Molecular Dynamics-Assisted Interaction Between HABT and PI3K Enzyme: Exploring Metastable States for Promising Cancer Diagnosis Applications

. 2025 Mar 30 ; 46 (8) : e70080.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40129081

Grantová podpora
Brazilian financial agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Fundação de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A Financiadora de Estudos e Projetos (Finep) and Federal University of Lavras (UFLA) (physical infrastructure and working space)
VT2019-2021 University of Hradec Kralove (Faculty of Science)

Local nonequilibrium approach has been used for many purposes when dealing with biological systems. Not only for unraveling important features of cancer development, a disease that affects the lives of many people worldwide, but also to understand drug-target interactions in a more real scenario, which can help to combat this disease. Therefore, aiming to contribute to new strategies against cancer, the present work used this approach to investigate the spectroscopy of 2-(2'-hydroxy-4'-aminophenyl)benzothiazole (HABT) when interacting with the PI3K enzyme, a widely associated target for the mentioned illness. The study consisted of evaluating the Excited State Intramolecular Proton Transfer (ESIPT) performance of HABT, in spectroscopic terms, when interacting with the PI3K enzyme in a local nonequilibrium regime. This scenario could be considered by investigating the metastable states of HABT in this system. From this, it was possible to observe that the ESIPT performance of HABT considerably differs when comparing the solution and protein environments, where 63% have appropriate geometry in the protein environment, against 97% in the aqueous environment. Thus, from an entirely theoretical methodology, the present work provides insights when modeling biological systems and contributes significantly to a better comprehension of promising probes for cancer diagnosis.

Zobrazit více v PubMed

Schrödinger E., What Is Life? The Physical Aspect of the Living Cell (Cambridge University Press, 1944).

Zhang D. and Ouyang Q., “Nonequilibrium Thermodynamics in Biochemical Systems and Its Application,” Entropy (Basel) 23 (2021): 271. PubMed PMC

Aristov V., “Biological Systems as Nonequilibrium Structures Described by Kinetic Methods,” Results in Physics 13 (2019): 102232.

Ghassemi M. and Shahidian A., Nano and Bio Heat Transfer and Fluid Flow, ed. Ghassemi M. and Shahidian A. (Academic Press, 2017), 9–30.

Ebeling W. and Sokolov I. M., Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems (World Scientific, 2005).

Hernández‐Lemus E., “Nonequilibrium Thermodynamics of Cell Signaling,” Journal of Thermodynamics 2012 (2012): 1–10.

Chan H., Oliveira A., Schofield C., Mulholland A., and Duarte F., “Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated With Drug Resistance in the SARS‐CoV‐2 Main Protease,” Journal of the American Chemical Society 3 (2023): 1767–1774. PubMed PMC

Wolf S., Amaral M., Lowinski M., et al., “Estimation of Protein–Ligand Unbinding Kinetics Using Non‐Equilibrium Targeted Molecular Dynamics Simulations,” Journal of Chemical Information and Modeling 59 (2019): 5135–5147. PubMed

Macchiagodena M., Karrenbrock M., Pagliai M., Guarnieri G., Iannone F., and Procacci P., In Silico Modeling of Drugs Against Coronaviruses: Computational Tools and Protocols, ed. Roy K. (Springer US, 2021), 231–271.

Fang X., Kruse K., Lu T., and Wang J., “Nonequilibrium Physics in Biology,” Reviews of Modern Physics 91 (2019): 045004.

Welter M. and Rieger H., “Interstitial Fluid Flow and Drug Delivery in Vascularized Tumors: A Computational Model,” PLoS One 8 (2013): 1–23. PubMed PMC

World Health Organization (WHO) , “Global Cancer Burden Growing, Amidst Mounting Need for Services,” 2024. PubMed PMC

U.S. National Cancer Institute , “What Is Cancer?,” 2021.

