Molecularly Responsive Aptamer-Functionalized Hydrogel for Continuous Plasmonic Biomonitoring
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40113339
PubMed Central
PMC11969548
DOI
10.1021/jacs.5c01718
Knihovny.cz E-zdroje
- MeSH
- aptamery nukleotidové * chemie MeSH
- biosenzitivní techniky * metody MeSH
- hydrogely * chemie MeSH
- lidé MeSH
- mikrorovnovážné techniky křemenného krystalu MeSH
- polyethylenglykoly chemie MeSH
- povrchová plasmonová rezonance * metody MeSH
- vankomycin * analýza krev MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aptamery nukleotidové * MeSH
- hydrogely * MeSH
- polyethylenglykoly MeSH
- vankomycin * MeSH
Continuous in vivo monitoring of small molecule biomarkers requires biosensors with reversibility, sensitivity in physiologically relevant ranges, and biological stability. Leveraging the real-time, label-free detection capability of surface plasmon resonance (SPR) technology, a molecularly responsive hydrogel film is introduced to enhance small molecule sensitivity. This advanced biosensing platform utilizes split-aptamer-cross-linked hydrogels (aptagels) engineered using 8-arm poly(ethylene glycol) macromers, capable of directly and reversibly detecting vancomycin. Investigation through SPR and optical waveguide mode, along with quartz crystal microbalance with dissipation (QCM-D) monitoring, reveals that the reversible formation of analyte-induced ternary molecular complexes leads to aptagel contraction and significant refractive index changes. Optimization of aptamer cross-link distribution and complementarity of split-aptamer pairs maximizes conformational changes of the aptagel, demonstrating a detection limit of 160-250 nM for vancomycin (6-9 fold improvement over monolayer counterpart) with a broad linear sensing range up to 1 mM. The aptagel maintains stability over 24 h in blood serum and 5 weeks in diluted blood plasma (mimicking interstitial fluid). This structurally responsive aptagel platform with superior stability and sensitivity offers promising avenues for continuous in vivo monitoring of small molecules.
BioMed 10 Institute Heidelberg 69120 Germany
Faculty of Biotechnology Mannheim University of Applied Sciences Mannheim 68163 Germany
FZU Institute of Physics Czech Academy of Sciences Prague 180 00 Czech Republic
LiST Life Sciences Technology Danube Private University Wiener Neustadt 2700 Austria
Zobrazit více v PubMed
Rong G.; Corrie S. R.; Clark H. A. In Vivo Biosensing: Progress and Perspectives. ACS Sens. 2017, 2 (3), 327–338. 10.1021/acssensors.6b00834. PubMed DOI PMC
Parolo C.; Idili A.; Heikenfeld J.; Plaxco K. W. Conformational-Switch Biosensors as Novel Tools to Support Continuous, Real-Time Molecular Monitoring in Lab-on-a-Chip Devices. Lab Chip 2023, 23 (5), 1339–1348. 10.1039/D2LC00716A. PubMed DOI PMC
Li X.; Xu X.; Wang K.; Chen Y.; Zhang Y.; Si Q.; Pan Z.; Jia F.; Cui X.; Wang X.; Deng X.; Zhao Y.; Shu D.; Jiang Q.; Ding B.; Wu Y.; Liu R. Fluorescence-Amplified Origami Microneedle Device for Quantitatively Monitoring Blood Glucose. Adv. Mater. 2023, 35 (29), 2208820.10.1002/adma.202208820. PubMed DOI
Kumar Das S.; Nayak K. K.; Krishnaswamy P. R.; Kumar V.; Bhat N. Review—Electrochemistry and Other Emerging Technologies for Continuous Glucose Monitoring Devices. ECS Sens. Plus 2022, 1 (3), 031601.10.1149/2754-2726/ac7abb. DOI
