A Retrospective Sero-Surveillance Study for Antibodies Against Tick-Borne Encephalitis Virus in Norway
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2018-1-0659EEA Norway grant for regional cooperation
TBFVnet
20200422
EU Interreg V-A
PubMed
40143223
PubMed Central
PMC11946768
DOI
10.3390/v17030291
PII: v17030291
Knihovny.cz E-resources
- Keywords
- Norway, TBEV prevalence, central nervous system infections, seroprevalence study, tick-borne encephalitis virus,
- MeSH
- Child MeSH
- Adult MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- Encephalitis, Tick-Borne * blood diagnosis epidemiology MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Neutralization Tests MeSH
- Child, Preschool MeSH
- Antibodies, Viral * blood MeSH
- Retrospective Studies MeSH
- Sensitivity and Specificity MeSH
- Seroepidemiologic Studies MeSH
- Encephalitis Viruses, Tick-Borne MeSH
- Cross Reactions MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Norway epidemiology MeSH
- Names of Substances
- Antibodies, Viral * MeSH
Tick-borne encephalitis virus (TBEV) is an emerging pathogen that initially causes flu-like symptoms and can progress to central nervous system (CNS) infections. Tick-borne encephalitis (TBE) is an endemic disease in southern coastal counties with regular human cases, while the causative agent, TBEV, is prevalent in ticks in most of the coastal regions of Norway. This study was aimed to understand TBEV infection status across Norway including both TBE endemic and non-endemic areas. For this, we analyzed a total of 1940 residual serum samples from 19 counties of Norway (as of 2016). The samples were initially screened by ELISA, followed by virus neutralization tests for TBEV confirmation. We found a similar TBEV seroprevalence of 1.7% in TBE endemic and 1.6% in non-endemic areas. Since TBE cases are only reported from endemic regions, our findings suggest a potential subclinical or asymptomatic infection and underdiagnosis in non-endemic areas. Notably, only 43% of the ELISA-positive samples were confirmed by virus neutralization tests indicating that not all ELISA positives are true TBEV infections. Additionally, 137 samples of patients presenting with symptoms of CNS infections from a non-endemic area were included. Of these samples, 11 ELISA-positive samples were analyzed for cross-reactivity among flaviviruses. Cross-reactivity was detected with Dengue virus, West Nile Virus, and non-specific reactions. This underscores the importance of using multiple diagnostic tests to confirm TBEV infections. None of the patients with CNS infection was found to be TBE positive, and in the whole cohort, we found a low TBEV seroprevalence of 0.7%.
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Department of Microbiology Oslo University Hospital 0424 Oslo Norway
See more in PubMed
Lindquist L., Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–1871. doi: 10.1016/S0140-6736(08)60800-4. PubMed DOI
Calisher C.H., Karabatsos N., Dalrymple J.M., Shope R.E., Porterfield J.S., Westaway E.G., Brandt W.E. Antigenic Relationships between Flaviviruses as Determined by Cross-neutralization Tests with Polyclonal Antisera. J. Gen. Virol. 1989;70:37–43. doi: 10.1099/0022-1317-70-1-37. PubMed DOI
Klaus C., Beer M., Saier R., Schau U., Moog U., Hoffmann B., Diller R., Süss J. Goats and sheep as sentinels for tick-borne encephalitis (TBE) virus–epidemiological studies in areas endemic and non-endemic for TBE virus in Germany. Ticks Tick-Borne Dis. 2012;3:27–37. doi: 10.1016/j.ttbdis.2011.09.011. PubMed DOI
Dai X., Shang G., Lu S., Yang J., Xu J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg. Microbes Infect. 2018;7:1–9. doi: 10.1038/s41426-018-0081-6. PubMed DOI PMC
