Switchable and Tunable Terahertz Metamaterial Absorber with Ultra-Broadband and Multi-Band Response for Cancer Detection

. 2025 Feb 27 ; 25 (5) : . [epub] 20250227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40096349

This paper proposes a switchable and tunable terahertz metamaterial absorber utilizing a graphene-VO2 layered structure. The design employs reconfigurable seven-layer architecture from top to bottom as (topaz/VO2/topaz/Si/graphene/topaz/Au). CST software 2018 was used to simulate the absorption properties of terahertz waves (0-14 THz). The proposed metamaterial exhibits dual functionalities depending on the VO2 phase state. In the insulating state, the design achieves a tri-band response with distinct peaks at 3.12 THz, 5.65 THz, and 7.24 THz. Conversely, the VO2's conducting state enables ultra-broadband absorption from 2.52 THz to 11.62 THz. Extensive simulations were conducted to demonstrate the tunability of absorption: Simulated absorption spectra were obtained for broadband and multi-band states. Electric field distributions were analyzed at resonance frequencies for both conducting and insulating states. The impact was studied of VO2 conductivity, loss tangent, and graphene's chemical potential on absorption. The influence was investigated of topaz layer thickness on the absorption spectrum. Absorption behavior was examined of VO2 under different states and layer configurations. Variations were analyzed of absorption spectra with frequency, polarization angle, and incident angle. The proposed design used for the detection of cervical and breast cancer detection and the sensitivity is about is 0.2489 THz/RIU. The proposed design holds significant promise for real-world applications due to its reconfigurability. This tunability allows for tailoring absorption properties across a broad terahertz range, making it suitable for advanced devices like filters, modulators, and perfect absorbers.

Zobrazit více v PubMed

Takida Y., Nawata K., Minamide H. Security screening system based on terahertz-wave spectroscopic gas detection. Opt. Express. 2021;29:2529–2537. doi: 10.1364/OE.413201. PubMed DOI

Xu K., Arbab M.H. Terahertz polarimetric imaging of biological tissue: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering. Biomed. Opt. Express. 2024;15:2328–2342. doi: 10.1364/BOE.515623. PubMed DOI PMC

Jiang W., Zhou Q., He J., Habibi M.A., Melnyk S., El-Absi M., Han B., Di Renzo M., Schotten H.D., Luo F.-L., et al. Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review. IEEE Commun. Surv. Tutor. 2024;26:2326–2381. doi: 10.1109/COMST.2024.3385908. DOI

Hamza M.N., Abdulkarim Y.I., Saeed S.R., Hamad M.A., Muhammadsharif F.F., Bakır M., Appasani B., Haxha S. A Very Compact Metamaterial-Based Triple-Band Sensor in Terahertz Spectrum as a Perfect Absorber for Human Blood Cancer Diagnostics. Plasmonics. 2024:1–14. doi: 10.1007/s11468-024-02291-8. DOI

Mukherjee P., Banerjee S., Pahadsingh S., Bhowmik W., Appasani B., Abdulkarim Y.I. Refractive index sensor based on terahertz epsilonnegative metamaterial absorber for cancerous cell detection. J. Optoelectron. Adv. Mater. 2023;25:128–135.

Hamza M.N., Abdulkarim Y.I., Saeed S.R., Altıntaş O., Mahmud R.H., Appasani B., Ravariu C. Low-cost antenna-array-based metamaterials for non-invasive early-stage breast tumor detection in the human body. Biosensors. 2022;12:828. doi: 10.3390/bios12100828. PubMed DOI PMC

Ali S.H., Abdulkarim Y.I., Mohammed H.O. Flexible wearable antenna incorporating metasurface for WBAN applications. Passer J. Basic Appl. Sci. 2024;6:8–15. doi: 10.24271/psr.2023.411415.1369. DOI

Wu R., Dong J., Wang M., Abdulkarim Y.I. Wearable antenna sensor based on bandwidth-enhanced metasurface for elderly fall assistance detection. Measurement. 2023;233:113753. doi: 10.1016/j.measurement.2023.113753. DOI

Hevin A.M., Abdulkarim Y.I., Abdoul P.A., Dong J. Textile and metasurface integrated wide-band wearable antenna for wireless body area network applications. AEU-Int. J. Electron. Commun. 2023;169:154759.