Flynn C. D.; Chang D.; Mahmud A.; Yousefi H.; Das J.; Riordan K. T.; Sargent E. H.; Kelley S. O. Biomolecular Sensors for Advanced Physiological Monitoring. Nat. Rev. Bioeng. 2023, 1 (8), 560–575. 10.1038/s44222-023-00067-z. PubMed DOI PMC
Lee I.; Probst D.; Klonoff D.; Sode K. Continuous Glucose Monitoring Systems - Current Status and Future Perspectives of the Flagship Technologies in Biosensor Research -. Biosens. Bioelectron. 2021, 181, 113054.10.1016/j.bios.2021.113054. PubMed DOI
Yu Z.; Jiang N.; Kazarian S. G.; Tasoglu S.; Yetisen A. K. Optical Sensors for Continuous Glucose Monitoring. Prog. Biomed. Eng. 2021, 3 (2), 022004.10.1088/2516-1091/abe6f8. DOI
Barhoum A.; Sadak O.; Ramirez I. A.; Iverson N. Stimuli-Bioresponsive Hydrogels as New Generation Materials for Implantable, Wearable, and Disposable Biosensors for Medical Diagnostics: Principles, Opportunities, and Challenges. Adv. Colloid Interface Sci. 2023, 317, 102920.10.1016/j.cis.2023.102920. PubMed DOI
Spencer K. C.; Sy J. C.; Ramadi K. B.; Graybiel A. M.; Langer R.; Cima M. J. Characterization of Mechanically Matched Hydrogel Coatings to Improve the Biocompatibility of Neural Implants. Sci. Rep. 2017, 7 (1), 1952.10.1038/s41598-017-02107-2. PubMed DOI PMC
Herrmann A.; Haag R.; Schedler U. Hydrogels and Their Role in Biosensing Applications. Adv. Healthcare Mater. 2021, 10 (11), 2100062.10.1002/adhm.202100062. PubMed DOI PMC
Zhang K.; Xue K.; Loh X. J. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021, 7 (3), 77.10.3390/gels7030077. PubMed DOI PMC
Pang Q.; Hu H.; Zhang H.; Qiao B.; Ma L. Temperature-Responsive Ionic Conductive Hydrogel for Strain and Temperature Sensors. ACS Appl. Mater. Interfaces 2022, 14 (23), 26536–26547. 10.1021/acsami.2c06952. PubMed DOI
Fleige E.; Quadir M. A.; Haag R. Stimuli-Responsive Polymeric Nanocarriers for the Controlled Transport of Active Compounds: Concepts and Applications. Adv. Drug Delivery Rev. 2012, 64 (9), 866–884. 10.1016/j.addr.2012.01.020. PubMed DOI
Tamayol A.; Akbari M.; Zilberman Y.; Comotto M.; Lesha E.; Serex L.; Bagherifard S.; Chen Y.; Fu G.; Ameri S. K.; Ruan W.; Miller E. L.; Dokmeci M. R.; Sonkusale S.; Khademhosseini A. Flexible PH-Sensing Hydrogel Fibers for Epidermal Applications. Adv. Healthcare Mater. 2016, 5 (6), 711–719. 10.1002/adhm.201500553. PubMed DOI PMC
Xu Z.; Qiao X.; Tao R.; Li Y.; Zhao S.; Cai Y.; Luo X. A Wearable Sensor Based on Multifunctional Conductive Hydrogel for Simultaneous Accurate PH and Tyrosine Monitoring in Sweat. Biosens. Bioelectron. 2023, 234, 115360.10.1016/j.bios.2023.115360. PubMed DOI
Zhou B.; Fan K.; Li T.; Luan G.; Kong L. A Biocompatible Hydrogel-Coated Fiber-Optic Probe for Monitoring PH Dynamics in Mammalian Brains in Vivo. Sens. Actuators, B 2023, 380, 133334.10.1016/j.snb.2023.133334. DOI
Du X.; Zhai J.; Li X.; Zhang Y.; Li N.; Xie X. Hydrogel-Based Optical Ion Sensors: Principles and Challenges for Point-of-Care Testing and Environmental Monitoring. ACS Sens. 2021, 6 (6), 1990–2001. 10.1021/acssensors.1c00756. PubMed DOI
Žuržul N.; Stokke B. T. DNA Aptamer Functionalized Hydrogels for Interferometric Fiber-Optic Based Continuous Monitoring of Potassium Ions. Biosensors 2021, 11 (8), 266.10.3390/bios11080266. PubMed DOI PMC
Wilson E.; Probst D.; Sode K. In Vivo Continuous Monitoring of Peptides and Proteins: Challenges and Opportunities. Applied Physics Reviews 2023, 10 (4), 041309.10.1063/5.0154637. DOI
