Molecularly Responsive Aptamer-Functionalized Hydrogel for Continuous Plasmonic Biomonitoring

. 2025 Apr 02 ; 147 (13) : 11485-11500. [epub] 20250320

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40113339

Continuous in vivo monitoring of small molecule biomarkers requires biosensors with reversibility, sensitivity in physiologically relevant ranges, and biological stability. Leveraging the real-time, label-free detection capability of surface plasmon resonance (SPR) technology, a molecularly responsive hydrogel film is introduced to enhance small molecule sensitivity. This advanced biosensing platform utilizes split-aptamer-cross-linked hydrogels (aptagels) engineered using 8-arm poly(ethylene glycol) macromers, capable of directly and reversibly detecting vancomycin. Investigation through SPR and optical waveguide mode, along with quartz crystal microbalance with dissipation (QCM-D) monitoring, reveals that the reversible formation of analyte-induced ternary molecular complexes leads to aptagel contraction and significant refractive index changes. Optimization of aptamer cross-link distribution and complementarity of split-aptamer pairs maximizes conformational changes of the aptagel, demonstrating a detection limit of 160-250 nM for vancomycin (6-9 fold improvement over monolayer counterpart) with a broad linear sensing range up to 1 mM. The aptagel maintains stability over 24 h in blood serum and 5 weeks in diluted blood plasma (mimicking interstitial fluid). This structurally responsive aptagel platform with superior stability and sensitivity offers promising avenues for continuous in vivo monitoring of small molecules.

Zobrazit více v PubMed

Rong G.; Corrie S. R.; Clark H. A. In Vivo Biosensing: Progress and Perspectives. ACS Sens. 2017, 2 (3), 327–338. 10.1021/acssensors.6b00834. PubMed DOI PMC

Parolo C.; Idili A.; Heikenfeld J.; Plaxco K. W. Conformational-Switch Biosensors as Novel Tools to Support Continuous, Real-Time Molecular Monitoring in Lab-on-a-Chip Devices. Lab Chip 2023, 23 (5), 1339–1348. 10.1039/D2LC00716A. PubMed DOI PMC

Li X.; Xu X.; Wang K.; Chen Y.; Zhang Y.; Si Q.; Pan Z.; Jia F.; Cui X.; Wang X.; Deng X.; Zhao Y.; Shu D.; Jiang Q.; Ding B.; Wu Y.; Liu R. Fluorescence-Amplified Origami Microneedle Device for Quantitatively Monitoring Blood Glucose. Adv. Mater. 2023, 35 (29), 2208820.10.1002/adma.202208820. PubMed DOI

Kumar Das S.; Nayak K. K.; Krishnaswamy P. R.; Kumar V.; Bhat N. Review—Electrochemistry and Other Emerging Technologies for Continuous Glucose Monitoring Devices. ECS Sens. Plus 2022, 1 (3), 031601.10.1149/2754-2726/ac7abb. DOI

Flynn C. D.; Chang D.; Mahmud A.; Yousefi H.; Das J.; Riordan K. T.; Sargent E. H.; Kelley S. O. Biomolecular Sensors for Advanced Physiological Monitoring. Nat. Rev. Bioeng. 2023, 1 (8), 560–575. 10.1038/s44222-023-00067-z. PubMed DOI PMC

Lee I.; Probst D.; Klonoff D.; Sode K. Continuous Glucose Monitoring Systems - Current Status and Future Perspectives of the Flagship Technologies in Biosensor Research -. Biosens. Bioelectron. 2021, 181, 113054.10.1016/j.bios.2021.113054. PubMed DOI

Yu Z.; Jiang N.; Kazarian S. G.; Tasoglu S.; Yetisen A. K. Optical Sensors for Continuous Glucose Monitoring. Prog. Biomed. Eng. 2021, 3 (2), 022004.10.1088/2516-1091/abe6f8. DOI

Barhoum A.; Sadak O.; Ramirez I. A.; Iverson N. Stimuli-Bioresponsive Hydrogels as New Generation Materials for Implantable, Wearable, and Disposable Biosensors for Medical Diagnostics: Principles, Opportunities, and Challenges. Adv. Colloid Interface Sci. 2023, 317, 102920.10.1016/j.cis.2023.102920. PubMed DOI

