Switchable and Tunable Terahertz Metamaterial Absorber with Ultra-Broadband and Multi-Band Response for Cancer Detection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40096349
PubMed Central
PMC11902847
DOI
10.3390/s25051463
PII: s25051463
Knihovny.cz E-zdroje
- Klíčová slova
- Multifunctional devices, cancer detection, graphene, incident angle, metamaterials THz absorber, polarization angle, vanadium dioxide,
- Publikační typ
- časopisecké články MeSH
This paper proposes a switchable and tunable terahertz metamaterial absorber utilizing a graphene-VO2 layered structure. The design employs reconfigurable seven-layer architecture from top to bottom as (topaz/VO2/topaz/Si/graphene/topaz/Au). CST software 2018 was used to simulate the absorption properties of terahertz waves (0-14 THz). The proposed metamaterial exhibits dual functionalities depending on the VO2 phase state. In the insulating state, the design achieves a tri-band response with distinct peaks at 3.12 THz, 5.65 THz, and 7.24 THz. Conversely, the VO2's conducting state enables ultra-broadband absorption from 2.52 THz to 11.62 THz. Extensive simulations were conducted to demonstrate the tunability of absorption: Simulated absorption spectra were obtained for broadband and multi-band states. Electric field distributions were analyzed at resonance frequencies for both conducting and insulating states. The impact was studied of VO2 conductivity, loss tangent, and graphene's chemical potential on absorption. The influence was investigated of topaz layer thickness on the absorption spectrum. Absorption behavior was examined of VO2 under different states and layer configurations. Variations were analyzed of absorption spectra with frequency, polarization angle, and incident angle. The proposed design used for the detection of cervical and breast cancer detection and the sensitivity is about is 0.2489 THz/RIU. The proposed design holds significant promise for real-world applications due to its reconfigurability. This tunability allows for tailoring absorption properties across a broad terahertz range, making it suitable for advanced devices like filters, modulators, and perfect absorbers.
Zobrazit více v PubMed
Takida Y., Nawata K., Minamide H. Security screening system based on terahertz-wave spectroscopic gas detection. Opt. Express. 2021;29:2529–2537. doi: 10.1364/OE.413201. PubMed DOI
Xu K., Arbab M.H. Terahertz polarimetric imaging of biological tissue: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering. Biomed. Opt. Express. 2024;15:2328–2342. doi: 10.1364/BOE.515623. PubMed DOI PMC
Jiang W., Zhou Q., He J., Habibi M.A., Melnyk S., El-Absi M., Han B., Di Renzo M., Schotten H.D., Luo F.-L., et al. Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review. IEEE Commun. Surv. Tutor. 2024;26:2326–2381. doi: 10.1109/COMST.2024.3385908. DOI
Hamza M.N., Abdulkarim Y.I., Saeed S.R., Hamad M.A., Muhammadsharif F.F., Bakır M., Appasani B., Haxha S. A Very Compact Metamaterial-Based Triple-Band Sensor in Terahertz Spectrum as a Perfect Absorber for Human Blood Cancer Diagnostics. Plasmonics. 2024:1–14. doi: 10.1007/s11468-024-02291-8. DOI
Mukherjee P., Banerjee S., Pahadsingh S., Bhowmik W., Appasani B., Abdulkarim Y.I. Refractive index sensor based on terahertz epsilonnegative metamaterial absorber for cancerous cell detection. J. Optoelectron. Adv. Mater. 2023;25:128–135.
Hamza M.N., Abdulkarim Y.I., Saeed S.R., Altıntaş O., Mahmud R.H., Appasani B., Ravariu C. Low-cost antenna-array-based metamaterials for non-invasive early-stage breast tumor detection in the human body. Biosensors. 2022;12:828. doi: 10.3390/bios12100828. PubMed DOI PMC
Ali S.H., Abdulkarim Y.I., Mohammed H.O. Flexible wearable antenna incorporating metasurface for WBAN applications. Passer J. Basic Appl. Sci. 2024;6:8–15. doi: 10.24271/psr.2023.411415.1369. DOI
Wu R., Dong J., Wang M., Abdulkarim Y.I. Wearable antenna sensor based on bandwidth-enhanced metasurface for elderly fall assistance detection. Measurement. 2023;233:113753. doi: 10.1016/j.measurement.2023.113753. DOI
Hevin A.M., Abdulkarim Y.I., Abdoul P.A., Dong J. Textile and metasurface integrated wide-band wearable antenna for wireless body area network applications. AEU-Int. J. Electron. Commun. 2023;169:154759.