Zerrad F.-E., Taouzari M., Makroum E.M., Islam M.T., Özkaner V., Abdulkarim Y.I., Karaaslan M. Multilayered metamaterials array antenna based on artificial magnetic conductor’s structure for the application diagnostic breast cancer detection with microwave imaging. Med. Eng. Phys. 2022;69:103737. doi: 10.1016/j.medengphy.2021.103737. PubMed DOI

Das P., Madhav B.T.P. Convoluted I-Shaped Metamaterial on Rigid and Flexible Substrates for Electromagnetic Cloaking. J. Electron. Mater. 2024;53:3199–3210. doi: 10.1007/s11664-024-11050-8. DOI

Zhang Q., Hu G., Rudykh S. Magnetoactive asymmetric mechanical metamaterial for tunable elastic cloaking. Int. J. Solids Struct. 2024;289:112648. doi: 10.1016/j.ijsolstr.2024.112648. DOI

Banerjee S., Dutta P., Basu S., Mishra S.K., Appasani B., Nanda S., Abdulkarim Y.I., Muhammadsharif F.F., Dong J., Jha A.V., et al. A new design of a terahertz metamaterial absorber for gas sensing applications. Symmetry. 2022;15:24. doi: 10.3390/sym15010024. DOI

Abdulkarim Y.I., Dalgaç Ş., Alkurt F.O., Muhammadsharif F.F., Awl H.N., Saeed S.R., Altıntaş O., Li C., Bakır M., Karaaslan M., et al. Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration. J. Mater. Sci. Mater. Electron. 2021;32:24258–24272. doi: 10.1007/s10854-021-06891-6. DOI

Abdulkarim Y.I., Alkurt F.Ö., Bakır M., Awl H.N., Muhammadsharif F.F., Karaaslan M., Appasani B., Al-Badri K.S.L., Zhu Y., Dong J. A polarization-insensitive triple-band perfect metamaterial absorber incorporating ZnSe for terahertz sensing. J. Opt. 2022;24:105102. doi: 10.1088/2040-8986/ac8889. DOI

Mazare A.G., Abdulk Y.I., Karim A.S., Bakır M., Taouzari M., Muhammadsharif F.F., Appasani B., Altıntaş O., Karaaslan M., Bizon N. Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry. Materials. 2022;15:6364. doi: 10.3390/ma15186364. PubMed DOI PMC

Ali H.O., Al-Hindawi A.M., Abdulkarim Y.I., Karaaslan M. New compact six-band metamaterial absorber based on Closed Circular Ring Resonator (CCRR) for Radar applications. Opt. Commun. 2022;503:127457. doi: 10.1016/j.optcom.2021.127457. DOI

Liu M., Plum E., Li H., Li S., Xu Q., Zhang X., Zhang C., Zou C., Jin B., Han J., et al. Temperature-Controlled Optical Activity and Negative Refractive Index. Adv. Funct. Mater. 2021;31:2010249. doi: 10.1002/adfm.202010249. DOI

Liu M., Plum E., Li H., Duan S., Li S., Xu Q., Zhang X., Zhang C., Zou C., Jin B., et al. Switchable Chiral Mirrors. Adv. Opt. Mater. 2020;8:2000247. doi: 10.1002/adom.202000247. DOI

Liu M., Xu Q., Chen X., Plum E., Li H., Zhang X., Zhang C., Zou C., Han J., Zhang W. Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves. Sci. Rep. 2019;9:4097. doi: 10.1038/s41598-019-40791-4. PubMed DOI PMC

Rengasamy S., Natarajan R., Srinivasan V.K. Miniaturized Multi-Spectral Perfect Metamaterial Absorber for THz Sensing, Imaging and Spectroscopic Applications. Plasmonics. 2023;18:643–651. doi: 10.1007/s11468-023-01793-1. DOI

Rani N., Bohre A.K., Bhattacharya A. VO2 based multi-functional ultra-wideband terahertz meta-absorber for EMI shielding application. Smart Sci. 2023;12:484–494. doi: 10.1080/23080477.2024.2358671. DOI

Hao S., Wang J., Fanayev I., Khakhomov S., Li J. Hyperbolic metamaterial structures based on graphene for THz super-resolution imaging applications. Opt. Mater. Express. 2023;13:247–262. doi: 10.1364/OME.477107. DOI

Ma S., Wen S., Mi X., Zhao H. Terahertz optical modulator and highly sensitive terahertz sensor governed by bound states in the continuum in graphene-dielectric hybrid metamaterial. Opt. Commun. 2023;536:129398. doi: 10.1016/j.optcom.2023.129398. DOI

Zamzam P., Rezaei P., Abdulkarim Y.I., Daraei O.M. Graphene-based polarization-insensitive metamaterials with perfect absorption for terahertz biosensing applications: Analytical approach. Opt. Laser Technol. 2023;163:109444. doi: 10.1016/j.optlastec.2023.109444. DOI

Zhu H., Zhang Y., Ye L., Li Y., Xu Y., Xu R., Xu H., Xu M. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption. Opt. Express. 2020;28:38626. doi: 10.1364/OE.414039. PubMed DOI

Liu Y., Huang R., Ouyang Z. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene. Opt. Express. 2021;29:20839–20850. doi: 10.1364/OE.428790. PubMed DOI

Liu M., Wei R., Taplin J., Zhang W. Terahertz Metasurfaces Exploiting the Phase Transition of Vanadium Dioxide. Materials. 2023;16:7106. doi: 10.3390/ma16227106. PubMed DOI PMC

Ri K.-J., Ri C.-H. Tunable dual-broadband terahertz metamaterial absorber based on a simple design of slotted VO2 resonator. Opt. Commun. 2023;536:129377. doi: 10.1016/j.optcom.2023.129377. DOI