Spencer K. C.; Sy J. C.; Ramadi K. B.; Graybiel A. M.; Langer R.; Cima M. J. Characterization of Mechanically Matched Hydrogel Coatings to Improve the Biocompatibility of Neural Implants. Sci. Rep. 2017, 7 (1), 1952.10.1038/s41598-017-02107-2. PubMed DOI PMC

Herrmann A.; Haag R.; Schedler U. Hydrogels and Their Role in Biosensing Applications. Adv. Healthcare Mater. 2021, 10 (11), 2100062.10.1002/adhm.202100062. PubMed DOI PMC

Zhang K.; Xue K.; Loh X. J. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021, 7 (3), 77.10.3390/gels7030077. PubMed DOI PMC

Pang Q.; Hu H.; Zhang H.; Qiao B.; Ma L. Temperature-Responsive Ionic Conductive Hydrogel for Strain and Temperature Sensors. ACS Appl. Mater. Interfaces 2022, 14 (23), 26536–26547. 10.1021/acsami.2c06952. PubMed DOI

Fleige E.; Quadir M. A.; Haag R. Stimuli-Responsive Polymeric Nanocarriers for the Controlled Transport of Active Compounds: Concepts and Applications. Adv. Drug Delivery Rev. 2012, 64 (9), 866–884. 10.1016/j.addr.2012.01.020. PubMed DOI

Tamayol A.; Akbari M.; Zilberman Y.; Comotto M.; Lesha E.; Serex L.; Bagherifard S.; Chen Y.; Fu G.; Ameri S. K.; Ruan W.; Miller E. L.; Dokmeci M. R.; Sonkusale S.; Khademhosseini A. Flexible PH-Sensing Hydrogel Fibers for Epidermal Applications. Adv. Healthcare Mater. 2016, 5 (6), 711–719. 10.1002/adhm.201500553. PubMed DOI PMC

Xu Z.; Qiao X.; Tao R.; Li Y.; Zhao S.; Cai Y.; Luo X. A Wearable Sensor Based on Multifunctional Conductive Hydrogel for Simultaneous Accurate PH and Tyrosine Monitoring in Sweat. Biosens. Bioelectron. 2023, 234, 115360.10.1016/j.bios.2023.115360. PubMed DOI

Zhou B.; Fan K.; Li T.; Luan G.; Kong L. A Biocompatible Hydrogel-Coated Fiber-Optic Probe for Monitoring PH Dynamics in Mammalian Brains in Vivo. Sens. Actuators, B 2023, 380, 133334.10.1016/j.snb.2023.133334. DOI

Du X.; Zhai J.; Li X.; Zhang Y.; Li N.; Xie X. Hydrogel-Based Optical Ion Sensors: Principles and Challenges for Point-of-Care Testing and Environmental Monitoring. ACS Sens. 2021, 6 (6), 1990–2001. 10.1021/acssensors.1c00756. PubMed DOI

Žuržul N.; Stokke B. T. DNA Aptamer Functionalized Hydrogels for Interferometric Fiber-Optic Based Continuous Monitoring of Potassium Ions. Biosensors 2021, 11 (8), 266.10.3390/bios11080266. PubMed DOI PMC

Wilson E.; Probst D.; Sode K. In Vivo Continuous Monitoring of Peptides and Proteins: Challenges and Opportunities. Applied Physics Reviews 2023, 10 (4), 041309.10.1063/5.0154637. DOI

Wu L.; Qu X. Cancer Biomarker Detection: Recent Achievements and Challenges. Chem. Soc. Rev. 2015, 44 (10), 2963–2997. 10.1039/C4CS00370E. PubMed DOI

Sim D.; Brothers M. C.; Slocik J. M.; Islam A. E.; Maruyama B.; Grigsby C. C.; Naik R. R.; Kim S. S. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Advanced Science 2022, 9 (7), 2104426.10.1002/advs.202104426. PubMed DOI PMC

Yu H.; Alkhamis O.; Canoura J.; Liu Y.; Xiao Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew. Chem., Int. Ed. 2021, 60 (31), 16800–16823. 10.1002/anie.202008663. PubMed DOI PMC

Chang D.; Wang Z.; Flynn C. D.; Mahmud A.; Labib M.; Wang H.; Geraili A.; Li X.; Zhang J.; Sargent E. H.; Kelley S. O. A High-Dimensional Microfluidic Approach for Selection of Aptamers with Programmable Binding Affinities. Nat. Chem. 2023, 15 (6), 773–780. 10.1038/s41557-023-01207-z. PubMed DOI

