging in C. elegans. Front. Cell Dev. Biol.9, 699671 (2021). PubMed PMC

Hillers, K.J. (2017). Meiosis. WormBook, 1–43. 10.1895/wormbook.1.178.1. PubMed PMC

Hicks, T. et al. Continuous double-strand break induction and their differential processing sustain chiasma formation during Caenorhabditis elegans meiosis. Cell Rep.40, 111403 (2022). PubMed

Meneely, P. M., McGovern, O. L., Heinis, F. I. & Yanowitz, J. L. Crossover distribution and frequency are regulated by him-5 in Caenorhabditis elegans. Genetics190, 1251–1266 (2012). PubMed PMC

Rinaldo, C., Bazzicalupo, P., Ederle, S., Hilliard, M. & La Volpe, A. Roles for Caenorhabditis elegans rad-51 in meiosis and in resistance to ionizing radiation during development. Genetics160, 471–479 (2002). PubMed PMC

Alpi, A., Pasierbek, P., Gartner, A. & Loidl, J. Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma112, 6–16 (2003). PubMed

Zhang, L. et al. Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2. Elife12, e84492 (2023). PubMed PMC

Silva, N. et al. The fidelity of synaptonemal complex assembly is regulated by a signaling mechanism that controls early meiotic progression. Dev. Cell31, 503–511 (2014). PubMed

Kim, Y., Kostow, N. & Dernburg, A. F. The chromosome axis mediates feedback control of CHK-2 to ensure crossover formation in C. elegans. Dev. Cell35, 247–261 (2015). PubMed PMC

Castellano-Pozo, M. et al. Surveillance of cohesin-supported chromosome structure controls meiotic progression. Nat. Commun.11, 4345 (2020). PubMed PMC

Barroso, C. et al. (2024). Two structurally mobile regions control the conformation and function of metamorphic meiotic HORMAD proteins. Preprint, 10.1101/2024.08.05.606648.

Nadarajan, S., Altendorfer, E., Saito, T. T., Martinez-Garcia, M. & Colaiácovo, M. P. HIM-17 regulates the position of recombination events and GSP-1/2 localization to establish short arm identity on bivalents in meiosis. Proc. Natl Acad. Sci. USA118, e2016363118 (2021). PubMed PMC

Rosu, S. et al. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance. PLoS Genet9, e1003674 (2013). PubMed PMC

Hurlock, M. E. et al. Identification of novel synaptonemal complex components in C. elegans. J. Cell Biol.219, e201910043 (2020). PubMed PMC

Zhang, Z. et al. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J. Cell Biol.219, e201910086 (2020). PubMed PMC

Smolikov, S., Schild-Prüfert, K. & Colaiácovo, M. P. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and Chiasma Formation in Caenorhabditis elegans Meiosis. PLoS Genet5, e1000669 (2009). PubMed PMC

Smolikov, S. et al. SYP-3 restricts synaptonemal complex assembly to bridge paired chromosome axes during meiosis in Caenorhabditis elegans. Genetics176, 2015–2025 (2007). PubMed PMC

Blundon, J. M. et al. Skp1 proteins are structural components of the synaptonemal complex in C. elegans. Sci. Adv.10, eadl4876 (2024). PubMed PMC

Jantsch, V. et al. Caenorhabditis elegans prom-1 is required for meiotic prophase progression and homologous chromosome pairing. MBoC18, 4911–4920 (2007). PubMed PMC

Tang, L. et al. Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age. MBoC21, 885–896 (2010). PubMed PMC

Kleckner, N. et al. A mechanical basis for chromosome function. Proc. Natl Acad. Sci. USA.101, 12592–12597 (2004). PubMed PMC

Börner, G. V., Kleckner, N. & Hunter, N. Crossover/Noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the Leptotene/Zygotene transition of meiosis. Cell117, 29–45 (2004). PubMed

Zickler, D. & Kleckner, N. The Leptotene-Zygotene transition of meiosis. Annu. Rev. Genet.32, 619–697 (1998). PubMed

Brenner, S. The genetics of Caenorhabditis elegans. Genetics77, 71–94 (1974). PubMed PMC

Stejskal, K., Potěšil, D. & Zdráhal, Z. Suppression of Peptide sample losses in autosampler vials. J. Proteome Res.12, 3057–3062 (2013). PubMed

Almanzar, D. E., Hamrick, A. & Rog, O. Single-sister labeling in the C. elegans germline using the nucleotide analog EdU. STAR Protoc.3, 101344 (2022). PubMed PMC

Das, D., Trivedi, S., Blazícková, J., Arur, S. & Silva, N. (2022). Phosphorylation of HORMA-domain protein HTP-3 at Serine 285 is dispensable for crossover formation. G3 Genes|Genomes|Genetics, jkac079. 10.1093/g3journal/jkac079. PubMed PMC

Adilardi, R. S. & Dernburg, A. F. Robust, versatile DNA FISH probes for chromosome-specific repeats in Caenorhabditis elegans and Pristionchus pacificus. G3 Genes|Genomes|Genet.12, jkac121 (2022). PubMed PMC

Cockrum, C. S. & Strome, S. Maternal H3K36 and H3K27 HMTs protect germline development via regulation of the transcription factor LIN-15B. eLife11, e77951 (2022). PubMed PMC

Thomas, P. D. et al. PANTHER: Making genome‐scale phylogenetics accessible to all. Protein Sci.31, 8–22 (2022). PubMed PMC

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...