Polycystic Kidney Disease in Children: The Current Status and the Next Horizon

. 2025 Sep ; 86 (3) : 383-392. [epub] 20250318

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40113156

Grantová podpora
R01 FD008225 FDA HHS - United States
K12 HD001399 NICHD NIH HHS - United States
U54 DK126087 NIDDK NIH HHS - United States
R03 DK127132 NIDDK NIH HHS - United States
R01 DK114425 NIDDK NIH HHS - United States

Odkazy

PubMed 40113156
PubMed Central PMC12476570
DOI 10.1053/j.ajkd.2025.01.022
PII: S0272-6386(25)00772-3
Knihovny.cz E-zdroje

Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are inherited disorders that share many features such as kidney cysts, hypertension, urinary concentrating defects, and progressive chronic kidney disease. The underlying pathogenic mechanisms for both include cilia dysfunction and dysregulated intracellular signaling. ADPKD has been traditionally regarded as an adult-onset disease whereas ARPKD has been classically described as an infantile or childhood condition. However, clinicians must recognize that both disorders can present across all age groups, ranging from fetal life and infancy to childhood and adolescence as well as adulthood. Here we highlight the points of overlap and distinct features for these disorders with respect to pathogenesis, diagnostic modalities (radiological and genetic), clinical assessment, and early therapeutic management. In particular, we consider key issues at 2 critical points for transition of care: fetal life to infancy and adolescence to adulthood. These time points are poorly covered in the extant literature. Therefore, we recommend guiding principles for transitions of clinical care at these critical junctures in the life span. Although there is no cure for polycystic kidney disease (PKD), recent insights into pathogenic mechanisms have identified promising therapeutic targets that are currently being evaluated in a growing portfolio of clinical trials. We summarize the key findings from these largely adult-based trials and discuss the implications for designing child-focused studies. Finally, we look forward to the next horizon for childhood PKD, highlighting gaps in our current knowledge and discussing future directions and strategies to attenuate the full burden of disease for children affected with PKD.

Zobrazit více v PubMed

Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. Dec 6 2018;4(1):50. doi: 10.1038/s41572-018-0047-y PubMed DOI PMC

Hanna C, Iliuta IA, Besse W, Mekahli D, Chebib FT. Cystic Kidney Diseases in Children and Adults: Differences and Gaps in Clinical Management. Semin Nephrol. Jul 2023;43(4):151434. doi: 10.1016/j.semnephrol.2023.151434 PubMed DOI

Burgmaier K, Broekaert IJ, Liebau MC. Autosomal Recessive Polycystic Kidney Disease: Diagnosis, Prognosis, and Management. Adv Kidney Dis Health. Sep 2023;30(5):468–476. doi: 10.1053/j.akdh.2023.01.005 PubMed DOI

Lasagni A, Cadamuro M, Morana G, Fabris L, Strazzabosco M. Fibrocystic liver disease: novel concepts and translational perspectives. Transl Gastroenterol Hepatol. 2021;6:26. doi: 10.21037/tgh-2020-04 PubMed DOI PMC

Marlais M, Cuthell O, Langan D, Dudley J, Sinha MD, Winyard PJ. Hypertension in autosomal dominant polycystic kidney disease: a meta-analysis. Arch Dis Child. Dec 2016;101(12):1142–1147. doi: 10.1136/archdischild-2015-310221 PubMed DOI

Walker EYX, Marlais M. Should we screen for intracranial aneurysms in children with autosomal dominant polycystic kidney disease? Pediatr Nephrol. Jan 2023;38(1):77–85. doi: 10.1007/s00467-022-05432-5 PubMed DOI PMC

Gabow PA, Johnson AM, Kaehny WD, Manco-Johnson ML, Duley IT, Everson GT. Risk factors for the development of hepatic cysts in autosomal dominant polycystic kidney disease. Hepatology. Jun 1990;11(6):1033–7. doi: 10.1002/hep.1840110619 PubMed DOI

