Geldanamycin, a Naturally Occurring Inhibitor of Hsp90 and a Lead Compound for Medicinal Chemistry
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39361055
PubMed Central
PMC11513894
DOI
10.1021/acs.jmedchem.4c01048
Knihovny.cz E-zdroje
- MeSH
- antitumorózní látky farmakologie chemie chemická syntéza MeSH
- benzochinony * chemie farmakologie chemická syntéza MeSH
- chemie farmaceutická metody MeSH
- lidé MeSH
- makrocyklické laktamy * chemie farmakologie chemická syntéza MeSH
- proteiny tepelného šoku HSP90 * antagonisté a inhibitory metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antitumorózní látky MeSH
- benzochinony * MeSH
- geldanamycin MeSH Prohlížeč
- makrocyklické laktamy * MeSH
- proteiny tepelného šoku HSP90 * MeSH
Geldanamycin remains a driver in the medicinal chemistry of heat shock protein 90 (Hsp90) inhibition, even half a century after its original isolation from nature. This Perspective focuses on the properties of the benzoquinone ring of the natural product that enable a range of functionalization reactions to take place. Therefore, inherent reactivity at C-17, where the methoxy group serves as a vinylogous ester, and at C-19 that demonstrates nucleophilic, enamide-type character toward electrophiles, and also as a conjugate acceptor to react with nucleophiles, has facilitated the synthesis of semisynthetic derivatives. Thus, a range of C-17-substituted amine derivatives has been investigated in oncology applications, with a number of compounds in this series reaching clinical trials. In contrast, the 19-position of geldanamycin has received less attention, although 19-substituted derivatives offer promise with markedly reduced toxicity compared to geldanamycin itself, while retaining Hsp90 inhibitory activity albeit with diminished potency in cellular studies.
Datwyler Sealing Technologies CZ Ltd Polní 224 50401 Nový Bydžov Czech Republic
School of Chemistry University of Nottingham University Park Nottingham NG7 2RD U K
Zobrazit více v PubMed
Newman D. J.; Cragg G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. 10.1021/acs.jnatprod.9b01285. PubMed DOI
De Boer C.; Meulman P. A.; Wnuk R. J.; Peterson D. H. Geldanamycin, a new antibiotic. J. Antibiot. 1970, 23, 442–447. 10.7164/antibiotics.23.442. PubMed DOI
Rinehart K. L.; Sasaki K.; Slomp G.; Grostic M. F.; Olson E. C. Geldanamycin. I. Structure assignment. J. Am. Chem. Soc. 1970, 92, 7591–7593. 10.1021/ja00729a018. PubMed DOI
He W.; Wu L.; Gao Q.; Du Y.; Wang Y. Identification of AHBA biosynthetic genes related to geldanamycin biosynthesis in Streptomyces hygroscopicus 17997. Curr. Microbiol. 2006, 52, 197–203. 10.1007/s00284-005-0203-y. PubMed DOI
Martín J. F.; Ramos A.; Liras P. Regulation of geldanamycin biosynthesis by cluster-situated transcription factors and the master regulator PhoP. Antibiotics 2019, 8, 87.10.3390/antibiotics8030087. PubMed DOI PMC
Andrus M. B.; Meredith E. L.; Simmons B. L.; Sekhar B.; Hicken E. J. Total synthesis of (+)-geldanamycin and (−)-o-quinogeldanamycin with use of asymmetric anti- and syn-glycolate aldol reactions. Org. Lett. 2002, 4, 3549–3552. 10.1021/ol0267432. PubMed DOI
