Nontargeted Metabolomics of Streptomyces Sourced from Thailand Reveals the Presence of Bioactive Metabolites
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40160742
PubMed Central
PMC11947806
DOI
10.1021/acsomega.5c00669
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Actinobacteria are widely recognized as prolific producers of bioactive metabolites with diverse biological properties, yet they remain largely unexplored. In this study, we investigated the antimicrobial potential and chemical diversity of crude extracts from actinobacterial strains isolated from mangrove sediments collected in Chonburi and Chachoengsao provinces of Thailand. Taxonomic identification confirmed that these isolates belong to the genus Streptomyces. Notably, ten isolates, identified as Streptomyces iranensis, Streptomyces yogyakartensis, Streptomyces cacaoi, Streptomyces ardesiacus, Streptomyces phaeoluteichromatogenes, and Streptomyces albiaxialis, exhibited potent inhibitory activity against chloroquine-resistant Plasmodium falciparum K1 at concentrations <10 μg/mL. Among these, only S. albiaxialis displayed anti-human immunodeficiency virus-1 viral protein R (HIV-1 Vpr) activity in HeLa cells harboring the TREx plasmid encoding full-length Vpr (TREx-HeLa-Vpr cells). MS/MS-guided molecular networking analysis highlighted the metabolic complexity of the isolates, revealing a diverse array of distinct compounds. These included chymostatin B, geldanamycin, dehydroxynocardamine, ikarugamycin epoxide, kanchanamycin C, glochidone, bisucaberin, coproporphyrin III, futalosine, and various siderophores such as ferrioxamine B, desferrioxamine D2, desferrioxamine G, desferrioxamine E, desferrioxamine, desferrioxamine H, and ferrioxamine E. Moreover, guided by the potent antimalarial activity of strain S2-SC19, the compound elaiophylin was detected, isolated, and identified using analytical techniques. Remarkably, the compound exhibited potent antimalarial activity with an IC50 value of 0.002 ± 0.002 μg/mL against P. falciparum K1. Furthermore, genomic analysis revealed that strain S2-SC19 is most closely related to Streptomyces asiaticus DSM no. 41761. This study highlights Thai mangrove soil as a valuable source of bioactive compounds, including elaiophylin, and underscores the bioactive potential and chemical diversity of mangrove ecosystems as a rich, untapped reservoir of natural products.
College of Graduate Studies Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
Department of Biology Faculty of Science Chiang Mai University Chiang Mai 50200 Thailand
Faculty of Pharmacy Nam Can Tho University Can Tho 900000 Vietnam
Institute of Microbiology of the Czech Academy of Sciences Praha 14200 Czech Republic
Institute of Natural Medicine University of Toyama Toyama 930 0194 Japan
School of Medicine Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
School of Pharmacy Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
Zobrazit více v PubMed
Jose P. A.; Maharshi A.; Jha B. Actinobacteria in natural products research: progress and prospects. Microbiol. Res. 2021, 246, 126708.10.1016/j.micres.2021.126708. PubMed DOI
Chanthasena P.; Hua Y.; Rosyidah A.; Pathom-Aree W.; Limphirat W.; Nantapong N. Isolation and identification of bioactive compounds from Streptomyces actinomycinicus PJ85 and their in vitro antimicrobial activities against methicillin-resistant Staphylococcus aureus. Antibiotics 2022, 11 (12), 1797.10.3390/antibiotics11121797. PubMed DOI PMC
Insuk C.; Pongpamorn P.; Forsythe A.; Matsumoto A.; Omura S.; Pathom-Aree W.; Cheeptham N.; Xu J. Taxonomic and metabolite diversities of moss-associated actinobacteria from Thailand. Metabolites 2022, 12 (1), 22.10.3390/metabo12010022. PubMed DOI PMC
Supong K.; Sripreechasak P.; Tanasupawat S.; Danwisetkanjana K.; Rachtawee P.; Pittayakhajonwut P. Investigation on antimicrobial agents of the terrestrial Streptomyces sp. BCC71188. Appl. Microbiol. Biotechnol. 2017, 101 (2), 533–543. 10.1007/s00253-016-7804-1. PubMed DOI
Kuncharoen N.; Bunbamrung N.; Intaraudom C.; Choowong W.; Thawai C.; Tanasupawat S.; Pittayakhajonwut P. Antimalarial and antimicrobial substances isolated from the endophytic actinomycete, Streptomyces aculeolatus MS1–6. Phytochemistry 2023, 207, 113568.10.1016/j.phytochem.2022.113568. PubMed DOI