Wang T., Zhang Y., Zhang H., Cao M. Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial. Opt. Mater. Express. 2020;10:369–386. doi: 10.1364/OME.383008. DOI

Song C., Wang J., Zhang B., Qu Z., Jing H., Kang J., Hao J., Duan J. Dual-band/ultra-broadband switchable terahertz metamaterial absorber based on vanadium dioxide and graphene. Opt. Commun. 2023;530:129027. doi: 10.1016/j.optcom.2022.129027. DOI

Zhang P., Chen G., Hou Z., Zhang Y., Shen J., Li C., Zhao M., Gao Z., Li Z., Tang T. Ultra-Broadband Tunable Terahertz Metamaterial Absorber Based on Double-Layer Vanadium Dioxide Square Ring Arrays. Micromachines. 2022;13:669. doi: 10.3390/mi13050669. PubMed DOI PMC

Zhuo S., Liu Z., Zhou F., Qin Y., Luo X., Ji C., Yang G., Yang R., Xie Y. THz broadband and dual-channel perfect absorbers based on patterned graphene and vanadium dioxide metamaterials. Opt. Express. 2022;30:47647–47658. doi: 10.1364/OE.476858. PubMed DOI

Hu D., Jia N., Zhu Q. Switchable dual-broadband to single-broadband terahertz absorber based on hybrid graphene and vanadium dioxide metamaterials. Phys. Scr. 2023;98:065946. doi: 10.1088/1402-4896/acd3bc. DOI

Hossain A.B.M.A., Khaleque A. Multi-functional and actively tunable terahertz metamaterial absorber based on graphene and vanadium dioxide composite structure. Opt. Contin. 2024;3:921–934. doi: 10.1364/OPTCON.519783. DOI

Jabin A., Ahmed K., Rana J., Paul B.K., Islam M., Vigneswaran D., Uddin M.S. Surface Plasmon Resonance Based Titanium Coated Biosensor for Cancer Cell Detection. IEEE Photonics J. 2019;11:3700110. doi: 10.1109/JPHOT.2019.2924825. DOI

Ding Z., Su W., Wu H., Li W., Zhou Y., Ye L., Yao H. Ultra-broadband tunable terahertz absorber based on graphene metasurface with multi-square rings. Mater. Sci. Semicond. Process. 2023;163:107557. doi: 10.1016/j.mssp.2023.107557. DOI

Zhou Z., Song Z. Terahertz mode switching of spin reflection and vortex beams based on graphene metasurfaces. Opt. Laser Technol. 2022;153:108278. doi: 10.1016/j.optlastec.2022.108278. DOI

Zhang Y., Li T., Chen Q., Zhang H., O’Hara J.F., Abele E., Taylor A.J., Chen H.-T., Azad A.K. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies. Sci. Rep. 2015;5:18463. doi: 10.1038/srep18463. PubMed DOI PMC

Wang D., Cui X., Liu D., Zou X., Wang G.-M., Zheng B., Cai T. Multi-Characteristic Integrated Ultra-Wideband Frequency Selective Rasorber. Prog. Electromagn. Res. 2024;179:49–59. doi: 10.2528/PIER23060602. DOI

Liu B., Peng Y., Hao Y., Zhu Y., Chang S., Zhuang S. Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface. PhotoniX. 2024;5:10. doi: 10.1186/s43074-024-00129-4. DOI

Seifert T., Jaiswal S., Martens U., Hannegan J., Braun L., Maldonado P., Freimuth F., Kronenberg A., Henrizi J., Radu I., et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics. 2016;10:483–488. doi: 10.1038/nphoton.2016.91. DOI

Kampfrath T., Battiato M., Maldonado P., Eilers G., Nötzold J., Mährlein S., Zbarsky V., Freimuth F., Mokrousov Y., Blügel S., et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 2013;8:256–260. doi: 10.1038/nnano.2013.43. PubMed DOI

Jin Z., Tkach A., Casper F., Spetter V., Grimm H., Thomas A., Kampfrath T., Bonn M., Kläui M., Turchinovich D. Accessing the fundamentals of magnetotransport in metals with terahertz probes. Nat. Phys. 2015;11:761–766. doi: 10.1038/nphys3384. DOI

Battiato M., Carva K., Oppeneer P.M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 2010;105:027203. doi: 10.1103/PhysRevLett.105.027203. PubMed DOI

Yao J., Ou J.-Y., Savinov V., Chen M.K., Kuo H.Y., Zheludev N.I., Tsai D.P. Plasmonic anapole metamaterial for refractive index sensing. PhotoniX. 2022;3:23. doi: 10.1186/s43074-022-00069-x. DOI

Beliaev L.Y., Lavrinenko A.V., Takayama O. Alternative Plasmonic Materials for Biochemical Sensing: A Review. Prog. Electromagn. Res. 2024;180:25–53. doi: 10.2528/PIER24080104. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...