Abune L.; Davis B.; Wang Y. Aptamer-Functionalized Hydrogels: An Emerging Class of Biomaterials for Protein Delivery, Cell Capture, Regenerative Medicine, and Molecular Biosensing. WIREs Nanomed. Nanobiotechnol. 2021, 13 (6), e173110.1002/wnan.1731. PubMed DOI PMC

Khajouei S.; Ravan H.; Ebrahimi A. DNA Hydrogel-Empowered Biosensing. Adv. Colloid Interface Sci. 2020, 275, 102060.10.1016/j.cis.2019.102060. PubMed DOI PMC

Nishat Z. S.; Hossain T.; Islam Md. N.; Phan H.-P.; Wahab M. A.; Moni M. A.; Salomon C.; Amin M. A.; Sina A. A. I.; Hossain M. S. A.; Kaneti Y. V.; Yamauchi Y.; Masud M. K. Hydrogel Nanoarchitectonics: An Evolving Paradigm for Ultrasensitive Biosensing. Small 2022, 18 (26), 2107571.10.1002/smll.202107571. PubMed DOI

Wang Y.; Huang C.-J.; Jonas U.; Wei T.; Dostalek J.; Knoll W. Biosensor Based on Hydrogel Optical Waveguide Spectroscopy. Biosens. Bioelectron. 2010, 25 (7), 1663–1668. 10.1016/j.bios.2009.12.003. PubMed DOI

Zhang Q.; Wang Y.; Mateescu A.; Sergelen K.; Kibrom A.; Jonas U.; Wei T.; Dostalek J. Biosensor Based on Hydrogel Optical Waveguide Spectroscopy for the Detection of 17β-Estradiol. Talanta 2013, 104, 149–154. 10.1016/j.talanta.2012.11.017. PubMed DOI

Taguchi Y.; Toma K.; Iitani K.; Arakawa T.; Iwasaki Y.; Mitsubayashi K. In Vitro Performance of a Long-Range Surface Plasmon Hydrogel Aptasensor for Continuous and Real-Time Vancomycin Measurement in Human Serum. ACS Appl. Mater. Interfaces 2024, 16 (22), 28162–28171. 10.1021/acsami.4c03805. PubMed DOI

Jang K.; Westbay J. H.; Asher S. A. DNA-Crosslinked 2D Photonic Crystal Hydrogels for Detection of Adenosine Actuated by an Adenosine-Binding Aptamer. ACS Sens. 2022, 7 (6), 1648–1656. 10.1021/acssensors.1c02424. PubMed DOI

Gawel K.; Stokke B. T. Logic Swelling Response of DNA–Polymer Hybrid Hydrogel. Soft Matter 2011, 7 (10), 4615–4618. 10.1039/c1sm05221g. DOI

Kato S.; Ishiba Y.; Takinoue M.; Onoe H. Histamine-Responsive Hydrogel Biosensors Based on Aptamer Recognition and DNA-Driven Swelling Hydrogels. ACS Appl. Bio Mater. 2024, 7 (6), 4093–4101. 10.1021/acsabm.4c00423. PubMed DOI

Bae S. W.; Lee J. S.; Harms V. M.; Murphy W. L. Dynamic, Bioresponsive Hydrogels via Changes in DNA Aptamer Conformation. Macromol. Biosci. 2019, 19 (2), 1800353.10.1002/mabi.201800353. PubMed DOI PMC

Yang H.; Liu H.; Kang H.; Tan W. Engineering Target-Responsive Hydrogels Based on Aptamer–Target Interactions. J. Am. Chem. Soc. 2008, 130 (20), 6320–6321. 10.1021/ja801339w. PubMed DOI PMC

Ohira M.; Katashima T.; Naito M.; Aoki D.; Yoshikawa Y.; Iwase H.; Takata S.; Miyata K.; Chung U.; Sakai T.; Shibayama M.; Li X. Star-Polymer–DNA Gels Showing Highly Predictable and Tunable Mechanical Responses. Adv. Mater. 2022, 34 (13), 2108818.10.1002/adma.202108818. PubMed DOI

Huang X.; Nakagawa S.; Li X.; Shibayama M.; Yoshie N. A Simple and Versatile Method for the Construction of Nearly Ideal Polymer Networks. Angew. Chem., Int. Ed. 2020, 59 (24), 9646–9652. 10.1002/anie.202001271. PubMed DOI