Qin H. L.; Panek J. S. Total synthesis of the Hsp90 inhibitor geldanamycin. Org. Lett. 2008, 10, 2477–2479. 10.1021/ol800749w. PubMed DOI PMC
Zhang Z.; Li Y.; Zhang R.; Yu X. Total synthesis of geldanamycin. J. Org. Chem. 2021, 86, 15063–15075. 10.1021/acs.joc.1c01582. PubMed DOI
Hampel T.; Neubauer T.; van Leeuwen T.; Bach T. Stereoselective preparation of (E)-configured 1,2-disubstituted propenes from two aldehydes by a two-carbon stitching strategy: Convergent synthesis of 18,21-diisopropyl-geldanamycin hydroquinone and its C7 epimer. Chem.—Eur. J. 2012, 18, 10382–10392. 10.1002/chem.201201600. PubMed DOI
Kitson R. R. A.; Moody C. J. Learning from nature: Advances in geldanamycin and radicicol-based inhibitors of Hsp90. J. Org. Chem. 2013, 78, 5117–5141. 10.1021/jo4002849. PubMed DOI
Rinehart K. L.; Sobiczewski W.; Honegger J. F.; Enanoza R. M.; Witty T. R.; Lee V. J.; Shield L. S.; Li L. H.; Reusser F. Synthesis of hydrazones and oximes of geldanaldehyde as potential polymerase inhibitors. Bioorg. Chem. 1977, 6, 341–351. 10.1016/0045-2068(77)90034-7. DOI
Rinehart K. L.; McMillan M. W.; Witty T. R.; Tipton C. D.; Shield L. S.; Li L. H.; Reusser F. Synthesis of phenazine and phenoxazinone derivatives of geldanamycin as potential polymerase inhibitors. Bioorg. Chem. 1977, 6, 353–369. 10.1016/0045-2068(77)90035-9. DOI
Whitesell L.; Mimnaugh E. G.; Decosta B.; Myers C. E.; Neckers L. M. Inhibition of heat-shock protein Hsp90-pp60v-src heteroprotein complex-formation by benzoquinone ansamycins - essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 8324–8328. 10.1073/pnas.91.18.8324. PubMed DOI PMC
Franke J.; Eichner S.; Zeilinger C.; Kirschning A. Targeting heat-shock-protein 90 (Hsp90) by natural products: Geldanamycin, a show case in cancer therapy. Nat. Prod. Rep. 2013, 30, 1299–1323. 10.1039/c3np70012g. PubMed DOI
Whitesell L.; Lindquist S. Hsp90 and the chaperoning of cancer. Nat. Rev. Cancer 2005, 5, 761–772. 10.1038/nrc1716. PubMed DOI
Pearl L. H. The Hsp90 molecular chaperone—an enigmatic ATPase. Biopolymers 2016, 105, 594–607. 10.1002/bip.22835. PubMed DOI PMC
Schopf F. H.; Biebl M. M.; Buchner J. The Hsp90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 2017, 18, 345–360. 10.1038/nrm.2017.20. PubMed DOI
Isaacs J. S.; Xu W.; Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003, 3, 213–217. 10.1016/S1535-6108(03)00029-1. PubMed DOI
Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 2004, 206, 149–157. 10.1016/j.canlet.2003.08.032. PubMed DOI
McLean P. J.; Klucken J.; Shin Y.; Hyman B. T. Geldanamycin induces Hsp70 and prevents α-synuclein aggregation and toxicity in vitro. Biochem. Biophys. Res. Commun. 2004, 321, 665–669. 10.1016/j.bbrc.2004.07.021. PubMed DOI
Luo W.; Sun W.; Taldone T.; Rodina A.; Chiosis G. Heat shock protein 90 in neurodegenerative diseases. Mol. Neurodegener. 2010, 5, 24.10.1186/1750-1326-5-24. PubMed DOI PMC