Nicolau C, Torra R, Bianchi L, et al. Abdominal sonographic study of autosomal dominant polycystic kidney disease. J Clin Ultrasound. Jul-Aug 2000;28(6):277–82. doi: 10.1002/1097-0096(200007/08)28:6<277::aid-jcu2>3.0.co;2-l PubMed DOI

Burgmaier K, Kilian S, Bammens B, et al. Clinical courses and complications of young adults with Autosomal Recessive Polycystic Kidney Disease (ARPKD). Sci Rep. May 28 2019;9(1):7919. doi: 10.1038/s41598-019-43488-w PubMed DOI PMC

Adeva M, El-Youssef M, Rossetti S, et al. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine (Baltimore). Jan 2006;85(1):1–21. doi: 10.1097/01.md.0000200165.90373.9a PubMed DOI

Nowak KL, Cadnapaphornchai MA, Chonchol MB, Schrier RW, Gitomer B. Long-Term Outcomes in Patients with Very-Early Onset Autosomal Dominant Polycystic Kidney Disease. Am J Nephrol. 2016;44(3):171–8. doi: 10.1159/000448695 PubMed DOI PMC

Selistre L, de Souza V, Ranchin B, Hadj-Aissa A, Cochat P, Dubourg L. Early renal abnormalities in children with postnatally diagnosed autosomal dominant polycystic kidney disease. Pediatr Nephrol. Sep 2012;27(9):1589–93. doi: 10.1007/s00467-012-2192-y PubMed DOI

O’Brien K, Font-Montgomery E, Lukose L, et al. Congenital hepatic fibrosis and portal hypertension in autosomal dominant polycystic kidney disease. J Pediatr Gastroenterol Nutr. Jan 2012;54(1):83–9. doi: 10.1097/MPG.0b013e318228330c PubMed DOI PMC

Gulati A, Dahl NK, Hartung EA, et al. Hypomorphic PKD1 Alleles Impact Disease Variability in Autosomal Dominant Polycystic Kidney Disease. Kidney360. Mar 1 2023;4(3):387–392. doi: 10.34067/KID.0000000000000064 PubMed DOI PMC

Seeman T, Blahova K, Fencl F, et al. Kidney concentrating capacity in children with autosomal recessive polycystic kidney disease is linked to glomerular filtration and hypertension. Pediatr Nephrol. Jul 2023;38(7):2093–2100. doi: 10.1007/s00467-022-05834-5 PubMed DOI PMC

Seeman T, Dusek J, Vondrak K, et al. Renal concentrating capacity is linked to blood pressure in children with autosomal dominant polycystic kidney disease. Physiol Res. 2004;53(6):629–34. PubMed

Massella L, Mekahli D, Paripovic D, et al. Prevalence of Hypertension in Children with Early-Stage ADPKD. Clin J Am Soc Nephrol. Jun 7 2018;13(6):874–883. doi: 10.2215/CJN.11401017 PubMed DOI PMC

Lucchetti L, Chinali M, Emma F, Massella L. Autosomal dominant and autosomal recessive polycystic kidney disease: hypertension and secondary cardiovascular effect in children. Front Mol Biosci. 2023;10:1112727. doi: 10.3389/fmolb.2023.1112727 PubMed DOI PMC

Burgmaier K, Ariceta G, Bald M, et al. Severe neurological outcomes after very early bilateral nephrectomies in patients with autosomal recessive polycystic kidney disease (ARPKD). Sci Rep. Sep 29 2020;10(1):16025. doi: 10.1038/s41598-020-71956-1 PubMed DOI PMC

Gimpel C, Bergmann C, Bockenhauer D, et al. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol. Nov 2019;15(11):713–726. doi: 10.1038/s41581-019-0155-2 PubMed DOI PMC

