Geldanamycin, a Naturally Occurring Inhibitor of Hsp90 and a Lead Compound for Medicinal Chemistry

. 2024 Oct 24 ; 67 (20) : 17946-17963. [epub] 20241003

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39361055

Geldanamycin remains a driver in the medicinal chemistry of heat shock protein 90 (Hsp90) inhibition, even half a century after its original isolation from nature. This Perspective focuses on the properties of the benzoquinone ring of the natural product that enable a range of functionalization reactions to take place. Therefore, inherent reactivity at C-17, where the methoxy group serves as a vinylogous ester, and at C-19 that demonstrates nucleophilic, enamide-type character toward electrophiles, and also as a conjugate acceptor to react with nucleophiles, has facilitated the synthesis of semisynthetic derivatives. Thus, a range of C-17-substituted amine derivatives has been investigated in oncology applications, with a number of compounds in this series reaching clinical trials. In contrast, the 19-position of geldanamycin has received less attention, although 19-substituted derivatives offer promise with markedly reduced toxicity compared to geldanamycin itself, while retaining Hsp90 inhibitory activity albeit with diminished potency in cellular studies.

Zobrazit více v PubMed

Newman D. J.; Cragg G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. 10.1021/acs.jnatprod.9b01285. PubMed DOI

De Boer C.; Meulman P. A.; Wnuk R. J.; Peterson D. H. Geldanamycin, a new antibiotic. J. Antibiot. 1970, 23, 442–447. 10.7164/antibiotics.23.442. PubMed DOI

Rinehart K. L.; Sasaki K.; Slomp G.; Grostic M. F.; Olson E. C. Geldanamycin. I. Structure assignment. J. Am. Chem. Soc. 1970, 92, 7591–7593. 10.1021/ja00729a018. PubMed DOI

He W.; Wu L.; Gao Q.; Du Y.; Wang Y. Identification of AHBA biosynthetic genes related to geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Curr. Microbiol. 2006, 52, 197–203. 10.1007/s00284-005-0203-y. PubMed DOI

Martín J. F.; Ramos A.; Liras P. Regulation of geldanamycin biosynthesis by cluster-situated transcription factors and the master regulator PhoP. Antibiotics 2019, 8, 87.10.3390/antibiotics8030087. PubMed DOI PMC

Andrus M. B.; Meredith E. L.; Simmons B. L.; Sekhar B.; Hicken E. J. Total synthesis of (+)-geldanamycin and (−)-o-quinogeldanamycin with use of asymmetric anti- and syn-glycolate aldol reactions. Org. Lett. 2002, 4, 3549–3552. 10.1021/ol0267432. PubMed DOI

Qin H. L.; Panek J. S. Total synthesis of the Hsp90 inhibitor geldanamycin. Org. Lett. 2008, 10, 2477–2479. 10.1021/ol800749w. PubMed DOI PMC

Zhang Z.; Li Y.; Zhang R.; Yu X. Total synthesis of geldanamycin. J. Org. Chem. 2021, 86, 15063–15075. 10.1021/acs.joc.1c01582. PubMed DOI

Hampel T.; Neubauer T.; van Leeuwen T.; Bach T. Stereoselective preparation of (E)-configured 1,2-disubstituted propenes from two aldehydes by a two-carbon stitching strategy: Convergent synthesis of 18,21-diisopropyl-geldanamycin hydroquinone and its C7 epimer. Chem.—Eur. J. 2012, 18, 10382–10392. 10.1002/chem.201201600. PubMed DOI

Kitson R. R. A.; Moody C. J. Learning from nature: Advances in geldanamycin and radicicol-based inhibitors of Hsp90. J. Org. Chem. 2013, 78, 5117–5141. 10.1021/jo4002849. PubMed DOI

Rinehart K. L.; Sobiczewski W.; Honegger J. F.; Enanoza R. M.; Witty T. R.; Lee V. J.; Shield L. S.; Li L. H.; Reusser F. Synthesis of hydrazones and oximes of geldanaldehyde as potential polymerase inhibitors. Bioorg. Chem. 1977, 6, 341–351. 10.1016/0045-2068(77)90034-7. DOI

Rinehart K. L.; McMillan M. W.; Witty T. R.; Tipton C. D.; Shield L. S.; Li L. H.; Reusser F. Synthesis of phenazine and phenoxazinone derivatives of geldanamycin as potential polymerase inhibitors. Bioorg. Chem. 1977, 6, 353–369. 10.1016/0045-2068(77)90035-9. DOI

Whitesell L.; Mimnaugh E. G.; Decosta B.; Myers C. E.; Neckers L. M. Inhibition of heat-shock protein Hsp90-pp60v-src heteroprotein complex-formation by benzoquinone ansamycins - essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 8324–8328. 10.1073/pnas.91.18.8324. PubMed DOI PMC

Franke J.; Eichner S.; Zeilinger C.; Kirschning A. Targeting heat-shock-protein 90 (Hsp90) by natural products: Geldanamycin, a show case in cancer therapy. Nat. Prod. Rep. 2013, 30, 1299–1323. 10.1039/c3np70012g. PubMed DOI

Whitesell L.; Lindquist S. Hsp90 and the chaperoning of cancer. Nat. Rev. Cancer 2005, 5, 761–772. 10.1038/nrc1716. PubMed DOI

Pearl L. H. The Hsp90 molecular chaperone—an enigmatic ATPase. Biopolymers 2016, 105, 594–607. 10.1002/bip.22835. PubMed DOI PMC