Pratt W. B.; Gestwicki J. E.; Osawa Y.; Lieberman A. P. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 353–371. 10.1146/annurev-pharmtox-010814-124332. PubMed DOI PMC
Workman P.; Burrows F.; Neckers L.; Rosen N. Drugging the cancer chaperone Hsp90. Combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N.Y. Acad. Sci. 2007, 1113, 202–216. 10.1196/annals.1391.012. PubMed DOI
Aherne W.; Maloney A.; Prodromou C.; Rowlands M. G.; Hardcastle A.; Boxall K.; Clarke P.; Walton M. I.; Pearl L.; Workman P.. Assays for Hsp90 and inhibitors. In Methods in molecular medicine. Novel anticancer drug protocols; Buolamwini J. K., Adjei A. A., Eds.; Humana Press: Totowa, NJ, 2003; Vol. 85, pp 149–161. PubMed
Riedel M.; Goldbaum O.; Schwarz L.; Schmitt S.; Richter-Landsberg C. 17-AAG induces cytoplasmica-synuclein aggregate clearance by induction of autophagy. PLoS One 2010, 5, e875310.1371/journal.pone.0008753. PubMed DOI PMC
Pallavi R.; Roy N.; Nageshan R. K.; Talukdar P.; Pavithra S. R.; Reddy R.; Venketesh S.; Kumar R.; Gupta A. K.; Singh R. K.; Yadav S. C.; Tatu U. Heat shock protein 90 as a drug target against protozoan infections. Biochemical characterization of Hsp90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J. Biol. Chem. 2010, 285, 37964–37975. 10.1074/jbc.M110.155317. PubMed DOI PMC
Woodford M. R.; Dunn D. M.; Ciciarelli J. G.; Beebe K.; Neckers L.; Mollapour M. Targeting Hsp90 in non-cancerous maladies. Curr. Top. Med. Chem. 2016, 16, 2792–2805. 10.2174/1568026616666160413141753. PubMed DOI
Low J. S.; Fassati A. Hsp90: A chaperone for HIV-1. Parasitology 2014, 141, 1192–1202. 10.1017/S0031182014000298. PubMed DOI
Kurokawa Y.; Honma Y.; Sawaki A.; Naito Y.; Iwagami S.; Komatsu Y.; Takahashi T.; Nishida T.; Doi T. Pimitespib in patients with advanced gastrointestinal stromal tumor (CHAPTER-GIST-301): A randomized, double-blind, placebo-controlled phase III trial. Ann. Oncol. 2022, 33, 959–967. 10.1016/j.annonc.2022.05.518. PubMed DOI
Hoy S. M. Pimitespib: First approval. Drugs 2022, 82, 1413–1418. 10.1007/s40265-022-01764-6. PubMed DOI
Neckers L.; Workman P. Hsp90 molecular chaperone inhibitors: Are we there yet?. Clin. Cancer Res. 2012, 18, 64–76. 10.1158/1078-0432.CCR-11-1000. PubMed DOI PMC
Kamal A.; Thao L.; Sensintaffar J.; Zhang L.; Boehm M. F.; Fritz L. C.; Burrows F. J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003, 425, 407–410. 10.1038/nature01913. PubMed DOI
Li Y.; Dong J.; Qin J.-J. Small molecule inhibitors targeting heat shock protein 90: An updated review. Eur. J. Med. Chem. 2024, 275, 11656210.1016/j.ejmech.2024.116562. PubMed DOI
Supko J. G.; Hickman R. L.; Grever M. R.; Malspeis L. Preclinical pharmacological evaluation of geldanamycin as an antitumor agent. Cancer Chemother. Pharm. 1995, 36, 305–315. 10.1007/BF00689048. PubMed DOI
Tadtong S.; Meksuriyen D.; Tanasupawat S.; Isobe M.; Suwanborirux K. Geldanamycin derivatives and neuroprotective effect on cultured P19-derived neurons. Bioorg. Med. Chem. Lett. 2007, 17, 2939–2943. 10.1016/j.bmcl.2006.12.041. PubMed DOI