Halawi AA, Burgmaier K, Buescher AK, et al. Clinical Characteristics and Courses of Patients With Autosomal Recessive Polycystic Kidney Disease-Mimicking Phenocopies. Kidney Int Rep. Jul 2023;8(7):1449–1454. doi: 10.1016/j.ekir.2023.04.006 PubMed DOI PMC

Cornec-Le Gall E, Torres VE, Harris PC. Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases. J Am Soc Nephrol. Jan 2018;29(1):13–23. doi: 10.1681/ASN.2017050483 PubMed DOI PMC

Hateboer N, v Dijk MA, Bogdanova N, et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet. Jan 9 1999;353(9147):103–7. doi: 10.1016/s0140-6736(98)03495-3 PubMed DOI

Cornec-Le Gall E, Audrezet MP, Chen JM, et al. Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol. May 2013;24(6):1006–13. doi: 10.1681/ASN.2012070650 PubMed DOI PMC

Lavu S, Vaughan LE, Senum SR, et al. The value of genotypic and imaging information to predict functional and structural outcomes in ADPKD. JCI Insight. Aug 6 2020;5(15)doi: 10.1172/jci.insight.138724 PubMed DOI PMC

Lanktree MB, Guiard E, Akbari P, et al. Patients with Protein-Truncating PKD1 Mutations and Mild ADPKD. Clin J Am Soc Nephrol. Mar 8 2021;16(3):374–383. doi: 10.2215/CJN.11100720 PubMed DOI PMC

Porath B, Gainullin VG, Cornec-Le Gall E, et al. Mutations in GANAB, Encoding the Glucosidase IIalpha Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am J Hum Genet. Jun 2 2016;98(6):1193–1207. doi: 10.1016/j.ajhg.2016.05.004 PubMed DOI PMC

Cornec-Le Gall E, Olson RJ, Besse W, et al. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. Am J Hum Genet. May 3 2018;102(5):832–844. doi: 10.1016/j.ajhg.2018.03.013 PubMed DOI PMC

Breysem L, De Keyzer F, Schellekens P, et al. Risk Severity Model for Pediatric Autosomal Dominant Polycystic Kidney Disease Using 3D Ultrasound Volumetry. Clin J Am Soc Nephrol. May 1 2023;18(5):581–591. doi: 10.2215/CJN.0000000000000122 PubMed DOI PMC

Claus LR, Chen C, Stallworth J, et al. Certain heterozygous variants in the kinase domain of the serine/threonine kinase NEK8 can cause an autosomal dominant form of polycystic kidney disease. Kidney Int. Nov 2023;104(5):995–1007. doi: 10.1016/j.kint.2023.07.021 PubMed DOI PMC

Seeman T, Sulakova T, Bosakova A, Indrakova J, Grecmalova D. The First Pediatric Case of an IFT140 Heterozygous Deletion Causing Autosomal Dominant Polycystic Kidney Disease: Case Report. Case Rep Nephrol Dial. Jan-Dec 2024;14(1):104–109. doi: 10.1159/000539176 PubMed DOI PMC

Gunay-Aygun M, Turkbey BI, Bryant J, et al. Hepatorenal findings in obligate heterozygotes for autosomal recessive polycystic kidney disease. Mol Genet Metab. Dec 2011;104(4):677–81. doi: 10.1016/j.ymgme.2011.09.001 PubMed DOI PMC

Hanna C, Iliuta IA, Besse W, Mekahli D, Chebib FT. Cystic Kidney Diseases in Children and Adults: Differences and Gaps in Clinical Management. Semin Nephrol. Nov 22 2023:151434. doi: 10.1016/j.semnephrol.2023.151434 PubMed DOI

Ward CJ, Hogan MC, Rossetti S, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. Mar 2002;30(3):259–69. doi: 10.1038/ng833 PubMed DOI

Onuchic LF, Furu L, Nagasawa Y, et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet. May 2002;70(5):1305–17. doi: 10.1086/340448 PubMed DOI PMC