Wu W.; Wang W.; Li J. Star Polymers: Advances in Biomedical Applications. Prog. Polym. Sci. 2015, 46, 55–85. 10.1016/j.progpolymsci.2015.02.002. DOI

Guo Z.; Chen X.; Xin J.; Wu D.; Li J.; Xu C. Effect of Molecular Weight and Arm Number on the Growth and PH-Dependent Morphology of Star Poly[2-(Dimethylamino)Ethyl Methacrylate]/Poly(Styrenesulfonate) Multilayer Films. Macromolecules 2010, 43 (21), 9087–9093. 10.1021/ma1013429. DOI

Lotocki V.; Kakkar A. Miktoarm Star Polymers: Branched Architectures in Drug Delivery. Pharmaceutics 2020, 12 (9), 827.10.3390/pharmaceutics12090827. PubMed DOI PMC

Akintayo C. O.; Creusen G.; Straub P.; Walther A. Tunable and Large-Scale Model Network StarPEG-DNA Hydrogels. Macromolecules 2021, 54 (15), 7125–7133. 10.1021/acs.macromol.1c00600. DOI

Roovers J. Concentration Dependence of the Relative Viscosity of Star Polymers. Macromolecules 1994, 27 (19), 5359–5364. 10.1021/ma00097a015. DOI

Lin C.-C.; Ki C. S.; Shih H. Thiol–Norbornene Photoclick Hydrogels for Tissue Engineering Applications. J. Appl. Polym. Sci. 2015, 132 (8), 41563.10.1002/app.41563. PubMed DOI PMC

Santa C.; Park S.; Gejt A.; Clark H. A.; Hengerer B.; Sergelen K. Real-Time Monitoring of Vancomycin Using a Split-Aptamer Surface Plasmon Resonance Biosensor. Analyst 2024, 150, 131.10.1039/D4AN01226G. PubMed DOI

Tan G.; Liu Y.; Zhou L.; Ouyang K.; Wang Z.; Yu P.; Ning C. Covalent Bonding of an Electroconductive Hydrogel to Gold-Coated Titanium Surfaces via Thiol-Ene Click Chemistry. Macromol. Mater. Eng. 2016, 301 (12), 1423–1429. 10.1002/mame.201600296. DOI

Worm J.Winspall. 2006, http://res-tec.de/downloads.html (accessed Aug 05, 2024).

Nguyen M.-D.; Osborne M. T.; Prevot G. T.; Churcher Z. R.; Johnson P. E.; Simine L.; Dauphin-Ducharme P. Truncations and in Silico Docking to Enhance the Analytical Response of Aptamer-Based Biosensors. Biosens. Bioelectron. 2024, 265, 116680.10.1016/j.bios.2024.116680. PubMed DOI

Zan G. H.; Jackman J. A.; Cho N.-J. AH Peptide-Mediated Formation of Charged Planar Lipid Bilayers. J. Phys. Chem. B 2014, 118 (13), 3616–3621. 10.1021/jp411648s. PubMed DOI

Ferhan A. R.; Jackman J. A.; Cho N.-J. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis. Anal. Chem. 2016, 88 (24), 12524–12531. 10.1021/acs.analchem.6b04303. PubMed DOI

Chamorro-Garcia A.; Ortega G.; Mariottini D.; Green J.; Ricci F.; Plaxco K. W. Switching the Aptamer Attachment Geometry Can Dramatically Alter the Signalling and Performance of Electrochemical Aptamer-Based Sensors. Chem. Commun. 2021, 57 (88), 11693–11696. 10.1039/D1CC04557A. PubMed DOI PMC

Downs A. M.; Plaxco K. W. Real-Time, In Vivo Molecular Monitoring Using Electrochemical Aptamer Based Sensors: Opportunities and Challenges. ACS Sens. 2022, 7 (10), 2823–2832. 10.1021/acssensors.2c01428. PubMed DOI PMC

Homola J.; Yee S. S.; Gauglitz G. Surface Plasmon Resonance Sensors: Review. Sens. Actuators, B 1999, 54 (1), 3–15. 10.1016/S0925-4005(98)00321-9. DOI

Horvath R.; Cottier K.; Pedersen H. C.; Ramsden J. J. Multidepth Screening of Living Cells Using Optical Waveguides. Biosens. Bioelectron. 2008, 24 (4), 799–804. 10.1016/j.bios.2008.06.059. PubMed DOI