Romano S.; Jackson S. A.; Patry S.; Dobson A. D. W. Extending the one strain many compounds (OSMAC) principle to marine microorganisms. Mar. Drugs 2018, 16 (7), 244.10.3390/md16070244. PubMed DOI PMC
Manzoni G.; Try R.; Guintran J. O.; Christiansen-Jucht C.; Jacoby E.; Sovannaroth S.; Zhang Z.; Banouvong V.; Shortus M. S.; Reyburn R.; et al. Progress towards malaria elimination in the Greater Mekong Subregion: perspectives from the World Health Organization. Malar. J. 2024, 23 (1), 64.10.1186/s12936-024-04851-z. PubMed DOI PMC
Shoemark D. K.; Cliff M. J.; Sessions R. B.; Clarke A. R. Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum. FEBS J. 2007, 2738–2748. 10.1111/j.1742-4658.2007.05808.x. PubMed DOI
McClung R. P.; Oster A. M.; Ocfemia M. C. B.; Saduvala N.; Heneine W.; Johnson J. A.; Hernandez A. L. Transmitted drug resistance among human immunodeficiency virus (HIV)-1 diagnoses in the United States, 2014–2018. Clin. Infect. Dis. 2022, 74 (6), 1055–1062. 10.1093/cid/ciab583. PubMed DOI PMC
Jaisi A.; Prema; Madla S.; Lee Y.-E.; Septama A.; Morita H. Investigation of HIV-1 viral protein R inhibitory activities of twelve Thai medicinal plants and their commercially available major constituents. Chem. Biodivers. 2021, 18 (12), e210054010.1002/cbdv.202100540. PubMed DOI
Wang M.; Carver J. J.; Phelan V. V.; Sanchez L. M.; Garg N.; Peng Y.; Nguyen D. D.; Watrous J.; Kapono C. A.; Luzzatto-Knaan T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotech. 2016, 34 (8), 828–837. 10.1038/nbt.3597. PubMed DOI PMC
de Lima Procópio R. E.; da Silva I. R.; Martins M. K.; de Azevedo J. L.; de Araújo J. M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 2012, 16 (5), 466–471. 10.1016/j.bjid.2012.08.014. PubMed DOI
Li K.; Chen S.; Pang X.; Cai J.; Zhang X.; Liu Y.; Zhu Y.; Zhou X. Natural products from mangrove sediments-derived microbes: structural diversity, bioactivities, biosynthesis, and total synthesis. Eur. J. Med. Chem. 2022, 230, 114117.10.1016/j.ejmech.2022.114117. PubMed DOI
Carroll A. R.; Copp B. R.; Davis R. A.; Keyzers R. A.; Prinsep M. R. Marine natural products. Nat. Prod. Rep. 2023, 40 (2), 275–325. 10.1039/D2NP00083K. PubMed DOI
Kanchanasin P.; Sripreechasak P.; Suriyachadkun C.; Supong K.; Pittayakhajonwut P.; Somphong A.; Tanasupawat S.; Phongsopitanun W. Streptomyces macrolidinus sp. nov., a novel soil actinobacterium with potential anticancer and antimalarial activity. Int. J. Syst. Evol. Microbiol. 2023, 73 (1), 005682.10.1099/ijsem.0.005682. PubMed DOI
Promnuan Y.; Promsai S.; Pathom-Aree W.; Meelai W. Apis andreniformis associated actinomycetes show antimicrobial activity against black rot pathogen (Xanthomonas campestris pv. campestris). PeerJ 2021, 9, e1209710.7717/peerj.12097. PubMed DOI PMC
Nuanjohn T.; Suphrom N.; Nakaew N.; Pathom-Aree W.; Pensupa N.; Siangsuepchart A.; Dell B.; Jumpathong J. Actinomycins from soil-inhabiting Streptomyces as sources of antibacterial pigments for silk dyeing. Molecules 2023, 28 (16), 5949.10.3390/molecules28165949. PubMed DOI PMC
Moumbock A. F. A.; Gao M.; Qaseem A.; Li J.; Kirchner P. A.; Ndingkokhar B.; Bekono B. D.; Simoben C. V.; Babiaka S. B.; Malange Y. I.; et al. StreptomeDB 3.0: an updated compendium of streptomycetes natural products. Nucleic Acid Res. 2021, 49 (D1), D600–D604. 10.1093/nar/gkaa868. PubMed DOI PMC
Kitson R. R. A.; Kitsonová D.; Siegel D.; Ross D.; Moody C. J. Geldanamycin, a naturally occurring inhibitor of Hsp90 and a lead compound for medicinal chemistry. J. Med. Chem. 2024, 67, 17946–17963. 10.1021/acs.jmedchem.4c01048. PubMed DOI PMC
Happi G. M.; Ntabo V. K.; Soh D.; Wansi J. D. Potential of Streptomyces in producing antiplasmodial lead compounds. Nat. Resources Human Health 2023, 3 (1), 7–20. 10.53365/nrfhh/150397. DOI
Cao P.; Li C.; Wang H.; Yu Z.; Xu X.; Wang X.; Zhao J.; Xiang W. Community structures and antifungal activity of root-associated endophytic Actinobacteria in healthy and diseased cucumber plants and Streptomyces sp. HAAG3–15 as a promising biocontrol agent. Microorganisms 2020, 8 (2), 236.10.3390/microorganisms8020236. PubMed DOI PMC
Lee S.-Y.; Kim M.-S.; Kim H.-S.; Kim Y.-H.; Hong S.-D.; Lee J.-J.. Structure determination and biological activities of elaiophylin produced by Streptomyces sp. MCY-846, J. Microbiol. Biotechnol., 1996, 6, 245, 249.