Schopf F. H.; Biebl M. M.; Buchner J. The Hsp90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 2017, 18, 345–360. 10.1038/nrm.2017.20. PubMed DOI

Isaacs J. S.; Xu W.; Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003, 3, 213–217. 10.1016/S1535-6108(03)00029-1. PubMed DOI

Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 2004, 206, 149–157. 10.1016/j.canlet.2003.08.032. PubMed DOI

McLean P. J.; Klucken J.; Shin Y.; Hyman B. T. Geldanamycin induces Hsp70 and prevents α-synuclein aggregation and toxicity in vitro. Biochem. Biophys. Res. Commun. 2004, 321, 665–669. 10.1016/j.bbrc.2004.07.021. PubMed DOI

Luo W.; Sun W.; Taldone T.; Rodina A.; Chiosis G. Heat shock protein 90 in neurodegenerative diseases. Mol. Neurodegener. 2010, 5, 24.10.1186/1750-1326-5-24. PubMed DOI PMC

Pratt W. B.; Gestwicki J. E.; Osawa Y.; Lieberman A. P. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 353–371. 10.1146/annurev-pharmtox-010814-124332. PubMed DOI PMC

Workman P.; Burrows F.; Neckers L.; Rosen N. Drugging the cancer chaperone Hsp90. Combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N.Y. Acad. Sci. 2007, 1113, 202–216. 10.1196/annals.1391.012. PubMed DOI

Aherne W.; Maloney A.; Prodromou C.; Rowlands M. G.; Hardcastle A.; Boxall K.; Clarke P.; Walton M. I.; Pearl L.; Workman P.. Assays for Hsp90 and inhibitors. In Methods in molecular medicine. Novel anticancer drug protocols; Buolamwini J. K., Adjei A. A., Eds.; Humana Press: Totowa, NJ, 2003; Vol. 85, pp 149–161. PubMed

Riedel M.; Goldbaum O.; Schwarz L.; Schmitt S.; Richter-Landsberg C. 17-AAG induces cytoplasmica-synuclein aggregate clearance by induction of autophagy. PLoS One 2010, 5, e875310.1371/journal.pone.0008753. PubMed DOI PMC

Pallavi R.; Roy N.; Nageshan R. K.; Talukdar P.; Pavithra S. R.; Reddy R.; Venketesh S.; Kumar R.; Gupta A. K.; Singh R. K.; Yadav S. C.; Tatu U. Heat shock protein 90 as a drug target against protozoan infections. Biochemical characterization of Hsp90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J. Biol. Chem. 2010, 285, 37964–37975. 10.1074/jbc.M110.155317. PubMed DOI PMC

Woodford M. R.; Dunn D. M.; Ciciarelli J. G.; Beebe K.; Neckers L.; Mollapour M. Targeting Hsp90 in non-cancerous maladies. Curr. Top. Med. Chem. 2016, 16, 2792–2805. 10.2174/1568026616666160413141753. PubMed DOI

Low J. S.; Fassati A. Hsp90: A chaperone for HIV-1. Parasitology 2014, 141, 1192–1202. 10.1017/S0031182014000298. PubMed DOI

Kurokawa Y.; Honma Y.; Sawaki A.; Naito Y.; Iwagami S.; Komatsu Y.; Takahashi T.; Nishida T.; Doi T. Pimitespib in patients with advanced gastrointestinal stromal tumor (CHAPTER-GIST-301): A randomized, double-blind, placebo-controlled phase III trial. Ann. Oncol. 2022, 33, 959–967. 10.1016/j.annonc.2022.05.518. PubMed DOI

Hoy S. M. Pimitespib: First approval. Drugs 2022, 82, 1413–1418. 10.1007/s40265-022-01764-6. PubMed DOI

Neckers L.; Workman P. Hsp90 molecular chaperone inhibitors: Are we there yet?. Clin. Cancer Res. 2012, 18, 64–76. 10.1158/1078-0432.CCR-11-1000. PubMed DOI PMC

Kamal A.; Thao L.; Sensintaffar J.; Zhang L.; Boehm M. F.; Fritz L. C.; Burrows F. J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003, 425, 407–410. 10.1038/nature01913. PubMed DOI

Li Y.; Dong J.; Qin J.-J. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur. J. Med. Chem. 2024, 275, 11656210.1016/j.ejmech.2024.116562. PubMed DOI

Supko J. G.; Hickman R. L.; Grever M. R.; Malspeis L. Preclinical pharmacological evaluation of geldanamycin as an antitumor agent. Cancer Chemother. Pharm. 1995, 36, 305–315. 10.1007/BF00689048. PubMed DOI

Tadtong S.; Meksuriyen D.; Tanasupawat S.; Isobe M.; Suwanborirux K. Geldanamycin derivatives and neuroprotective effect on cultured P19-derived neurons. Bioorg. Med. Chem. Lett. 2007, 17, 2939–2943. 10.1016/j.bmcl.2006.12.041. PubMed DOI

Schnur R. C.; Corman M. L.; Gallaschun R. J.; Cooper B. A.; Dee M. F.; Doty J. L.; Muzzi M. L.; Moyer J. D.; DiOrio C. I. Inhibition of the oncogene product p185(erbB-2) in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J. Med. Chem. 1995, 38, 3806–3812. 10.1021/jm00019a010. PubMed DOI

Samuni A.; Goldstein S. Redox properties of benzoquinone ansamycins in aqueous solutions. Isr. J. Chem. 2014, 54, 316–320. 10.1002/ijch.201300094. DOI