Demina T., Dzhioev Y.P., Verkhozina M., Kozlova I., Tkachev S., Plyusnin A., Doroshchenko E., Lisak O., Zlobin V. Genotyping and characterization of the geographical distribution of tick-borne encephalitis virus variants with a set of molecular probes. J. Med. Virol. 2010;82:965–976. doi: 10.1002/jmv.21765. PubMed DOI
Ecker M., Allison S.L., Meixner T., Heinz F.X. Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J. Gen. Virol. 1999;80:179–185. doi: 10.1099/0022-1317-80-1-179. PubMed DOI
Kovalev S.Y., Mukhacheva T.A. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. Infect. Genet. Evol. 2017;55:159–165. doi: 10.1016/j.meegid.2017.09.014. PubMed DOI
Lamsal A., Edgar K.S., Jenkins A., Renssen H., Kjær L.J., Alfsnes K., Bastakoti S., Dieseth M., Klitgaard K., Lindstedt H.E.H., et al. Prevalence of tick-borne encephalitis virus in questing Ixodes ricinus nymphs in southern Scandinavia and the possible influence of meteorological factors. Zoonoses Public Health. 2023;70:473–484. doi: 10.1111/zph.13049. PubMed DOI
Vikse R., Paulsen K.M., Edgar K.S., Pettersson J.H.-O., Ottesen P., Okbaldet Y.B., Kiran N., Lamsal A., Lindstedt H.E.H., Pedersen B.N., et al. Geographical distribution and prevalence of tick-borne encephalitis virus in questing Ixodes ricinus ticks and phylogeographic structure of the Ixodes ricinus vector in Norway. Zoonoses Public Health. 2020;67:370–381. doi: 10.1111/zph.12696. PubMed DOI
Soleng A., Edgar K.S., Paulsen K.M., Pedersen B.N., Okbaldet Y.B., Skjetne I.E.B., Gurung D., Vikse R., Andreassen Å.K. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks Tick-Borne Dis. 2018;9:97–103. doi: 10.1016/j.ttbdis.2017.10.002. PubMed DOI
Paulsen K.M., Pedersen B.N., Soleng A., Okbaldet Y.B., Pettersson J.H., Dudman S.G., Ottesen P., Vik I.S.S., Vainio K., Andreassen Å. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks from three islands in north-western Norway. Apmis. 2015;123:759–764. doi: 10.1111/apm.12412. PubMed DOI
Larsen A.L., Kanestrøm A., Bjørland M., Andreassen Å., Soleng A., Vene S., Dudman S.G. Detection of specific IgG antibodies in blood donors and tick-borne encephalitis virus in ticks within a non-endemic area in southeast Norway. Scand. J. Infect. Dis. 2014;46:181–184. doi: 10.3109/00365548.2013.865140. PubMed DOI
Marvik Å., Tveten Y., Pedersen A.-B., Stiasny K., Andreassen Å.K., Grude N. Low prevalence of tick-borne encephalitis virus antibodies in Norwegian blood donors. Infect. Dis. 2021;53:44–51. doi: 10.1080/23744235.2020.1819561. PubMed DOI
Thortveit E.T., Aase A., Petersen L.B., Lorentzen Å.R., Mygland Å., Ljøstad U. Human seroprevalence of antibodies to tick-borne microbes in southern Norway. Ticks Tick-Borne Dis. 2020;11:101410. doi: 10.1016/j.ttbdis.2020.101410. PubMed DOI
Svensson J., Christiansen C.B., Persson K.E.M. A Serosurvey of Tick-Borne Encephalitis Virus in Sweden: Different Populations and Geographical Locations. Vector-Borne Zoonotic Dis. 2021;21:614–619. doi: 10.1089/vbz.2020.2763. PubMed DOI
Fält J., Lundgren Å., Alsterlund R., Carlsson B., Eliasson I., Haglund M., Lundkvist Å., Vene S., Settergren B. Tick-borne encephalitis (TBE) in Skåne, southern Sweden: A new TBE endemic region? Scand. J. Infect. Dis. 2006;38:800–804. doi: 10.1080/00365540600664068. PubMed DOI
MSIS Tick-Borne Encephalitis. Norwegian Surveillance System for Communicable Diseases. 2023. [(accessed on 7 February 2025)]. Available online: https://www.fhi.no/nettpub/smittevernveilederen/sykdommer-a-a/skogflattencefalitt-tbe-virusinfeks.
Andreassen A., Jore S., Cuber P., Dudman S., Tengs T., Isaksen K., Hygen H.O., Viljugrein H., Ånestad G., Ottesen P., et al. Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasit. Vectors. 2012;5:177. doi: 10.1186/1756-3305-5-177. PubMed DOI PMC
Dobler G., Hufert F., Pfeffer M., Essbauer S. Progress in Parasitology. Springer; Berlin/Heidelberg, Germany: 2011. Tick-borne encephalitis: From microfocus to human disease; pp. 323–331.