Burgmaier K, Brinker L, Erger F, et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int. Sep 2021;100(3):650–659. doi: 10.1016/j.kint.2021.04.019 PubMed DOI

Lu H, Galeano MCR, Ott E, et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet. Jul 2017;49(7):1025–1034. doi: 10.1038/ng.3871 PubMed DOI PMC

Yang C, Harafuji N, O’Connor AK, et al. Cystin genetic variants cause autosomal recessive polycystic kidney disease associated with altered Myc expression. Sci Rep. Sep 14 2021;11(1):18274. doi: 10.1038/s41598-021-97046-4 PubMed DOI PMC

Vujic M, Heyer CM, Ars E, et al. Incompletely penetrant PKD1 alleles mimic the renal manifestations of ARPKD. J Am Soc Nephrol. Jul 2010;21(7):1097–102. doi: 10.1681/ASN.2009101070 PubMed DOI PMC

Gimpel C, Avni FE, Bergmann C, et al. Perinatal Diagnosis, Management, and Follow-up of Cystic Renal Diseases: A Clinical Practice Recommendation With Systematic Literature Reviews. JAMA Pediatr. Jan 1 2018;172(1):74–86. doi: 10.1001/jamapediatrics.2017.3938 PubMed DOI

Thompson WS, Babayev SN, McGowan ML, et al. State of the Science and Ethical Considerations for Preimplantation Genetic Testing for Monogenic Cystic Kidney Diseases and Ciliopathies. J Am Soc Nephrol. Oct 26 2023;doi: 10.1681/ASN.0000000000000253 PubMed DOI PMC

McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the Kidney: A Review. Am J Kidney Dis. Mar 2021;77(3):410–419. doi: 10.1053/j.ajkd.2020.08.012 PubMed DOI

Deng L, Liu Y, Yuan M, Meng M, Yang Y, Sun L. Prenatal diagnosis and outcome of fetal hyperechogenic kidneys in the era of antenatal next-generation sequencing. Clin Chim Acta. Mar 1 2022;528:16–28. doi: 10.1016/j.cca.2022.01.012 PubMed DOI

Yulia A, Napolitano R, Aiman A, et al. Perinatal and infant outcome of fetuses with prenatally diagnosed hyperechogenic kidneys. Ultrasound Obstet Gynecol. Jun 2021;57(6):953–958. doi: 10.1002/uog.22121 PubMed DOI

Al Naimi A, Baumuller JE, Spahn S, Bahlmann F. Prenatal diagnosis of multicystic dysplastic kidney disease in the second trimester screening. Prenat Diagn. Aug 2013;33(8):726–31. doi: 10.1002/pd.4112 PubMed DOI

Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C, Group ES. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet. Apr-Jun 2005;48(2):131–44. doi: 10.1016/j.ejmg.2005.02.003 PubMed DOI

Hertenstein CB, Miller KA, Estroff JA, Blakemore KJ. Fetal hyperechoic kidneys: Diagnostic considerations and genetic testing strategies. Prenat Diagn. Feb 2024;44(2):222–236. doi: 10.1002/pd.6517 PubMed DOI

Verscaj CP, Velez-Bartolomei F, Bodle E, et al. Characterization of the prenatal renal phenotype associated with 17q12, HNF1B, microdeletions. Prenat Diagn. Feb 2024;44(2):237–246. doi: 10.1002/pd.6424 PubMed DOI

Koumbaris G, Achilleos A, Nicolaou M, et al. Targeted capture enrichment followed by NGS: development and validation of a single comprehensive NIPT for chromosomal aneuploidies, microdeletion syndromes and monogenic diseases. Mol Cytogenet. 2019;12:48. doi: 10.1186/s13039-019-0459-8 PubMed DOI PMC

Luong TLA, Nguyen DA, Dao TT, et al. Combined Cell-Free DNA Screening for Aneuploidies and Selected Single-Gene Disorders for Pregnancies With Sonographically Detected Fetal Anomalies: Detection Rate and Residual Risk. Prenat Diagn. Dec 11 2024;doi: 10.1002/pd.6720 PubMed DOI