Schnur R. C.; Corman M. L.; Gallaschun R. J.; Cooper B. A.; Dee M. F.; Doty J. L.; Muzzi M. L.; DiOrio C I.; Barbacci E. G. erbB-2 oncogene inhibition by geldanamycin derivatives - synthesis, mechanism of action, and structure-activity- relationships. J. Med. Chem. 1995, 38, 3813–3820. 10.1021/jm00019a011. PubMed DOI

Kim K. H.; Ramadhar T. R.; Beemelmanns C.; Cao S.; Poulsen M.; Currie C. R.; Clardy J. Natalamycin A, an ansamycin from a termite associated Streptomyces sp. Chem. Sci. 2014, 5, 4333–4338. 10.1039/C4SC01136H. PubMed DOI PMC

Smith V.; Sausville E. A.; Camalier R. F.; Fiebig H. H.; Burger A. M. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: Effects on Hsp90 and client proteins in melanoma models. Cancer Chemother. Pharmacol. 2005, 56, 126–137. 10.1007/s00280-004-0947-2. PubMed DOI

Banerji U.; O’Donnell A.; Scurr M.; Pacey S.; Stapleton S.; Asad Y.; Simmons L.; Maloney A.; Raynaud F.; Campbell M.; Walton M.; Lakhani S.; Kaye S.; Workman P.; Judson I. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol. 2005, 23, 4152–4161. 10.1200/JCO.2005.00.612. PubMed DOI

Solit D. B.; Ivy S. P.; Kopil C.; Sikorski R.; Morris M. J.; Slovin S. F.; Kelly W. K.; DeLaCruz A.; Curley T.; Heller G.; Larson S.; Schwartz L.; Egorin M. J.; Rosen N.; Scher H. I. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin. Cancer Res. 2007, 13, 1775–1782. 10.1158/1078-0432.CCR-06-1863. PubMed DOI PMC

Pacey S.; Wilson R. H.; Walton M.; Eatock M. M.; Hardcastle A.; Zetterlund A.; Arkenau H.-T.; Moreno-Farre J.; Banerji U.; Roels B.; Peachey H.; Aherne W.; de Bono J. S.; Raynaud F.; Workman P.; Judson I. A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin. Cancer Res. 2011, 17, 1561–1570. 10.1158/1078-0432.CCR-10-1927. PubMed DOI PMC

Gartner E. M.; Silverman P.; Simon M.; Flaherty L.; Abrams J.; Ivy P.; LoRusso P. M. A phase II study of 17-allylamino-17-demethoxygeldanamycin in metastatic or locally advanced, unresectable breast cancer. Breast Cancer Res. Treat. 2012, 131, 933–937. 10.1007/s10549-011-1866-7. PubMed DOI PMC

Sydor J. R.; Normant E.; Pien C. S.; Porter J. R.; Ge J.; Grenier L.; Pak R. H.; Ali J. A.; Dembski M. S.; Hudak J.; Patterson J.; Penders C.; Pink M.; Read M. A.; Sang J.; Woodward C.; Zhang Y. L.; Grayzel D. S.; Wright J.; Barrett J. A.; Palombella V. J.; Adams J.; Tong J. K. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17408–17413. 10.1073/pnas.0608372103. PubMed DOI PMC

Siegel D.; Jagannath S.; Vesole D. H.; Borello I.; Mazumder A.; Mitsiades C.; Goddard J.; Dunbar J.; Normant E.; Adams J.; Grayzel D.; Anderson K. C.; Richardson P. A phase 1 study of IPI-504 (retaspimycin hydrochloride) in patients with relapsed or relapsed and refractory multiple myeloma. Leuk. Lymphoma 2011, 52, 2308–2315. 10.3109/10428194.2011.600481. PubMed DOI

Wagner A. J.; Chugh R.; Rosen L. S.; Morgan J. A.; George S.; Gordon M.; Dunbar J.; Normant E.; Grayzel D.; Demetri G. D. A Phase I study of the Hsp90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin. Cancer Res. 2013, 19, 6020–6029. 10.1158/1078-0432.CCR-13-0953. PubMed DOI PMC

Oh W. K.; Galsky M. D.; Stadler W. M.; Srinivas S.; Chu F.; Bubley G.; Goddard J.; Dunbar J.; Ross R. W. Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (IPI-504), in patients with castration-resistant prostate cancer. Urology 2011, 78, 626–630. 10.1016/j.urology.2011.04.041. PubMed DOI PMC

Sequist L. V.; Gettinger S.; Senzer N. N.; Martins R. G.; Jänne P. A.; Lilenbaum R.; Gray J. E.; Iafrate A. J.; Katayama R.; Hafeez N.; Sweeney J.; Walker J. R.; Fritz C.; Ross R. W.; Grayzel D.; Engelman J. A.; Borger D. R.; Paez G.; Natale R. Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non–small-cell lung cancer. J. Clin. Oncol. 2010, 28, 4953–4960. 10.1200/JCO.2010.30.8338. PubMed DOI PMC

Modi S.; Saura C.; Henderson C.; Lin N. U.; Mahtani R.; Goddard J.; Rodenas E.; Hudis C.; O’Shaughnessy J.; Baselga J. A multicenter trial evaluating retaspimycin HCl (IPI-504) plus trastuzumab in patients with advanced or metastatic HER2-positive breast cancer. Breast Cancer Res. Treat. 2013, 139, 107–113. 10.1007/s10549-013-2510-5. PubMed DOI PMC

Chatterjee S.; Bhattacharya S.; Socinski M. A.; Burns T. F. Hsp90 inhibitors in lung cancer: Promise still unfulfilled. Clin. Adv. Hematol. Oncol. 2016, 14, 346–356. PubMed