Burri C., Cadenas F.M., Douet V., Moret J., Gern L. Ixodes ricinus density and infection prevalence of Borrelia burgdorferi sensu lato along a north-facing altitudinal gradient in the Rhône Valley (Switzerland) Vector-Borne Zoonotic Dis. 2007;7:50–58. doi: 10.1089/vbz.2006.0569. PubMed DOI
Schley K., Friedrich J., Pilz A., Huang L., Balkaran B.L., Maculaitis M.C., Malerczyk C. Evaluation of under-testing and under-diagnosis of tick-borne encephalitis in Germany. BMC Infect. Dis. 2023;23:139. doi: 10.1186/s12879-023-08101-6. PubMed DOI PMC
Lundkvist Å., Wallensten A., Vene S., Hjertqvist M. Tick-borne encephalitis increasing in Sweden, 2011. Eurosurveillance. 2011;16:19981. doi: 10.2807/ese.16.39.19981-en. PubMed DOI
Kaiser R. Tick-borne encephalitis (TBE) in Germany and clinical course of the disease. Int. J. Med. Microbiol. 2002;291:58–61. doi: 10.1016/S1438-4221(02)80012-1. PubMed DOI
Bogovic P., Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC
Ergunay K., Tkachev S., Kozlova I., Růžek D. A Review of Methods for Detecting Tick-Borne Encephalitis Virus Infection in Tick, Animal, and Human Specimens. Vector-Borne Zoonotic Dis. 2016;16:4–12. doi: 10.1089/vbz.2015.1896. PubMed DOI
Stiasny K., Malafa S., Aberle S.W., Medits I., Tsouchnikas G., Aberle J.H., Holzmann H., Heinz F.X. Different Cross-Reactivities of IgM Responses in Dengue, Zika and Tick-Borne Encephalitis Virus Infections. Viruses. 2021;13:596. doi: 10.3390/v13040596. PubMed DOI PMC
Lamsal A., Tryland M., Paulsen K.M., Romano J.S., Nymo I.H., Stiasny K., Soleng A., Vikse R., Andreassen Å.K. Serological screening for tick-borne encephalitis virus in eight Norwegian herds of semi-domesticated reindeer (Rangifer tarandus tarandus) Zoonoses Public Health. 2023;70:692–698. doi: 10.1111/zph.13060. PubMed DOI
Quist-Paulsen E., Kran A.-M.B., Lindland E.S., Ellefsen K., Sandvik L., Dunlop O., Ormaasen V. To what extent can clinical characteristics be used to distinguish encephalitis from encephalopathy of other causes? Results from a prospective observational study. BMC Infect. Dis. 2019;19:80. doi: 10.1186/s12879-018-3570-2. PubMed DOI PMC
Public Health Agency of Sweden Areas with Increased Incidence of TBE. 2023. [(accessed on 11 November 2023)]. Available online: https://www.folkhalsomyndigheten.se/smittskydd-beredskap/smittsamma-sjukdomar/tick-borne-encephalitis-tbe/omraden-med-forhojd-forekomst-av-tbe/
Statens Serum Institut TBE Report on Disease Occurrence 2017–2019. Statens Serum Institut. 2020. [(accessed on 11 November 2023)]. Available online: https://en.ssi.dk/surveillance-and-preparedness/surveillance-in-denmark/annual-reports-on-disease-incidence/tbe-report-on-disease-occurrence-2017-2019.