Beall MH, van den Wijngaard JP, van Gemert MJ, Ross MG. Amniotic fluid water dynamics. Placenta. Aug-Sep 2007;28(8–9):816–23. doi: 10.1016/j.placenta.2006.11.009 PubMed DOI

Wu CS, Chen CM, Chou HC. Pulmonary Hypoplasia Induced by Oligohydramnios: Findings from Animal Models and a Population-Based Study. Pediatr Neonatol. Feb 2017;58(1):3–7. doi: 10.1016/j.pedneo.2016.04.001 PubMed DOI

Miller JL, Baschat AA, Atkinson MA. Fetal Therapy for Renal Anhydramnios. Clin Perinatol. Dec 2022;49(4):849–862. doi: 10.1016/j.clp.2022.08.001 PubMed DOI

Nishi K, Ozawa K, Kamei K, et al. Long-term Outcomes, Including Fetal and Neonatal Prognosis, of Renal Oligohydramnios: A Retrospective Study over 22 Years. J Pediatr. Jun 14 2024:114151. doi: 10.1016/j.jpeds.2024.114151 PubMed DOI

Burgmaier K, Kunzmann K, Ariceta G, et al. Risk Factors for Early Dialysis Dependency in Autosomal Recessive Polycystic Kidney Disease. J Pediatr. Aug 2018;199:22–28 e6. doi: 10.1016/j.jpeds.2018.03.052 PubMed DOI

Sanderson KR, Shih WV, Warady BA, Claes DJ. Severe Fetal CAKUT (Congenital Anomalies of the Kidneys and Urinary Tract), Prenatal Consultations, and Initiation of Neonatal Dialysis. Am J Perinatol. Jun 10 2022;doi: 10.1055/a-1850-4429 PubMed DOI PMC

Walker EYX, Winyard P, Marlais M. Congenital anomalies of the kidney and urinary tract: antenatal diagnosis, management and counselling of families. Pediatr Nephrol. Apr 2024;39(4):1065–1075. doi: 10.1007/s00467-023-06137-z PubMed DOI PMC

Fisher J Termination of pregnancy for fetal abnormality: the perspective of a parent support organisation. Reprod Health Matters. May 2008;16(31 Suppl):57–65. doi: 10.1016/S0968-8080(08)31382-2 PubMed DOI

Marokakis S, Kasparian NA, Kennedy SE. Prenatal counselling for congenital anomalies: a systematic review. Prenat Diagn. Jul 2016;36(7):662–71. doi: 10.1002/pd.4836 PubMed DOI

Watson AR. Non-compliance and transfer from paediatric to adult transplant unit. Pediatr Nephrol. Jun 2000;14(6):469–72. doi: 10.1007/s004670050794 PubMed DOI

Dobbels F, Ruppar T, De Geest S, Decorte A, Van Damme-Lombaerts R, Fine RN. Adherence to the immunosuppressive regimen in pediatric kidney transplant recipients: a systematic review. Pediatr Transplant. Aug 2010;14(5):603–13. doi: 10.1111/j.1399-3046.2010.01299.x PubMed DOI

Watson AR, Harden P, Ferris M, Kerr PG, Mahan J, Ramzy MF. Transition from pediatric to adult renal services: a consensus statement by the International Society of Nephrology (ISN) and the International Pediatric Nephrology Association (IPNA). Pediatr Nephrol. Oct 2011;26(10):1753–7. doi: 10.1007/s00467-011-1981-z PubMed DOI

Guay-Woodford LM, Desmond RA. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics. May 2003;111(5 Pt 1):1072–80. doi: 10.1542/peds.111.5.1072 PubMed DOI

Ebner K, Feldkoetter M, Ariceta G, et al. Rationale, design and objectives of ARegPKD, a European ARPKD registry study. BMC Nephrol. Feb 18 2015;16:22. doi: 10.1186/s12882-015-0002-z PubMed DOI PMC