Guo W.; Reigan P.; Siegel D.; Zirrolli J.; Gustafson D.; Ross D. Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:Quinone oxidoreductase 1 (NQO1): Role of 17-AAG hydroquinone in heat shock protein 90 inhibition. Cancer Res. 2005, 65, 10006–10015. 10.1158/0008-5472.CAN-05-2029. PubMed DOI

Reigan P.; Siegel D.; Guo W.; Ross D. A mechanistic and structural analysis of the inhibition of the 90-kDa heat shock protein by the benzoquinone and hydroquinone ansamycins. Mol. Pharmacol. 2011, 79, 823–832. 10.1124/mol.110.070086. PubMed DOI PMC

Schlager J. J.; Powis G. Cytosolic NAD(P)H-(quinone-acceptor)oxidoreductase in human normal and tumor-tissue - effects of cigarette-smoking and alcohol. Int. J. Cancer 1990, 45, 403–409. 10.1002/ijc.2910450304. PubMed DOI

Siegel D.; Ross D. Immunodetection of NAD(P)H:Quinone oxidoreductase 1 (NQO1) in human tissues. Free Radical Biol. Med. 2000, 29, 246–253. 10.1016/S0891-5849(00)00310-5. PubMed DOI

Siegel D.; Beall H.; Senekowitsch C.; Kasai M.; Arai H.; Gibson N. W.; Ross D. Bioreductive activation of mitomycin C by DT-diaphorase. Biochemistry 1992, 31, 7879–7885. 10.1021/bi00149a019. PubMed DOI

Dehn D. L.; Inayat-Hussain S. H.; Ross D. RH1 induces cellular damage in an NQO1-dependent manner: Relationship between DNA cross-linking, cell cycle perturbations and apoptosis. J. Pharmacol. Exp. Ther. 2005, 313, 771–779. 10.1124/jpet.104.081380. PubMed DOI

Pink J. J.; Planchon S. M.; Tagliarino C.; Varnes M. E.; Siegel D.; Boothman D. A. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J. Biol. Chem. 2000, 275, 5416–5424. 10.1074/jbc.275.8.5416. PubMed DOI

Beall H. D.; Liu Y.; Siegel D.; Bolton E. M.; Gibson N. W.; Ross D. Role of NAD(P)H:Quinone oxidoreductase (DT-diaphorase) in cytotoxicity and induction of DNA damage by streptonigrin. Biochem. Pharmacol. 1996, 51, 645–652. 10.1016/S0006-2952(95)00223-5. PubMed DOI

Siegel D.; Yan C.; Ross D. NAD(P)H:Quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem. Pharmacol. 2012, 83, 1033–1040. 10.1016/j.bcp.2011.12.017. PubMed DOI PMC

Robertson H.; Dinkova-Kostova A. T.; Hayes J. D. NRF2 and the ambiguous consequences of its activation during initiation and the subsequent stages of tumourigenesis. Cancers 2020, 12, 3609.10.3390/cancers12123609. PubMed DOI PMC

Baird L.; Kensler T. W.; Yamamoto M. Novel NRF2-activated cancer treatments utilizing synthetic lethality. IUBMB Life 2022, 74, 1209–1231. 10.1002/iub.2680. PubMed DOI PMC

Baird L.; Suzuki T.; Takahashi Y.; Hishinuma E.; Saigusa D.; Yamamoto M. Geldanamycin-derived Hsp90 inhibitors are synthetic lethal with NRF2. Mol. Cell. Biol. 2020, 40, e00377-20.10.1128/MCB.00377-20. PubMed DOI PMC

Baird L.; Yamamoto M. NRF2-dependent bioactivation of mitomycin C as a novel strategy to target KEAP1-NRF2 pathway activation in human cancer. Mol. Cell. Biol. 2021, 41, 00473.10.1128/MCB.00473-20. PubMed DOI PMC

Dernovšek J.; Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol. Therapeut. 2023, 245, 10839610.1016/j.pharmthera.2023.108396. PubMed DOI

Stebbins C. E.; Russo A. A.; Schneider C.; Rosen N.; Hartl F. U.; Pavletich N. P. Crystal structure of an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell 1997, 89, 239–250. 10.1016/S0092-8674(00)80203-2. PubMed DOI

Roe S. M.; Prodromou C.; O’Brien R.; Ladbury J. E.; Piper P. W.; Pearl L. H. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 1999, 42, 260–266. 10.1021/jm980403y. PubMed DOI

Dehner A.; Furrer J.; Richter K.; Schuster I.; Buchner J.; Kessler H. NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADR AMP-PNP, geldanamycin, and radicicol. ChemBioChem. 2003, 4, 870–877. 10.1002/cbic.200300658. PubMed DOI

Tillotson B.; Slocum K.; Coco J.; Whitebread N.; Thomas B.; West K. A.; MacDougall J.; Ge J.; Ali J. A.; Palombella V. J.; Normant E.; Adams J.; Fritz C. C. Hsp90 (heat shock protein 90) inhibitor occupancy is a direct determinant of client protein degradation and tumor growth arrest in vivo. J. Biol. Chem. 2010, 285, 39835–39843. 10.1074/jbc.M110.141580. PubMed DOI PMC

Khandelwal A.; Kent C. N.; Balch M.; Peng S.; Mishra S. J.; Deng J.; Day V. W.; Liu W.; Subramanian C.; Cohen M.; Holzbeierlein J. M.; Matts R.; Blagg B. S. J. Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat. Commun. 2018, 9, 425.10.1038/s41467-017-02013-1. PubMed DOI PMC