Wu L.; Qu X. Cancer Biomarker Detection: Recent Achievements and Challenges. Chem. Soc. Rev. 2015, 44 (10), 2963–2997. 10.1039/C4CS00370E. PubMed DOI
Sim D.; Brothers M. C.; Slocik J. M.; Islam A. E.; Maruyama B.; Grigsby C. C.; Naik R. R.; Kim S. S. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Advanced Science 2022, 9 (7), 2104426.10.1002/advs.202104426. PubMed DOI PMC
Yu H.; Alkhamis O.; Canoura J.; Liu Y.; Xiao Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew. Chem., Int. Ed. 2021, 60 (31), 16800–16823. 10.1002/anie.202008663. PubMed DOI PMC
Chang D.; Wang Z.; Flynn C. D.; Mahmud A.; Labib M.; Wang H.; Geraili A.; Li X.; Zhang J.; Sargent E. H.; Kelley S. O. A High-Dimensional Microfluidic Approach for Selection of Aptamers with Programmable Binding Affinities. Nat. Chem. 2023, 15 (6), 773–780. 10.1038/s41557-023-01207-z. PubMed DOI
Abune L.; Davis B.; Wang Y. Aptamer-Functionalized Hydrogels: An Emerging Class of Biomaterials for Protein Delivery, Cell Capture, Regenerative Medicine, and Molecular Biosensing. WIREs Nanomed. Nanobiotechnol. 2021, 13 (6), e173110.1002/wnan.1731. PubMed DOI PMC
Khajouei S.; Ravan H.; Ebrahimi A. DNA Hydrogel-Empowered Biosensing. Adv. Colloid Interface Sci. 2020, 275, 102060.10.1016/j.cis.2019.102060. PubMed DOI PMC
Nishat Z. S.; Hossain T.; Islam Md. N.; Phan H.-P.; Wahab M. A.; Moni M. A.; Salomon C.; Amin M. A.; Sina A. A. I.; Hossain M. S. A.; Kaneti Y. V.; Yamauchi Y.; Masud M. K. Hydrogel Nanoarchitectonics: An Evolving Paradigm for Ultrasensitive Biosensing. Small 2022, 18 (26), 2107571.10.1002/smll.202107571. PubMed DOI
Wang Y.; Huang C.-J.; Jonas U.; Wei T.; Dostalek J.; Knoll W. Biosensor Based on Hydrogel Optical Waveguide Spectroscopy. Biosens. Bioelectron. 2010, 25 (7), 1663–1668. 10.1016/j.bios.2009.12.003. PubMed DOI
Zhang Q.; Wang Y.; Mateescu A.; Sergelen K.; Kibrom A.; Jonas U.; Wei T.; Dostalek J. Biosensor Based on Hydrogel Optical Waveguide Spectroscopy for the Detection of 17β-Estradiol. Talanta 2013, 104, 149–154. 10.1016/j.talanta.2012.11.017. PubMed DOI
Taguchi Y.; Toma K.; Iitani K.; Arakawa T.; Iwasaki Y.; Mitsubayashi K. In Vitro Performance of a Long-Range Surface Plasmon Hydrogel Aptasensor for Continuous and Real-Time Vancomycin Measurement in Human Serum. ACS Appl. Mater. Interfaces 2024, 16 (22), 28162–28171. 10.1021/acsami.4c03805. PubMed DOI
Jang K.; Westbay J. H.; Asher S. A. DNA-Crosslinked 2D Photonic Crystal Hydrogels for Detection of Adenosine Actuated by an Adenosine-Binding Aptamer. ACS Sens. 2022, 7 (6), 1648–1656. 10.1021/acssensors.1c02424. PubMed DOI
Gawel K.; Stokke B. T. Logic Swelling Response of DNA–Polymer Hybrid Hydrogel. Soft Matter 2011, 7 (10), 4615–4618. 10.1039/c1sm05221g. DOI
Kato S.; Ishiba Y.; Takinoue M.; Onoe H. Histamine-Responsive Hydrogel Biosensors Based on Aptamer Recognition and DNA-Driven Swelling Hydrogels. ACS Appl. Bio Mater. 2024, 7 (6), 4093–4101. 10.1021/acsabm.4c00423. PubMed DOI
Bae S. W.; Lee J. S.; Harms V. M.; Murphy W. L. Dynamic, Bioresponsive Hydrogels via Changes in DNA Aptamer Conformation. Macromol. Biosci. 2019, 19 (2), 1800353.10.1002/mabi.201800353. PubMed DOI PMC
Yang H.; Liu H.; Kang H.; Tan W. Engineering Target-Responsive Hydrogels Based on Aptamer–Target Interactions. J. Am. Chem. Soc. 2008, 130 (20), 6320–6321. 10.1021/ja801339w. PubMed DOI PMC