Serrano D., Bonanni B., and Brown K., “Therapeutic Cancer Prevention: Achievements and Ongoing Challenges—A Focus on Breast and Colorectal Cancer,” Molecular Oncology 13 (2019): 579–590. PubMed PMC

Chakraborty S. and Rahman T., “The Difficulties in Cancer Treatment,” Ecancermedicalscience 6 (2012): ed16, 10.3332/ecancer.2012.ed16. PubMed DOI PMC

Kaur R., Bhardwaj A., and Gupta S., “Cancer Treatment Therapies: Traditional to Modern Approaches to Combat Cancers,” Molecular Biology Reports 50 (2023): 9663–9676. PubMed

Strobl M., Gallaher J., Robertson‐Tessi M., West J., and Anderson A., “Treatment of Evolving Cancers Will Require Dynamic Decision Support,” Annals of Oncology 34 (2023): 867–884. PubMed PMC

Crosby D., Bhatia S., Brindle K., et al., “Early Detection of Cancer,” Science 375 (2022): eaay9040. PubMed

Srinivasan B., “Modern Methods of Drug Design and Development,” in Methods in Enzymology, vol. 690, ed. Lloyd M. (Academic Press, 2023), 85–108. PubMed

Copeland R. A., Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists, 2nd ed. (John Wiley Sons, Ltd, 2013). PubMed

Copeland R., “The Drug–Target Residence Time Model: A 10‐Year Retrospective,” Nature Reviews. Drug Discovery 15 (2016): 87–95. PubMed

Copeland R., “Evolution of the Drug‐Target Residence Time Model,” Expert Opinion on Drug Discovery 16 (2021): 1441–1451. PubMed

Han H., Zhong Y., He C., et al., “Recent Advances in Organic Fluorescent Probes for Tumor Related Enzyme Detection,” Dyes and Pigments 204 (2022): 110386.

Kim J., Wales D., and Yang G., “Optical Spectroscopy for In Vivo Medical Diagnosis—A Review of the State of the Art and Future Perspectives,” Progress in Biomedical Engineering 2 (2020): 042001.

Georgiev N., Bakov V., Anichina K., and Bojinov V., “Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems,” Pharmaceuticals 16 (2023): 381. PubMed PMC

Zhou J., Jangili P., Son S., Ji M., Won M., and Kim J., “Fluorescent Diagnostic Probes in Neurodegenerative Disease,” Advanced Materials 32 (2020): 2001945. PubMed

Sedgwick A., Wu L., Han H., et al., “Excited‐State Intramolecular Proton‐Transfer (ESIPT) Based Fluorescence Sensors and Imaging Agents,” Chemical Society Reviews 47 (2018): 8842–8880. PubMed

Grandjean A., Lustres L., and Jung G., “Solvent‐Controlled Intermolecular Proton‐Transfer Follows an Irreversible Eigen‐Weller Model From Fs to Ns,” Molecules 5 (2021): 1094–1105.

Xu Y., Liu Q., Dou B., Wright B., Wang J., and Pang Y., “Zn(2+) Binding‐Enabled Excited State Intramolecular Proton Transfer: A Step Toward New Near‐Infrared Fluorescent Probes for Imaging Applications,” Advanced Healthcare Materials 4 (2012): 485–492. PubMed

Wang J. and Pang Y., “A Simple Sensitive ESIPT On‐Off Fluorescent Sensor for Selective Detection of Al3+ in Water,” RSC Advances 12 (2013): 5845–5848. PubMed PMC

Liu Y., Yu S., Peng Y., Wang C., Zhu C., and Lin S., “Excited‐State Intramolecular Proton Transfer With and Without the Assistance of Vibronic‐Transition‐Induced Skeletal Deformation in Phenol–Quinoline,” RSC Advances 11 (2021): 37299–37306. PubMed PMC

Paul M. and Mukhopadhyay A., “Tyrosine Kinase—Role and Significance in Cancer,” International Journal of Medical Sciences 1 (2004): 101–115. PubMed PMC

Jiang W. and Ji M., “Receptor Tyrosine Kinases in PI3K Signaling: The Therapeutic Targets in Cancer,” Seminars in Cancer Biology 59 (2019): 3–22. PubMed