Lei W.; Duron D. I.; Stine C.; Mishra S.; Blagg B. S. J.; Streicher J. M. The alpha isoform of heat shock protein 90 and the co-chaperones p23 and Cdc37 promote opioid anti-nociception in the brain. Front. Mol. Neurosci 2019, 12, 294.10.3389/fnmol.2019.00294. PubMed DOI PMC

Mishra S. J.; Liu W.; Beebe K.; Banerjee M.; Kent C. N.; Munthali V.; Koren J.; Taylor J. A.; Neckers L. M.; Holzbeierlein J.; Blagg B. S. J. The development of Hsp90β-selective inhibitors to overcome detriments associated with pan-Hsp90 inhibition. J. Med. Chem. 2021, 64, 1545–1557. 10.1021/acs.jmedchem.0c01700. PubMed DOI PMC

Maiti S.; Picard D. Cytosolic Hsp90 isoform-specific functions and clinical significance. Biomolecules 2022, 12, 1166.10.3390/biom12091166. PubMed DOI PMC

Yu J.; Zhang C.; Song C. Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. Eur. J. Med. Chem. 2022, 238, 11451610.1016/j.ejmech.2022.114516. PubMed DOI

Skrzypczak N.; Pyta K.; Ruszkowski P.; Gdaniec M.; Bartl F.; Przybylski P. Synthesis, structure and anticancer activity of new geldanamycin amine analogs containing C(17)- or C(20)- flexible and rigid arms as well as closed or open ansa-bridges. Eur. J. Med. Chem. 2020, 202, 11262410.1016/j.ejmech.2020.112624. PubMed DOI

Skrzypczak N.; Pyta K.; Ruszkowski P.; Mikolajczak P.; Kucinska M.; Murias M.; Gdaniec M.; Bartl F.; Przybylski P. Anticancer activity and toxicity of new quaternary ammonium geldanamycin derivative salts and their mixtures with potentiators. J. Enzym. Inhib. Med. Chem. 2021, 36, 1898–1904. 10.1080/14756366.2021.1960829. PubMed DOI PMC

Skrzypczak N.; Buczkowski A.; Bohusz W.; Nowak E.; Tokarska K.; Lesniewska A.; Alzebari A. M.; Ruszkowski P.; Gdaniec M.; Bartl F.; Przybylski P. Modifications of geldanamycin via CuAAC altering affinity to chaperone protein Hsp90 and cytotoxicity. Eur. J. Med. Chem. 2023, 256, 11545010.1016/j.ejmech.2023.115450. PubMed DOI

Pyta K.; Skrzypczak N.; Ruszkowski P.; Bartl F.; Przybylski P. Regioselective approach to colchiceine tropolone ring functionalization at C(9) and C(10) yielding new anticancer hybrid derivatives containing heterocyclic structural motifs. J. Enzym. Inhib. Med. Chem. 2022, 37, 597–605. 10.1080/14756366.2022.2028782. PubMed DOI PMC

Takahisa H.; Kurosaki N.; Ujino M.; Shimotono K.. Antiviral agent. Japan Patent JP2007238442A, 2007.

Le Brazidec J. Y.; Kamal A.; Busch D.; Thao L.; Zhang L.; Timony G.; Grecko R.; Trent K.; Lough R.; Salazar T.; Khan S.; Burrows F.; Boehm M. F. Synthesis and biological evaluation of a new class of geldanamycin derivatives as potent inhibitors of Hsp90. J. Med. Chem. 2004, 47, 3865–3873. 10.1021/jm0306125. PubMed DOI

Hu Z.; Liu Y.; Tian Z.-Q.; Ma W.; Starks C. M.; Regentin R.; Licari P.; Myles D. C.; Hutchinson C. R. Isolation and characterization of novel geldanamycin analogues. J. Antibiot. 2004, 57, 421–428. 10.7164/antibiotics.57.421. PubMed DOI

Skrzypczak N.; Pyta K.; Bohusz W.; Lesniewska A.; Gdaniec M.; Ruszkowski P.; Schilf W.; Bartl F.; Przybylski P. Cascade transformation of the ansamycin benzoquinone core into benzoxazole influencing anticancer activity and selectivity. J. Org. Chem. 2023, 88, 9469–9474. 10.1021/acs.joc.3c00493. PubMed DOI PMC

Sasaki K.; Inoue Y.. Geldanamycin derivatives. Germany Patent DE3006097, 1980

Cysyk R. L.; Parker R. J.; Barchi J. J.; Steeg P. S.; Hartman N. R.; Strong J. M. Reaction of geldanamycin and C17-substituted analogues with glutathione: Product identifications and pharmacological implications. Chem. Res. Toxicol. 2006, 19, 376–381. 10.1021/tx050237e. PubMed DOI

Kitson R. R. A.; Chang C.-H.; Xiong R.; Williams H. E. L.; Davis A. L.; Lewis W.; Dehn D. L.; Siegel D.; Roe S. M.; Prodromou C.; Ross D.; Moody C. J. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90. Nat. Chem. 2013, 5, 307–314. 10.1038/nchem.1596. PubMed DOI PMC