Kunze M., Banović P., Bogovič P., Briciu V., Čivljak R., Dobler G., Hristea A., Kerlik J., Kuivanen S., Kynčl J., et al. Recommendations to Improve Tick-Borne Encephalitis Surveillance and Vaccine Uptake in Europe. Microorganisms. 2022;10:1283. doi: 10.3390/microorganisms10071283. PubMed DOI PMC
Hellenbrand W., Kreusch T., Böhmer M., Wagner-Wiening C., Dobler G., Wichmann O., Altmann D. Epidemiology of Tick-Borne Encephalitis (TBE) in Germany, 2001–2018. Pathogens. 2019;8:42. doi: 10.3390/pathogens8020042. PubMed DOI PMC
Waldeck M., Winqvist N., Henriksson G., Dyrdak R., Settergren B., Lindgren P.-E. Surveillance of tick-borne encephalitis in emerging risk areas in southern Sweden: A retrospective case finding study. Eur. J. Clin. Microbiol. Infect. Dis. 2023;42:13–22. doi: 10.1007/s10096-022-04509-1. PubMed DOI PMC
Gonzalez G., Bournez L., Moraes R.A., Marine D., Galon C., Vorimore F., Cochin M., Nougairède A., Hennechart-Collette C., Perelle S., et al. A One-Health Approach to Investigating an Outbreak of Alimentary Tick-Borne Encephalitis in a Non-endemic Area in France (Ain, Eastern France): A Longitudinal Serological Study in Livestock, Detection in Ticks, and the First Tick-Borne Encephalitis Virus Isolation and Molecular Characterisation. Front. Microbiol. 2022;13:863725. doi: 10.3389/fmicb.2022.863725. PubMed DOI PMC
Burke G.S., Wikel S.K., Spielman A., Telford S.R., McKay K., Krause P.J. Hypersensitivity to Ticks and Lyme Disease Risk. Emerg. Infect. Dis. 2005;11:36. doi: 10.3201/eid1101.040303. PubMed DOI PMC
Alkishe A.A., Peterson A.T., Samy A.M. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS ONE. 2017;12:e0189092. doi: 10.1371/journal.pone.0189092. PubMed DOI PMC
Borde J.P., Kaier K., Hehn P., Matzarakis A., Frey S., Bestehorn M., Dobler G., Chitimia-Dobler L. The complex interplay of climate, TBEV vector dynamics and TBEV infection rates in ticks—Monitoring a natural TBEV focus in Germany, 2009–2018. PLoS ONE. 2021;16:e0244668. doi: 10.1371/journal.pone.0244668. PubMed DOI PMC
Jaenson T.G., Petersson E.H., Jaenson D.G., Kindberg J., Pettersson J.H.-O., Hjertqvist M., Medlock J.M., Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: Incidence of human TBE correlates with abundance of deer and hares. Parasit. Vectors. 2018;11:477. doi: 10.1186/s13071-018-3057-4. PubMed DOI PMC
Cagnacci F., Bolzoni L., Rosà R., Carpi G., Hauffe H.C., Valent M., Tagliapietra V., Kazimirova M., Koci J., Stanko M., et al. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: Empirical assessment. Int. J. Parasitol. 2012;42:365–372. doi: 10.1016/j.ijpara.2012.02.012. PubMed DOI
Achazi K., Růžek D., Donoso-Mantke O., Schlegel M., Ali H.S., Wenk M., Schmidt-Chanasit J., Ohlmeyer L., Rühe F., Vor T. Rodents as sentinels for the prevalence of tick-borne encephalitis virus. Vector-Borne Zoonotic Dis. 2011;11:641–647. doi: 10.1089/vbz.2010.0236. PubMed DOI PMC
Yoshii K., Takahashi-Iwata I., Shirai S., Kobayashi S., Yabe I., Sasaki H. A Retrospective Epidemiological Study of Tick-Borne Encephalitis Virus in Patients with Neurological Disorders in Hokkaido, Japan. Microorganisms. 2020;8:1672. doi: 10.3390/microorganisms8111672. PubMed DOI PMC
Chan K.R., Ismail A.A., Thergarajan G., Raju C.S., Yam H.C., Rishya M., Sekaran S.D. Serological cross-reactivity among common flaviviruses. Front. Cell. Infect. Microbiol. 2022;12:975398. doi: 10.3389/fcimb.2022.975398. PubMed DOI PMC
Krzysiak M.K., Anusz K., Konieczny A., Rola J., Salat J., Strakova P., Olech W., Larska M. The European bison (Bison bonasus) as an indicatory species for the circulation of tick-borne encephalitis virus (TBEV) in natural foci in Poland. Ticks Tick-Borne Dis. 2021;12:101799. doi: 10.1016/j.ttbdis.2021.101799. PubMed DOI
Lim S.M., Geervliet M., Verhagen J.H., Müskens G.J.D.M., Majoor F.A., Osterhaus A.D.M.E., Martina B.E.E. Serologic evidence of West Nile virus and Usutu virus infections in Eurasian coots in The Netherlands. Zoonoses Public Health. 2018;65:96–102. doi: 10.1111/zph.12375. PubMed DOI
Klaus C., Ziegler U., Kalthoff D., Hoffmann B., Hoffmann B., Beer M. Tick-borne encephalitis virus (TBEV)—Findings on cross reactivity and longevity of TBEV antibodies in animal sera. BMC Vet. Res. 2014;10:78. doi: 10.1186/1746-6148-10-78. PubMed DOI PMC