Liu P., Cheng H., Roberts T., and Zhao J., “Targeting the Phosphoinositide 3‐Kinase Pathway in Cancer,” Nature Reviews. Drug Discovery 8 (2009): 627–644. PubMed PMC

Jha S., Jha N., Kar R., Ambasta R., and Kumar P., “p38 MAPK and PI3K/AKT Signalling Cascades inParkinson's Disease,” International Journal of Molecular and Cellular Medicine 4 (2015): 67–86. PubMed PMC

Yu H. and Koh S., “The Role of PI3K/AKT Pathway and Its Therapeutic Possibility in Alzheimer's Disease,” HMR 37 (2017): 18–24.

Razani E., Pourbagheri‐Sigaroodi A., Safaroghli‐Azar A., Zoghi A., Shanaki‐Bavarsad M., and Bashash D., “The PI3K/Akt Signaling Axis in Alzheimer's Disease: A Valuable Target to Stimulate or Suppress?,” Cell Stress & Chaperones 26 (2021): 871–887. PubMed PMC

Andolpho G., da Cunha E., and Ramalho T. C., “Insights Into the Value of Statistical Models, Solvent, and Relativistic Effects for Investigating Re Complexes of 2‐(4‐Aminophenyl)benzothiazole: A Potential Spectroscopic Probe,” Journal of Molecular Modeling 28 (2022): 154. PubMed

Mancini D., Souza E., Caetano M., and Ramalho T. C., “99Tc NMR as a Promising Technique for Structural Investigation of Biomolecules: Theoretical Studies on the Solvent and Thermal Effects of Phenylbenzothiazole Complex,” MRC 52 (2014): 129–137. PubMed

Mavroidi B., Sagnou M., Stamatakis K., Paravatou‐Petsotas M., Pelecanou M., and Methenitis C., “Palladium(II) and Platinum(II) Complexes of Derivatives of 2‐(4‐Aminophenyl)benzothiazole as Potential Anticancer Agents,” Inorganica Chimica Acta 444 (2016): 63–75.

Machura B., Wolff M., Benoist E., and Coulais Y., “Tricarbonyl Rhenium(I) Complex of Benzothiazole—Synthesis, Spectroscopic Characterization, X‐Ray Crystal Structure and DFT Calculations,” Journal of Organometallic Chemistry 724 (2013): 82–87.

Ivernizzi M. and Parrinello M., “Rethinking Metadynamics: From Bias Potentials to Probability Distributions,” Journal of Physical Chemistry Letters 11 (2020): 2731–2736. PubMed

Dennington R., Keith T. A., and Millam J. M., GaussView Version 6 (Semichem Inc. Shawnee Mission KS, 2019).

Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian'09 Revision E.01 (Gaussian Inc, 2009).

Lee C., Yang W., and Parr R. G., “Development of the Colle‐Salvetti Correlation‐Energy Formula Into a Functional of the Electron Density,” Physical Review B 37 (1988): 785–789. PubMed

Krishnan R., Binkley J. S., Seeger R., and People J. A., “Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions,” Journal of Chemical Physics 72 (1980): 650–654.

Malde A., Zuo L., Breeze M., et al., “An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0,” Journal of Chemical Theory and Computation 7 (2011): 4026–4037. PubMed

Stroet M., Caron B., Visscher K., Geerke D., Malde A., and Mark A., “Automated Topology Builder Version 3.0: Prediction of Solvation Free Enthalpies in Water and Hexane,” Journal of Chemical Theory and Computation 14 (2018): 5834–5845. PubMed

D'Angelo N. D., Kim T., Andrews K., et al., “Discovery and Optimization of a Series of Benzothiazole Phosphoinositide 3‐Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Dual Inhibitors,” Journal of Medicinal Chemistry 54 (2011): 1789–1811. PubMed

Santos T., Andolpho G., Tavares C., Gonçalves M., and Ramalho T. C., “Improving the Path to Obtain Spectroscopic Parameters for the PI3K—(Platinum Complex) System: Theoretical Evidences for Using 195Pt NMR as a Probe,” Magnetochemistry 9 (2023): 89.