Klawitter J, McFann K, Pennington AT, et al. Pravastatin Therapy and Biomarker Changes in Children and Young Adults with Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol. Sep 4 2015;10(9):1534–41. doi: 10.2215/CJN.11331114 PubMed DOI PMC

Burgmaier K, Kilian S, Arbeiter K, et al. Early childhood height-adjusted total kidney volume as a risk marker of kidney survival in ARPKD. Sci Rep. Nov 4 2021;11(1):21677. doi: 10.1038/s41598-021-00523-z PubMed DOI PMC

Ajiri R, Burgmaier K, Akinci N, et al. Phenotypic Variability in Siblings With Autosomal Recessive Polycystic Kidney Disease. Kidney Int Rep. Jul 2022;7(7):1643–1652. doi: 10.1016/j.ekir.2022.04.095 PubMed DOI PMC

Dell KM, Matheson M, Hartung EA, Warady BA, Furth SL, Chronic Kidney Disease in Children S. Kidney Disease Progression in Autosomal Recessive Polycystic Kidney Disease. J Pediatr. Apr 2016;171:196–201 e1. doi: 10.1016/j.jpeds.2015.12.079 PubMed DOI PMC

Abdul Majeed N, Font-Montgomery E, Lukose L, et al. Prospective evaluation of kidney and liver disease in autosomal recessive polycystic kidney disease-congenital hepatic fibrosis. Mol Genet Metab. Sep-Oct 2020;131(1–2):267–276. doi: 10.1016/j.ymgme.2020.08.006 PubMed DOI PMC

De Rechter S, Bockenhauer D, Guay-Woodford LM, et al. ADPedKD: A Global Online Platform on the Management of Children With ADPKD. Kidney Int Rep. Sep 2019;4(9):1271–1284. doi: 10.1016/j.ekir.2019.05.015 PubMed DOI PMC

Helal I, Reed B, McFann K, et al. Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. Oct 2011;6(10):2439–43. doi: 10.2215/CJN.01010211 PubMed DOI PMC

Fick-Brosnahan GM, Tran ZV, Johnson AM, Strain JD, Gabow PA. Progression of autosomal-dominant polycystic kidney disease in children. Kidney Int. May 2001;59(5):1654–62. doi: 10.1046/j.1523-1755.2001.0590051654.x PubMed DOI

Irazabal MV, Rangel LJ, Bergstralh EJ, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. Jan 2015;26(1):160–72. doi: 10.1681/ASN.2013101138 PubMed DOI PMC

Breysem L, De Keyzer F, Schellekens P, et al. Risk Severity Model for Pediatric Autosomal Dominant Polycystic Kidney Disease Using 3D Ultrasound Volumetry. Clin J Am Soc Nephrol. Feb 17 2023;18(5):581–91. doi: 10.2215/CJN.0000000000000122 PubMed DOI PMC

MacAskill CJ, Markley M, Farr S, et al. Rapid B(1)-Insensitive MR Fingerprinting for Quantitative Kidney Imaging. Radiology. Aug 2021;300(2):380–387. doi: 10.1148/radiol.2021202302 PubMed DOI PMC

MacAskill CJ, Kretzler ME, Parsons A, et al. Multimodal Magnetic Resonance Imaging Assessments of Kidney Disease Severity in Autosomal Recessive Polycystic Kidney Disease. Kidney Int Rep. Dec 2024;9(12):3592–3595. doi: 10.1016/j.ekir.2024.09.006 PubMed DOI PMC

Yang X, Wang W, Gitomer B, Cadnapaphornchai MA, Xing F, Chonchol M. Imaging Biomarkers in Young Patients With ADPKD. Kidney Int Rep. Oct 2023;8(10):2153–2155. doi: 10.1016/j.ekir.2023.07.004 PubMed DOI PMC