Zerrad F.-E., Taouzari M., Makroum E.M., Islam M.T., Özkaner V., Abdulkarim Y.I., Karaaslan M. Multilayered metamaterials array antenna based on artificial magnetic conductor’s structure for the application diagnostic breast cancer detection with microwave imaging. Med. Eng. Phys. 2022;69:103737. doi: 10.1016/j.medengphy.2021.103737. PubMed DOI
Das P., Madhav B.T.P. Convoluted I-Shaped Metamaterial on Rigid and Flexible Substrates for Electromagnetic Cloaking. J. Electron. Mater. 2024;53:3199–3210. doi: 10.1007/s11664-024-11050-8. DOI
Zhang Q., Hu G., Rudykh S. Magnetoactive asymmetric mechanical metamaterial for tunable elastic cloaking. Int. J. Solids Struct. 2024;289:112648. doi: 10.1016/j.ijsolstr.2024.112648. DOI
Banerjee S., Dutta P., Basu S., Mishra S.K., Appasani B., Nanda S., Abdulkarim Y.I., Muhammadsharif F.F., Dong J., Jha A.V., et al. A new design of a terahertz metamaterial absorber for gas sensing applications. Symmetry. 2022;15:24. doi: 10.3390/sym15010024. DOI
Abdulkarim Y.I., Dalgaç Ş., Alkurt F.O., Muhammadsharif F.F., Awl H.N., Saeed S.R., Altıntaş O., Li C., Bakır M., Karaaslan M., et al. Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration. J. Mater. Sci. Mater. Electron. 2021;32:24258–24272. doi: 10.1007/s10854-021-06891-6. DOI
Abdulkarim Y.I., Alkurt F.Ö., Bakır M., Awl H.N., Muhammadsharif F.F., Karaaslan M., Appasani B., Al-Badri K.S.L., Zhu Y., Dong J. A polarization-insensitive triple-band perfect metamaterial absorber incorporating ZnSe for terahertz sensing. J. Opt. 2022;24:105102. doi: 10.1088/2040-8986/ac8889. DOI
Mazare A.G., Abdulk Y.I., Karim A.S., Bakır M., Taouzari M., Muhammadsharif F.F., Appasani B., Altıntaş O., Karaaslan M., Bizon N. Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry. Materials. 2022;15:6364. doi: 10.3390/ma15186364. PubMed DOI PMC
Ali H.O., Al-Hindawi A.M., Abdulkarim Y.I., Karaaslan M. New compact six-band metamaterial absorber based on Closed Circular Ring Resonator (CCRR) for Radar applications. Opt. Commun. 2022;503:127457. doi: 10.1016/j.optcom.2021.127457. DOI
Liu M., Plum E., Li H., Li S., Xu Q., Zhang X., Zhang C., Zou C., Jin B., Han J., et al. Temperature-Controlled Optical Activity and Negative Refractive Index. Adv. Funct. Mater. 2021;31:2010249. doi: 10.1002/adfm.202010249. DOI
Liu M., Plum E., Li H., Duan S., Li S., Xu Q., Zhang X., Zhang C., Zou C., Jin B., et al. Switchable Chiral Mirrors. Adv. Opt. Mater. 2020;8:2000247. doi: 10.1002/adom.202000247. DOI
Liu M., Xu Q., Chen X., Plum E., Li H., Zhang X., Zhang C., Zou C., Han J., Zhang W. Temperature-Controlled Asymmetric Transmission of Electromagnetic Waves. Sci. Rep. 2019;9:4097. doi: 10.1038/s41598-019-40791-4. PubMed DOI PMC
Rengasamy S., Natarajan R., Srinivasan V.K. Miniaturized Multi-Spectral Perfect Metamaterial Absorber for THz Sensing, Imaging and Spectroscopic Applications. Plasmonics. 2023;18:643–651. doi: 10.1007/s11468-023-01793-1. DOI
Rani N., Bohre A.K., Bhattacharya A. VO2 based multi-functional ultra-wideband terahertz meta-absorber for EMI shielding application. Smart Sci. 2023;12:484–494. doi: 10.1080/23080477.2024.2358671. DOI
Hao S., Wang J., Fanayev I., Khakhomov S., Li J. Hyperbolic metamaterial structures based on graphene for THz super-resolution imaging applications. Opt. Mater. Express. 2023;13:247–262. doi: 10.1364/OME.477107. DOI
Ma S., Wen S., Mi X., Zhao H. Terahertz optical modulator and highly sensitive terahertz sensor governed by bound states in the continuum in graphene-dielectric hybrid metamaterial. Opt. Commun. 2023;536:129398. doi: 10.1016/j.optcom.2023.129398. DOI
Zamzam P., Rezaei P., Abdulkarim Y.I., Daraei O.M. Graphene-based polarization-insensitive metamaterials with perfect absorption for terahertz biosensing applications: Analytical approach. Opt. Laser Technol. 2023;163:109444. doi: 10.1016/j.optlastec.2023.109444. DOI
Zhu H., Zhang Y., Ye L., Li Y., Xu Y., Xu R., Xu H., Xu M. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption. Opt. Express. 2020;28:38626. doi: 10.1364/OE.414039. PubMed DOI
Liu Y., Huang R., Ouyang Z. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene. Opt. Express. 2021;29:20839–20850. doi: 10.1364/OE.428790. PubMed DOI