Ohira M.; Katashima T.; Naito M.; Aoki D.; Yoshikawa Y.; Iwase H.; Takata S.; Miyata K.; Chung U.; Sakai T.; Shibayama M.; Li X. Star-Polymer–DNA Gels Showing Highly Predictable and Tunable Mechanical Responses. Adv. Mater. 2022, 34 (13), 2108818.10.1002/adma.202108818. PubMed DOI
Huang X.; Nakagawa S.; Li X.; Shibayama M.; Yoshie N. A Simple and Versatile Method for the Construction of Nearly Ideal Polymer Networks. Angew. Chem., Int. Ed. 2020, 59 (24), 9646–9652. 10.1002/anie.202001271. PubMed DOI
Wu W.; Wang W.; Li J. Star Polymers: Advances in Biomedical Applications. Prog. Polym. Sci. 2015, 46, 55–85. 10.1016/j.progpolymsci.2015.02.002. DOI
Guo Z.; Chen X.; Xin J.; Wu D.; Li J.; Xu C. Effect of Molecular Weight and Arm Number on the Growth and PH-Dependent Morphology of Star Poly[2-(Dimethylamino)Ethyl Methacrylate]/Poly(Styrenesulfonate) Multilayer Films. Macromolecules 2010, 43 (21), 9087–9093. 10.1021/ma1013429. DOI
Lotocki V.; Kakkar A. Miktoarm Star Polymers: Branched Architectures in Drug Delivery. Pharmaceutics 2020, 12 (9), 827.10.3390/pharmaceutics12090827. PubMed DOI PMC
Akintayo C. O.; Creusen G.; Straub P.; Walther A. Tunable and Large-Scale Model Network StarPEG-DNA Hydrogels. Macromolecules 2021, 54 (15), 7125–7133. 10.1021/acs.macromol.1c00600. DOI
Roovers J. Concentration Dependence of the Relative Viscosity of Star Polymers. Macromolecules 1994, 27 (19), 5359–5364. 10.1021/ma00097a015. DOI
Lin C.-C.; Ki C. S.; Shih H. Thiol–Norbornene Photoclick Hydrogels for Tissue Engineering Applications. J. Appl. Polym. Sci. 2015, 132 (8), 41563.10.1002/app.41563. PubMed DOI PMC
Santa C.; Park S.; Gejt A.; Clark H. A.; Hengerer B.; Sergelen K. Real-Time Monitoring of Vancomycin Using a Split-Aptamer Surface Plasmon Resonance Biosensor. Analyst 2024, 150, 131.10.1039/D4AN01226G. PubMed DOI
Tan G.; Liu Y.; Zhou L.; Ouyang K.; Wang Z.; Yu P.; Ning C. Covalent Bonding of an Electroconductive Hydrogel to Gold-Coated Titanium Surfaces via Thiol-Ene Click Chemistry. Macromol. Mater. Eng. 2016, 301 (12), 1423–1429. 10.1002/mame.201600296. DOI
Worm J.Winspall. 2006, http://res-tec.de/downloads.html (accessed Aug 05, 2024).
Nguyen M.-D.; Osborne M. T.; Prevot G. T.; Churcher Z. R.; Johnson P. E.; Simine L.; Dauphin-Ducharme P. Truncations and in Silico Docking to Enhance the Analytical Response of Aptamer-Based Biosensors. Biosens. Bioelectron. 2024, 265, 116680.10.1016/j.bios.2024.116680. PubMed DOI
Zan G. H.; Jackman J. A.; Cho N.-J. AH Peptide-Mediated Formation of Charged Planar Lipid Bilayers. J. Phys. Chem. B 2014, 118 (13), 3616–3621. 10.1021/jp411648s. PubMed DOI
Ferhan A. R.; Jackman J. A.; Cho N.-J. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis. Anal. Chem. 2016, 88 (24), 12524–12531. 10.1021/acs.analchem.6b04303. PubMed DOI
Chamorro-Garcia A.; Ortega G.; Mariottini D.; Green J.; Ricci F.; Plaxco K. W. Switching the Aptamer Attachment Geometry Can Dramatically Alter the Signalling and Performance of Electrochemical Aptamer-Based Sensors. Chem. Commun. 2021, 57 (88), 11693–11696. 10.1039/D1CC04557A. PubMed DOI PMC
Downs A. M.; Plaxco K. W. Real-Time, In Vivo Molecular Monitoring Using Electrochemical Aptamer Based Sensors: Opportunities and Challenges. ACS Sens. 2022, 7 (10), 2823–2832. 10.1021/acssensors.2c01428. PubMed DOI PMC
Homola J.; Yee S. S.; Gauglitz G. Surface Plasmon Resonance Sensors: Review. Sens. Actuators, B 1999, 54 (1), 3–15. 10.1016/S0925-4005(98)00321-9. DOI