Wang X.; Zhang Y.; Ponomareva L. V.; Qiu Q.; Woodcock R.; Elshahawi S. I.; Chen X.; Zhou Z.; Hatcher B. E.; Hower J. C.; Zhan C.-G.; Parkin S.; Kharel M. K.; Voss S. R.; Shaaban K. A.; Thorson J. S. Mccrearamycins A-D, geldanamycin-derived cyclopentenone macrolactams from an eastern Kentucky abandoned coal mine microbe. Angew. Chem., Int. Ed. 2017, 56, 2994–2998. 10.1002/anie.201612447. PubMed DOI PMC

Xie Y.; Guo L.; Huang J.; Huang X.; Cong Z.; Liu Q.; Wang Q.; Pang X.; Xiang S.; Zhou X.; Liu Y.; Wang J.; Wang J. Cyclopentenone-containing tetrahydroquinoline and geldanamycin alkaloids from Streptomyces malaysiensis as potential anti-androgens against prostate cancer cells. J. Nat. Prod. 2021, 84, 2004–2011. 10.1021/acs.jnatprod.1c00297. PubMed DOI

Muroi M.; Haibara K.; Asai M.; Kamiya K.; Kishi T. The structures of macbecin I and II: New antitumor antibiotics. Tetrahedron 1981, 37, 1123–1130. 10.1016/S0040-4020(01)92041-1. DOI

Shibata K.; Satsumabayashi S.; Nakagawa A.; Omura S. The structure and cytocidal activity of herbimycin C. J. Antibiot. 1986, 39, 1630–1633. 10.7164/antibiotics.39.1630. PubMed DOI

Stead P.; Latif S.; Blackaby A. P.; Sidebottom P. J.; Deakin A.; Taylor N. L.; Life P.; Spaull J.; Burrell F.; Jones R.; Lewis J.; Davidson I.; Mander T. Discovery of novel ansamycins possessing potent inhibitory activity in a cell-based oncostatin msignalling assay. J. Antibiot. 2000, 53, 657–663. 10.7164/antibiotics.53.657. PubMed DOI

Takatsu T.; Ohtsuki M.; Muramatsu A.; Enokita R.; Kurakata S.-I. Reblastatin, a novel benzenoid ansamycin-type cell cycle inhibitor. J. Antibiot. 2000, 53, 1310–1312. 10.7164/antibiotics.53.1310. PubMed DOI

Skrzypczak N.; Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat. Prod. Rep. 2022, 39, 1678–1704. 10.1039/D2NP00004K. PubMed DOI

Eichner S.; Floss H. G.; Sasse F.; Kirschning A. New, highly active nonbenzoquinone geldanamycin derivatives by using mutasynthesis. ChemBioChem. 2009, 10, 1801–1805. 10.1002/cbic.200900246. PubMed DOI

Mohammadi-Ostad-Kalayeh S.; Stahl F.; Scheper T.; Kock K.; Herrmann C.; Batista F. A. H.; Borges J. C.; Sasse F.; Eichner S.; Ongouta J.; Zeilinger C.; Kirschning A. Heat shock proteins revisited: Using a mutasynthetically generated reblastatin library to compare the inhibition of human and Leishmania Hsp90s. ChemBioChem 2018, 19, 562–574. 10.1002/cbic.201700616. PubMed DOI

Hermane J.; Eichner S.; Mancuso L.; Schröder B.; Sasse F.; Zeilinger C.; Kirschning A. New geldanamycin derivatives with anti Hsp properties by mutasynthesis. Org. Biomol. Chem. 2019, 17, 5269–5278. 10.1039/C9OB00892F. PubMed DOI

Li S.; Ni S.; Wu L.; Li L.; Jiang B.; Wang H.; Sun G.; Gan M.; Li J.; He W.; Lin L.; Wang Y.; Bai S.; Si S. 19-[(1′S,4′R)-4′-hydroxy-1′-methoxy-2′-oxopentyl]geldanamycin, a natural geldanamycin analogue from Streptomyces hygroscopicus 17997. J. Nat. Prod. 2013, 76, 969–973. 10.1021/np4000679. PubMed DOI

Li Y. P.; Chen J. J.; Shen J. J.; Cui J.; Wu L. Z.; Wang Z.; Li Z. R. Synthesis and biological evaluation of geldanamycin analogs against human cancer cells. Cancer Chemother. Pharmacol. 2015, 75, 773–782. 10.1007/s00280-015-2696-9. PubMed DOI

Chang C.-H.; Drechsel D. A.; Kitson R. R. A.; Siegel D.; You Q.; Backos D. S.; Ju C.; Moody C. J.; Ross D. 19-substituted benzoquinone ansamycin heat shock protein-90 inhibitors: Biological activity and decreased off-target toxicity. Mol. Pharmacol. 2014, 85, 849–857. 10.1124/mol.113.090654. PubMed DOI PMC

Liu Y.-F.; Zhong J.-J.; Lin L.; Liu J.-J.; Wang Y.-G.; He W.-Q.; Yang Z.-Y. New C-19–modified geldanamycin derivatives: Synthesis, antitumor activities, and physical properties study. J. Asian Nat. Prod. Res. 2016, 18, 752–764. 10.1080/10286020.2016.1160896. PubMed DOI

Díaz-Cruz G. A.; Liu J.; Tahlan K.; Bignell D. R. D. Nigericin and geldanamycin are phytotoxic specialized metabolites produced by the plant pathogen Streptomyces sp. 11–1-2. Microbiol. Spectrum 2022, 10, e02314-21.10.1128/spectrum.02314-21. PubMed DOI PMC