Liu M., Wei R., Taplin J., Zhang W. Terahertz Metasurfaces Exploiting the Phase Transition of Vanadium Dioxide. Materials. 2023;16:7106. doi: 10.3390/ma16227106. PubMed DOI PMC
Ri K.-J., Ri C.-H. Tunable dual-broadband terahertz metamaterial absorber based on a simple design of slotted VO2 resonator. Opt. Commun. 2023;536:129377. doi: 10.1016/j.optcom.2023.129377. DOI
Wang T., Zhang Y., Zhang H., Cao M. Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial. Opt. Mater. Express. 2020;10:369–386. doi: 10.1364/OME.383008. DOI
Song C., Wang J., Zhang B., Qu Z., Jing H., Kang J., Hao J., Duan J. Dual-band/ultra-broadband switchable terahertz metamaterial absorber based on vanadium dioxide and graphene. Opt. Commun. 2023;530:129027. doi: 10.1016/j.optcom.2022.129027. DOI
Zhang P., Chen G., Hou Z., Zhang Y., Shen J., Li C., Zhao M., Gao Z., Li Z., Tang T. Ultra-Broadband Tunable Terahertz Metamaterial Absorber Based on Double-Layer Vanadium Dioxide Square Ring Arrays. Micromachines. 2022;13:669. doi: 10.3390/mi13050669. PubMed DOI PMC
Zhuo S., Liu Z., Zhou F., Qin Y., Luo X., Ji C., Yang G., Yang R., Xie Y. THz broadband and dual-channel perfect absorbers based on patterned graphene and vanadium dioxide metamaterials. Opt. Express. 2022;30:47647–47658. doi: 10.1364/OE.476858. PubMed DOI
Hu D., Jia N., Zhu Q. Switchable dual-broadband to single-broadband terahertz absorber based on hybrid graphene and vanadium dioxide metamaterials. Phys. Scr. 2023;98:065946. doi: 10.1088/1402-4896/acd3bc. DOI
Hossain A.B.M.A., Khaleque A. Multi-functional and actively tunable terahertz metamaterial absorber based on graphene and vanadium dioxide composite structure. Opt. Contin. 2024;3:921–934. doi: 10.1364/OPTCON.519783. DOI
Jabin A., Ahmed K., Rana J., Paul B.K., Islam M., Vigneswaran D., Uddin M.S. Surface Plasmon Resonance Based Titanium Coated Biosensor for Cancer Cell Detection. IEEE Photonics J. 2019;11:3700110. doi: 10.1109/JPHOT.2019.2924825. DOI
Ding Z., Su W., Wu H., Li W., Zhou Y., Ye L., Yao H. Ultra-broadband tunable terahertz absorber based on graphene metasurface with multi-square rings. Mater. Sci. Semicond. Process. 2023;163:107557. doi: 10.1016/j.mssp.2023.107557. DOI
Zhou Z., Song Z. Terahertz mode switching of spin reflection and vortex beams based on graphene metasurfaces. Opt. Laser Technol. 2022;153:108278. doi: 10.1016/j.optlastec.2022.108278. DOI
Zhang Y., Li T., Chen Q., Zhang H., O’Hara J.F., Abele E., Taylor A.J., Chen H.-T., Azad A.K. Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies. Sci. Rep. 2015;5:18463. doi: 10.1038/srep18463. PubMed DOI PMC
Wang D., Cui X., Liu D., Zou X., Wang G.-M., Zheng B., Cai T. Multi-Characteristic Integrated Ultra-Wideband Frequency Selective Rasorber. Prog. Electromagn. Res. 2024;179:49–59. doi: 10.2528/PIER23060602. DOI
Liu B., Peng Y., Hao Y., Zhu Y., Chang S., Zhuang S. Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface. PhotoniX. 2024;5:10. doi: 10.1186/s43074-024-00129-4. DOI
Seifert T., Jaiswal S., Martens U., Hannegan J., Braun L., Maldonado P., Freimuth F., Kronenberg A., Henrizi J., Radu I., et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics. 2016;10:483–488. doi: 10.1038/nphoton.2016.91. DOI
Kampfrath T., Battiato M., Maldonado P., Eilers G., Nötzold J., Mährlein S., Zbarsky V., Freimuth F., Mokrousov Y., Blügel S., et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 2013;8:256–260. doi: 10.1038/nnano.2013.43. PubMed DOI
Jin Z., Tkach A., Casper F., Spetter V., Grimm H., Thomas A., Kampfrath T., Bonn M., Kläui M., Turchinovich D. Accessing the fundamentals of magnetotransport in metals with terahertz probes. Nat. Phys. 2015;11:761–766. doi: 10.1038/nphys3384. DOI
Battiato M., Carva K., Oppeneer P.M. Superdiffusive spin transport as a mechanism of ultrafast demagnetization. Phys. Rev. Lett. 2010;105:027203. doi: 10.1103/PhysRevLett.105.027203. PubMed DOI
Yao J., Ou J.-Y., Savinov V., Chen M.K., Kuo H.Y., Zheludev N.I., Tsai D.P. Plasmonic anapole metamaterial for refractive index sensing. PhotoniX. 2022;3:23. doi: 10.1186/s43074-022-00069-x. DOI
Beliaev L.Y., Lavrinenko A.V., Takayama O. Alternative Plasmonic Materials for Biochemical Sensing: A Review. Prog. Electromagn. Res. 2024;180:25–53. doi: 10.2528/PIER24080104. DOI