Jackman J. A.; Rahim Ferhan A.; Cho N.-J. Nanoplasmonic Sensors for Biointerfacial Science. Chem. Soc. Rev. 2017, 46 (12), 3615–3660. 10.1039/C6CS00494F. PubMed DOI

Mateescu A.; Wang Y.; Dostalek J.; Jonas U. Thin Hydrogel Films for Optical Biosensor Applications. Membranes 2012, 2 (1), 40–69. 10.3390/membranes2010040. PubMed DOI PMC

Bonanno L. M.; DeLouise L. A. Steric Crowding Effects on Target Detection in an Affinity Biosensor. Langmuir 2007, 23 (10), 5817–5823. 10.1021/la063659c. PubMed DOI PMC

Ricci F.; Lai R. Y.; Heeger A. J.; Plaxco K. W.; Sumner J. J. Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor. Langmuir 2007, 23 (12), 6827–6834. 10.1021/la700328r. PubMed DOI PMC

Fogh J. R.; Jacobsen A.-M.; Nguyen T. T. T. N.; Rand K. D.; Olsen L. R. Investigating Surrogate Cerebrospinal Fluid Matrix Compositions for Use in Quantitative LC-MS Analysis of Therapeutic Antibodies in the Cerebrospinal Fluid. Anal. Bioanal. Chem. 2020, 412 (7), 1653–1661. 10.1007/s00216-020-02403-3. PubMed DOI PMC

Deresinski S. Vancomycin in Combination with Other Antibiotics for the Treatment of Serious Methicillin-Resistant Staphylococcus Aureus Infections. Clin. Infect. Dis. 2009, 49 (7), 1072–1079. 10.1086/605572. PubMed DOI

Wen-xu L.; Jian C. Continuous Monitoring of Adriamycin in Vivo Using Fiber Optic-Based Fluorescence Chemical Sensor. Anal. Chem. 2003, 75 (6), 1458–1462. 10.1021/ac0260894. PubMed DOI

Li S.; Dai J.; Zhu M.; Arroyo-Currás N.; Li H.; Wang Y.; Wang Q.; Lou X.; Kippin T. E.; Wang S.; Plaxco K. W.; Li H.; Xia F. Implantable Hydrogel-Protective DNA Aptamer-Based Sensor Supports Accurate, Continuous Electrochemical Analysis of Drugs at Multiple Sites in Living Rats. ACS Nano 2023, 17 (18), 18525–18538. 10.1021/acsnano.3c06520. PubMed DOI

Zhao Y.; Tong R.; Xia F.; Peng Y. Current Status of Optical Fiber Biosensor Based on Surface Plasmon Resonance. Biosens. Bioelectron. 2019, 142, 111505.10.1016/j.bios.2019.111505. PubMed DOI

Mazzotta F.; Johnson T. W.; Dahlin A. B.; Shaver J.; Oh S.-H.; Höök F. Influence of the Evanescent Field Decay Length on the Sensitivity of Plasmonic Nanodisks and Nanoholes. ACS Photonics 2015, 2 (2), 256–262. 10.1021/ph500360d. DOI

Vaisocherová-Lísalová H.; Víšová I.; Ermini M. L.; Špringer T.; Song X. C.; Mrázek J.; Lamačová J.; Scott Lynn N.; Šedivák P.; Homola J. Low-Fouling Surface Plasmon Resonance Biosensor for Multi-Step Detection of Foodborne Bacterial Pathogens in Complex Food Samples. Biosens. Bioelectron. 2016, 80, 84–90. 10.1016/j.bios.2016.01.040. PubMed DOI

Pan Z.; Dorogin J.; Lofts A.; Randhawa G.; Xu F.; Slick R.; Abraha M.; Tran C.; Lawlor M.; Hoare T. Injectable and Dynamically Crosslinked Zwitterionic Hydrogels for Anti-Fouling and Tissue Regeneration Applications. Adv. Healthcare Mater. 2024, 13 (19), 2304397.10.1002/adhm.202304397. PubMed DOI

Chan D.; Chien J.-C.; Axpe E.; Blankemeier L.; Baker S. W.; Swaminathan S.; Piunova V. A.; Zubarev D. Yu.; Maikawa C. L.; Grosskopf A. K.; Mann J. L.; Soh H. T.; Appel E. A. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. Adv. Mater. 2022, 34 (24), 2109764.10.1002/adma.202109764. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...