Shan G.-z.; Peng Z.-g.; Li Y.-h.; Li D.; Li Y.-p.; Meng S.; Gao L.-y.; Jiang J.-d.; Li Z.-r. A novel class of geldanamycin derivatives as HCV replication inhibitors targeting on Hsp90: Synthesis, structure–activity relationships and anti-HCV activity in GS4.3 replicon cells. J. Antibiot. 2011, 64, 177–182. 10.1038/ja.2010.161. PubMed DOI

Li Y.-P.; Shan G.-Z.; Peng Z.-G.; Zhu J.-H.; Meng S.; Zhang T.; Gao L.-Y.; Tao P.-Z.; Gao R.-M.; Li Y.-H.; Jiang J.-D.; Li Z. R. Synthesis and biological evaluation of heat-shock protein 90 inhibitors: Geldanamycin derivatives with broad antiviral activities. Antiviral Chem. Chemother. 2010, 20, 259–268. 10.3851/IMP1631. PubMed DOI

Sasaki K.; Inoue Y.. Novel geldanamycin derivatives as pharmaceutically active ingredients and their preparation. Japan Patent JP 57-163369, 1981.

Wu L.; Wang Y.; Liu X.; Li J.; Wang H.; Ni S.; He W.; Lin L.. 19S-Methyl geldanamycin and 4,5-dihydrogen-19S-methyl geldanamycin and preparation method thereof. China Patent CN102120730A, 2011.

Yanping L.; Linzhuan W.; Zhen W.; Zhuorong L.; Zhi J.; Jing C.. Geldanamycin analogues with multiple tumor resistance activity, preparation method and application thereof. China Patent CN104292163B, 2015.

Guo W.; Reigan P.; Siegel D.; Ross D. Enzymatic reduction and glutathione conjugation of benzoquinone ansamycin heat shock protein 90 inhibitors: Relevance for toxicity and mechanism of action. Drug Metab. Dispos. 2008, 36, 2050–2057. 10.1124/dmd.108.022004. PubMed DOI PMC

He W.; Ni S.; Wang H.; Wang Y.; Wang Y.; Wu L.. Geldanamycin biosynthetic analog 19-O-glycyl geldanamicin. China Patent CN101792418A, 2010.

Li Y.; He W.; Wang Y.; Wang Y.; Shao R. A new post-PKS modification process in the carbamoyltransferase gene inactivation strain of Streptomyces hygroscopicus 17997. J. Antibiot. 2008, 61, 347–355. 10.1038/ja.2008.49. PubMed DOI

Smith N. F.; Hayes A.; Nutley B. P.; Raynaud F. I.; Workman P. Evaluation of the cassette dosing approach for assessing the pharmacokinetics of geldanamycin analogues in mice. Cancer Chemother. Pharmacol. 2004, 54, 475–486. 10.1007/s00280-004-0853-7. PubMed DOI

Sorensen D. M.; Büll C.; Madsen T. D.; Lira-Navarrete E.; Clausen T. M.; Clark A. E.; Garretson A. F.; Karlsson R.; Pijnenborg J. F. A.; Yin X.; Miller R. L.; Chanda S. K.; Boltje T. J.; Schjoldager K. T.; Vakhrushev S. Y.; Halim A.; Esko J. D.; Carlin A. F.; Hurtado-Guerrero R.; Weigert R.; Clausen H.; Narimatsu Y. Identification of global inhibitors of cellular glycosylation. Nat. Commun. 2023, 14, 948.10.1038/s41467-023-36598-7. PubMed DOI PMC

Kitson R. R. A.; Moody C. J. Synthesis of novel geldanamycin derivatives. Tetrahedron 2021, 82, 13192710.1016/j.tet.2021.131927. DOI

Lang W.; Caldwell G. W.; Li J.; Leo G. C.; Jones W. J.; Masucci J. A. Biotransformation of geldanamycin and 17-allylamino-17-demethoxygeldanamycin by human liver microsomes: Reductive versus oxidative metabolism and implications. Drug Metab. Dispos. 2007, 35, 21–29. 10.1124/dmd.106.009639. PubMed DOI

Rinehart K. L.; Shield L. S. Chemistry of the ansamycin antibiotics. Prog. Chem. Org. Nat. Prod. 1976, 33, 231–307. 10.1007/978-3-7091-3262-3_3. PubMed DOI

Schnur R. C.; Corman M. L. Tandem [3,3]-sigmatropic rearrangements in an ansamycin - stereospecific conversion of an (S)-allylic alcohol to an (Sw)-allylic amine derivative. J. Org. Chem. 1994, 59, 2581–2584. 10.1021/jo00088a047. DOI

Jez J. M.; Chen J. C.-H.; Rastelli G.; Stroud R. M.; Santi D. V. Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem. Biol. 2003, 10, 361–368. 10.1016/S1074-5521(03)00075-9. PubMed DOI

Lee Y.-S.; Marcu M. G.; Neckers L. Quantum chemical calculations and mutational analysis suggest heat shock protein 90 catalyzes trans-cis isomerization of geldanamycin. Chem. Biol. 2004, 11, 991–998. 10.1016/j.chembiol.2004.05.010. PubMed DOI

Thepchatri P.; Eliseo T.; Cicero D. O.; Myles D.; Snyder J. P. Relationship among ligand conformations in solution, in the solid state, and at the Hsp90 binding site: Geldanamycin and radicicol. J. Am. Chem. Soc. 2007, 129, 3127–3134. 10.1021/ja064863p. PubMed DOI

Kitson R. R. A.; Moody C. J. An improved route to 19-substituted geldanamycins as novel Hsp90 inhibitors - potential therapeutics in cancer and neurodegeneration. Chem. Commun. 2013, 49, 8441–8443. 10.1039/c3cc43457e. PubMed DOI PMC