Eberhardt J., Santos‐Martins D., Tillack A. F., and Forli S., “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings,” Journal of Chemical Information and Modeling 61 (2021): 3891–3898. PubMed PMC

Trott O. and Olson A. J., “AutoDock Vina: Improving the Speed and Accuracy of Docking With a New Scoring Function, Efficient Optimization and Multithreading,” Journal of Computational Chemistry 31 (2010): 455–461. PubMed PMC

Ramalho T. C., Rocha M. V. J., da Cunha E. F. F., Oliveira L. C. A., and Carvalho K. T. G., “Understanding the Molecular Behavior of Organotin Compounds to Design Their Effective Use as Agrochemicals: Exploration via Quantum Chemistry and Experiments,” Journal of Biomolecular Structure & Dynamics 28 (2010): 227–238. PubMed

Hess C. K., van der Spoel D., and Lindahl E., “GROMACS 2021.4 Source Code,” 2021.

Schmid N., Eichenberger A., Choutko A., et al., “Definition and Testing of the GROMOS Force‐Field Versions 54A7 and 54B7,” European Biophysics Journal 40 (2011): 843–856. PubMed

Ivernizzi M., Piaggi P., and Parrinello M., “Unified Approach to Enhanced Sampling,” Physical Review X 10 (2020): 041034.

Tribello G., Bonomi M., Branduardi D., Camilloni C., and Bussi G., “PLUMED 2: New Feathers for an Old Bird,” Computer Physics Communications 185 (2014): 604–613.

Pedregosa F., Varoquaux G., Gramfort A., et al., “Scikit‐Learn: Machine Learning in Python,” Journal of Machine Learning Research 12 (2011): 2825–2830.

Schaefer A., Horn H., and Ahlrichs R., “Fully Optimized Contracted Gaussian‐Basis Sets for Atoms Li to Kr,” Journal of Chemical Physics 97 (1992): 2571–2577.

Takeshi Y., Tew D. P., and Handy N. C., “A New Hybrid Exchange—Correlation Functional Using the Coulomb‐Attenuating Method (CAM‐B3LYP),” Chemical Physics Letters 393 (2004): 51–57.

Mancini D., Sen K., Barbatti M., Thiel W., and Ramalho T. C., “Excited‐State Proton Transfer Can Tune the Color of Protein Fluorescent Markers,” ChemPhysChem 16 (2015): 3444–3449. PubMed

Manojai N., Daengngern R., Kerdpol K., Kungwan N., and Ngaojampa C., “TD‐DFT Study of Absorption and Emission Spectra of 2‐(2′‐Aminophenyl)Benzothiazole Derivatives in Water,” Journal of Fluorescence 27 (2017): 745–754. PubMed

Wang T., Lv M., Zhang Y., et al., “TDDFT Study on the ESIPT Properties of 2‐(2‐Hydroxyphenyl)‐benzothiazole and Sensing Mechanism of a Derived Fluorescent Probe for Fluoride Ion,” Molecules 29, no. 7 (2024): 1541, 10.3390/molecules29071541. PubMed DOI PMC

Humphrey W., Dalke A., and Schulten K., “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics 14 (1996): 33–38. PubMed

Altis A., Nguyen P. H., Hegger R., and Stock G., “Dihedral Angle Principal Component Analysis of Molecular Dynamics Simulations,” Journal of Chemical Physics 126 (2007): 244111. PubMed

Eigen M., “Proton Transfer, Acid‐Base Catalysis, and Enzymatic Hydrolysis. Part I: Elementary Processes,” Angewandte Chemie 3 (1964): 1–72.

Weller A., “Über die Fluoreszenz der Salizylsäure und verwandter Verbindungen,” Naturwissenschaften 42 (1955): 175–176.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...