Horvath R.; Cottier K.; Pedersen H. C.; Ramsden J. J. Multidepth Screening of Living Cells Using Optical Waveguides. Biosens. Bioelectron. 2008, 24 (4), 799–804. 10.1016/j.bios.2008.06.059. PubMed DOI
Jackman J. A.; Rahim Ferhan A.; Cho N.-J. Nanoplasmonic Sensors for Biointerfacial Science. Chem. Soc. Rev. 2017, 46 (12), 3615–3660. 10.1039/C6CS00494F. PubMed DOI
Mateescu A.; Wang Y.; Dostalek J.; Jonas U. Thin Hydrogel Films for Optical Biosensor Applications. Membranes 2012, 2 (1), 40–69. 10.3390/membranes2010040. PubMed DOI PMC
Bonanno L. M.; DeLouise L. A. Steric Crowding Effects on Target Detection in an Affinity Biosensor. Langmuir 2007, 23 (10), 5817–5823. 10.1021/la063659c. PubMed DOI PMC
Ricci F.; Lai R. Y.; Heeger A. J.; Plaxco K. W.; Sumner J. J. Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor. Langmuir 2007, 23 (12), 6827–6834. 10.1021/la700328r. PubMed DOI PMC
Fogh J. R.; Jacobsen A.-M.; Nguyen T. T. T. N.; Rand K. D.; Olsen L. R. Investigating Surrogate Cerebrospinal Fluid Matrix Compositions for Use in Quantitative LC-MS Analysis of Therapeutic Antibodies in the Cerebrospinal Fluid. Anal. Bioanal. Chem. 2020, 412 (7), 1653–1661. 10.1007/s00216-020-02403-3. PubMed DOI PMC
Deresinski S. Vancomycin in Combination with Other Antibiotics for the Treatment of Serious Methicillin-Resistant Staphylococcus Aureus Infections. Clin. Infect. Dis. 2009, 49 (7), 1072–1079. 10.1086/605572. PubMed DOI
Wen-xu L.; Jian C. Continuous Monitoring of Adriamycin in Vivo Using Fiber Optic-Based Fluorescence Chemical Sensor. Anal. Chem. 2003, 75 (6), 1458–1462. 10.1021/ac0260894. PubMed DOI
Li S.; Dai J.; Zhu M.; Arroyo-Currás N.; Li H.; Wang Y.; Wang Q.; Lou X.; Kippin T. E.; Wang S.; Plaxco K. W.; Li H.; Xia F. Implantable Hydrogel-Protective DNA Aptamer-Based Sensor Supports Accurate, Continuous Electrochemical Analysis of Drugs at Multiple Sites in Living Rats. ACS Nano 2023, 17 (18), 18525–18538. 10.1021/acsnano.3c06520. PubMed DOI
Zhao Y.; Tong R.; Xia F.; Peng Y. Current Status of Optical Fiber Biosensor Based on Surface Plasmon Resonance. Biosens. Bioelectron. 2019, 142, 111505.10.1016/j.bios.2019.111505. PubMed DOI
Mazzotta F.; Johnson T. W.; Dahlin A. B.; Shaver J.; Oh S.-H.; Höök F. Influence of the Evanescent Field Decay Length on the Sensitivity of Plasmonic Nanodisks and Nanoholes. ACS Photonics 2015, 2 (2), 256–262. 10.1021/ph500360d. DOI
Vaisocherová-Lísalová H.; Víšová I.; Ermini M. L.; Špringer T.; Song X. C.; Mrázek J.; Lamačová J.; Scott Lynn N.; Šedivák P.; Homola J. Low-Fouling Surface Plasmon Resonance Biosensor for Multi-Step Detection of Foodborne Bacterial Pathogens in Complex Food Samples. Biosens. Bioelectron. 2016, 80, 84–90. 10.1016/j.bios.2016.01.040. PubMed DOI
Pan Z.; Dorogin J.; Lofts A.; Randhawa G.; Xu F.; Slick R.; Abraha M.; Tran C.; Lawlor M.; Hoare T. Injectable and Dynamically Crosslinked Zwitterionic Hydrogels for Anti-Fouling and Tissue Regeneration Applications. Adv. Healthcare Mater. 2024, 13 (19), 2304397.10.1002/adhm.202304397. PubMed DOI
Chan D.; Chien J.-C.; Axpe E.; Blankemeier L.; Baker S. W.; Swaminathan S.; Piunova V. A.; Zubarev D. Yu.; Maikawa C. L.; Grosskopf A. K.; Mann J. L.; Soh H. T.; Appel E. A. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. Adv. Mater. 2022, 34 (24), 2109764.10.1002/adma.202109764. PubMed DOI PMC