Morimoto H.; Tsubogo T.; Litvinas N. D.; Hartwig J. F. A broadly applicable copper reagent for trifluoromethylations and perfluoroalkylations of aryl iodides and bromides. Angew. Chem., Int. Ed. 2011, 50, 3793–3798. 10.1002/anie.201100633. PubMed DOI PMC

Vozzolo L.; Loh B.; Gane P. J.; Tribak M.; Zhou L.; Anderson I.; Nyakatura E.; Jenner R. G.; Selwood D.; Fassati A. Gyrase B inhibitor impairs HIV-1 replication by targeting Hsp90 and the capsid protein. J. Biol. Chem. 2010, 285, 39314–39328. 10.1074/jbc.M110.155275. PubMed DOI PMC

Roesch F.; Meziane O.; Kula A.; Nisole S.; Porrot F.; Anderson I.; Mammano F.; Fassati A.; Marcello A.; Benkirane M.; Schwartz O. Hyperthermia stimulates HIV-1 replication. PLoS Pathog. 2012, 8, e100279210.1371/journal.ppat.1002792. PubMed DOI PMC

Anderson I.; Low J. S.; Weston S.; Weinberger M.; Zhyvoloup A.; Labokha A. A.; Corazza G.; Kitson R. A.; Moody C. J.; Marcello A.; Fassati A. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E1528–E1537. 10.1073/pnas.1320178111. PubMed DOI PMC

Chaudhury S.; Keegan B. M.; Blagg B. S. J. The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies. Med. Res. Rev. 2021, 41, 202–222. 10.1002/med.21729. PubMed DOI PMC

Waza M.; Adachi H.; Katsuno M.; Minamiyama M.; Sang C.; Tanaka F.; Inukai A.; Doyu M.; Sobue G. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat. Med. 2005, 11, 1088–1095. 10.1038/nm1298. PubMed DOI

Dimant H.; Ebrahimi-Fakhari D.; McLean P. J. Molecular chaperones and co-chaperones in Parkinson disease. Neuroscientist 2012, 18, 589–601. 10.1177/1073858412441372. PubMed DOI PMC

Carman A.; Kishinevsky S.; Koren J. III; Lou W.; Chiosis G. Chaperone-dependent neurodegeneration: A molecular perspective on therapeutic intervention. J. Alzheimers Dis. Parkinsonism 2013, Suppl 10, 007.10.4172/2161-0460.S10-007. PubMed DOI PMC

Auluck P. K.; Meulener M. C.; Bonini N. M. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. J. Biol. Chem. 2005, 280, 2873–2878. 10.1074/jbc.M412106200. PubMed DOI

Putcha P.; Danzer K. M.; Kranich L. R.; Scott A.; Silinski M.; Mabbett S.; Hicks C. D.; Veal J. M.; Steed P. M.; Hyman B. T.; McLean P. J. Brain-permeable small-molecule inhibitors of Hsp90 prevent α-synuclein oligomer formation and rescue α-synuclein-induced toxicity. J. Pharmacol. Exp. Ther. 2010, 332, 849–857. 10.1124/jpet.109.158436. PubMed DOI PMC

Xiong R.; Zhou W.; Siegel D.; Kitson R. R. A.; Freed C. R.; Moody C. J.; Ross D. A novel Hsp90 inhibitor activates compensatory heat shock protein responses and autophagy and alleviates mutant A53T α-synuclein toxicity. Mol. Pharmacol. 2015, 88, 1045–1054. 10.1124/mol.115.101451. PubMed DOI PMC

Taipale M.; Jarosz D. F.; Lindquist S. Hsp90 at the hub of protein homeostasis: Emerging mechanistic insights. Nat. Rev. Cell Biol. 2010, 11, 515–528. 10.1038/nrm2918. PubMed DOI

Prodromou C. Mechanisms of Hsp90 regulation. Biochem. J. 2016, 473, 2439–2452. 10.1042/BCJ20160005. PubMed DOI PMC

Chiosis G.; Digwal C. S.; Trepel J. B.; Neckers L. Structural and functional complexity of Hsp90 in cellular homeostasis and disease. Nat. Rev. Mol. Cell Biol. 2023, 24, 797–815. 10.1038/s41580-023-00640-9. PubMed DOI PMC

Shelton L. B.; Baker J. D.; Zheng D.; Sullivan L. E.; Solanki P. K.; Webster J. M.; Sun Z.; Sabbagh J. J.; Nordhues B. A.; Koren J.; Ghosh S.; Blagg B. S. J.; Blair L. J.; Dickey C. A. Hsp90 activator Aha1 drives production of pathological tau aggregates. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 9707–9712. 10.1073/pnas.1707039114. PubMed DOI PMC

Zhang X.; Li S.; Li Z.; Cheng L.; Liu Z.; Wang C. The therapeutic potential of targeting Hsp90-Cdc37 interactions in several diseases. Curr. Drug Targets 2022, 23, 1023–1038. 10.2174/1389450123666220408101544. PubMed DOI

Gracia L.; Lora G.; Blair L. J.; Jinwal U. K. Therapeutic potential of the Hsp90/Cdc37 interaction in neurodegenerative diseases. Front. Neurosci. 2019, 13, 163.10.3389/fnins.2019.01263. PubMed DOI PMC

Kurop M. K.; Huyen C. M.; Kelly J. H.; Blagg B. S. J. The heat shock response and small molecule regulators. Eur. J. Med. Chem. 2021, 226, 11384610.1016/j.ejmech.2021.113846. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...