Ghanem A, Borghol AH, Munairdjy Debeh FG, et al. Biomarkers of Kidney Disease Progression in ADPKD. Kidney Int Rep. Oct 2024;9(10):2860–2882. doi: 10.1016/j.ekir.2024.07.012 PubMed DOI PMC

Liebau MC, Mekahli D, Perrone R, Soyfer B, Fedeles S . Polycystic Kidney Disease Drug Development: A Conference Report. Kidney Med. Mar 2023;5(3):100596. doi: 10.1016/j.xkme.2022.100596 PubMed DOI PMC

Messchendorp AL, Meijer E, Visser FW, et al. Rapid Progression of Autosomal Dominant Polycystic Kidney Disease: Urinary Biomarkers as Predictors. Am J Nephrol. 2019;50(5):375–385. doi: 10.1159/000502999 PubMed DOI PMC

Liebau MC, Mekahli D. Translational research approaches to study pediatric polycystic kidney disease. Mol Cell Pediatr. Dec 9 2021;8(1):20. doi: 10.1186/s40348-021-00131-x PubMed DOI PMC

Torres VE, Chapman AB, Devuyst O, et al. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 Trial. Nephrol Dial Transplant. Mar 1 2018;33(3):477–489. doi: 10.1093/ndt/gfx043 PubMed DOI PMC

Gattone VH 2nd, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. Oct 2003;9(10):1323–6. doi: 10.1038/nm935 PubMed DOI

Muller RU, Messchendorp AL, Birn H, et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International. Nephrol Dial Transplant. Apr 25 2022;37(5):825–839. doi: 10.1093/ndt/gfab312 PubMed DOI PMC

Liebau MC, Hartung EA, Perrone RD. Perspectives on Drug Development in Autosomal Recessive Polycystic Kidney Disease. Clin J Am Soc Nephrol. Oct 2022;17(10):1551–1554. doi: 10.2215/CJN.04870422 PubMed DOI PMC

Podrini C, Cassina L, Boletta A. Metabolic reprogramming and the role of mitochondria in polycystic kidney disease. Cell Signal. Mar 2020;67:109495. doi: 10.1016/j.cellsig.2019.109495 PubMed DOI

Liebau MC. Is There a Functional Role of Mitochondrial Dysfunction in the Pathogenesis of ARPKD? Front Med (Lausanne). 2021;8:739534. doi: 10.3389/fmed.2021.739534 PubMed DOI PMC

Flynn JT. What Level of Blood Pressure Is Concerning in Childhood? Circ Res. Mar 4 2022;130(5):800–808. doi: 10.1161/CIRCRESAHA.121.319819 PubMed DOI

Gimpel C, Liebau MC, Schaefer F. Systematic review on outcomes used in clinical research on autosomal recessive polycystic kidney disease-are patient-centered outcomes our blind spot? Pediatr Nephrol. Dec 2021;36(12):3841–3851. doi: 10.1007/s00467-021-05192-8 PubMed DOI PMC

Nowak KL, Farmer-Bailey H, Wang W, et al. Curcumin Therapy to Treat Vascular Dysfunction in Children and Young Adults with ADPKD: A Randomized Controlled Trial. Clin J Am Soc Nephrol. Feb 2022;17(2):240–250. doi: 10.2215/CJN.08950621 PubMed DOI PMC

Cadnapaphornchai MA, McFann K, Strain JD, Masoumi A, Schrier RW. Prospective change in renal volume and function in children with ADPKD. Clin J Am Soc Nephrol. Apr 2009;4(4):820–9. doi: 10.2215/CJN.02810608 PubMed DOI PMC

Mekahli D, Guay-Woodford LM, Cadnapaphornchai MA, et al. Tolvaptan for Children and Adolescents with Autosomal Dominant Polycystic Kidney Disease: Randomized Controlled Trial. Clin J Am Soc Nephrol. Jan 1 2023;18(1):36–46. doi: 10.2215/CJN.0000000000000022 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...