Lima S. M. A.; Melo J. G. S.; Militão G. C. G.; Lima G. M. S.; Lima M. C. A.; Aguiar J. S.; Araújo R. M.; Braz-Filho R.; Marchand P.; Araújo J. M.; Silva T. G. Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Appl. Microbiol. Biotechnol. 2017, 101 (2), 711–723. 10.1007/s00253-016-7886-9. PubMed DOI
Buedenbender L.; Robertson L. P.; Lucantoni L.; Avery V. M.; Kurtböke D. İ.; Carroll A. R. HSQC-TOCSY fingerprinting-directed discovery of antiplasmodial polyketides from the marine ascidian-derived Streptomyces sp. (USC-16018). Mar. Drugs 2018, 16 (6), 189.10.3390/md16060189. PubMed DOI PMC
Happi G. M.; Ahmed S. A.; Kemayou G. P. M.; Salau S.; Dzouemo L. C.; Sikam K. G.; Yimtchui M. T.; Wansi J. D. Bioassay-guided isolation of antiplasmodial compounds from Hypericum lanceolatum Lam. (Hypericaceae) and their cytotoxicity and molecular docking. BioMed. Res. Int. 2023, 2023, 4693765.10.1155/2023/4693765. PubMed DOI PMC
Meier-Kolthoff J. P.; Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182.10.1038/s41467-019-10210-3. PubMed DOI PMC
Blin K.; Shaw S.; Augustijn H. E.; Reitz Z. L.; Biermann F.; Alanjary M.; Fetter A.; Terlouw B. R.; Metcalf W. W.; Helfrich E. J. N.; van Wezel G. P.; Medema M. H.; Weber T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acid Res. 2023, 51 (W1), W46–W50. 10.1093/nar/gkad344. PubMed DOI PMC
Yin M.; Jiang M.; Ren Z.; Dong Y.; Lu L. The complete genome sequence of Streptomyces autolyticus CGMCC 0516, the producer of geldanamycin, autolytimycin, reblastatin and elaiophylin. J. Biotechnol. 2017, 252, 27–31. 10.1016/j.jbiotec.2017.04.037. PubMed DOI
Melinda Y. N.; Widada J.; Wahyuningsih T. D.; Febriansah R.; Damayanti E.; Mustofa M. Metabologenomics approach to the discovery of novel compounds from Streptomyces sp. GMR22 as anti-SARS-CoV-2 drugs. Heliyon 2021, 7 (11), e0830810.1016/j.heliyon.2021.e08308. PubMed DOI PMC
van den Belt M.; Gilchrist C.; Booth T. J.; Chooi Y.-H.; Medema M. H.; Alanjary M. CAGECAT: The CompArative GEne Cluster Analysis Toolbox for rapid search and visualisation of homologous gene clusters. BMC Bioinf. 2023, 24 (1), 181.10.1186/s12859-023-05311-2. PubMed DOI PMC
Ruttanasutja P.; Pathom-Aree W.. Selective isolation of cultivable actinomycetes from Thai coastal marine sediment, Chiang Mai J. Sci., 2015, 42, (1), , 88, 103.
Pathom-Aree W.; Rangseekaew P.; Kamjam M.; Dungmal K.. Actinobacteria from tropical marine environments of Thailand and their biotechnological applications. In Actinomycetes in Extreme Environments-an Unexhausted Source for Microbial Biotechnology; Kurtboke I., Ed.; CRC Press: 2024, pp. 27–52. DOI: 10.1201/9780429293948. DOI
Sunghanghwa Y.; Phuwacharoenpong A.; Punsawad C.; Septama A. W.; Jaisi A. Plasmodium falciparum lactate dehydrogenase inhibitory activities of pomegranate and mangosteen extracts and their major constituents. Rev. Bras. Farmacogn. 2024, 34, 1156.10.1007/s43450-024-00571-2. DOI
Okonechnikov K.; Golosova O.; Fursov M. the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. 10.1093/bioinformatics/bts091. PubMed DOI
Tamura K.; Stecher G.; Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. 10.1093/molbev/msab120. PubMed DOI PMC
Shannon P.; Markiel A.; Ozier O.; Baliga N. S.; Wang J. T.; Ramage D.; Amin N.; Schwikowski B.; Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13 (11), 2498–2504. 10.1101/gr.1239303. PubMed DOI PMC