Schnur R. C.; Corman M. L.; Gallaschun R. J.; Cooper B. A.; Dee M. F.; Doty J. L.; Muzzi M. L.; Moyer J. D.; DiOrio C. I. Inhibition of the oncogene product p185(erbB-2) in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J. Med. Chem. 1995, 38, 3806–3812. 10.1021/jm00019a010. PubMed DOI
Samuni A.; Goldstein S. Redox properties of benzoquinone ansamycins in aqueous solutions. Isr. J. Chem. 2014, 54, 316–320. 10.1002/ijch.201300094. DOI
Schnur R. C.; Corman M. L.; Gallaschun R. J.; Cooper B. A.; Dee M. F.; Doty J. L.; Muzzi M. L.; DiOrio C I.; Barbacci E. G. erbB-2 oncogene inhibition by geldanamycin derivatives - synthesis, mechanism of action, and structure-activity- relationships. J. Med. Chem. 1995, 38, 3813–3820. 10.1021/jm00019a011. PubMed DOI
Kim K. H.; Ramadhar T. R.; Beemelmanns C.; Cao S.; Poulsen M.; Currie C. R.; Clardy J. Natalamycin A, an ansamycin from a termite associated Streptomyces sp. Chem. Sci. 2014, 5, 4333–4338. 10.1039/C4SC01136H. PubMed DOI PMC
Smith V.; Sausville E. A.; Camalier R. F.; Fiebig H. H.; Burger A. M. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: Effects on Hsp90 and client proteins in melanoma models. Cancer Chemother. Pharmacol. 2005, 56, 126–137. 10.1007/s00280-004-0947-2. PubMed DOI
Banerji U.; O’Donnell A.; Scurr M.; Pacey S.; Stapleton S.; Asad Y.; Simmons L.; Maloney A.; Raynaud F.; Campbell M.; Walton M.; Lakhani S.; Kaye S.; Workman P.; Judson I. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol. 2005, 23, 4152–4161. 10.1200/JCO.2005.00.612. PubMed DOI
Solit D. B.; Ivy S. P.; Kopil C.; Sikorski R.; Morris M. J.; Slovin S. F.; Kelly W. K.; DeLaCruz A.; Curley T.; Heller G.; Larson S.; Schwartz L.; Egorin M. J.; Rosen N.; Scher H. I. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin. Cancer Res. 2007, 13, 1775–1782. 10.1158/1078-0432.CCR-06-1863. PubMed DOI PMC
Pacey S.; Wilson R. H.; Walton M.; Eatock M. M.; Hardcastle A.; Zetterlund A.; Arkenau H.-T.; Moreno-Farre J.; Banerji U.; Roels B.; Peachey H.; Aherne W.; de Bono J. S.; Raynaud F.; Workman P.; Judson I. A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin. Cancer Res. 2011, 17, 1561–1570. 10.1158/1078-0432.CCR-10-1927. PubMed DOI PMC
Gartner E. M.; Silverman P.; Simon M.; Flaherty L.; Abrams J.; Ivy P.; LoRusso P. M. A phase II study of 17-allylamino-17-demethoxygeldanamycin in metastatic or locally advanced, unresectable breast cancer. Breast Cancer Res. Treat. 2012, 131, 933–937. 10.1007/s10549-011-1866-7. PubMed DOI PMC
Sydor J. R.; Normant E.; Pien C. S.; Porter J. R.; Ge J.; Grenier L.; Pak R. H.; Ali J. A.; Dembski M. S.; Hudak J.; Patterson J.; Penders C.; Pink M.; Read M. A.; Sang J.; Woodward C.; Zhang Y. L.; Grayzel D. S.; Wright J.; Barrett J. A.; Palombella V. J.; Adams J.; Tong J. K. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17408–17413. 10.1073/pnas.0608372103. PubMed DOI PMC
Siegel D.; Jagannath S.; Vesole D. H.; Borello I.; Mazumder A.; Mitsiades C.; Goddard J.; Dunbar J.; Normant E.; Adams J.; Grayzel D.; Anderson K. C.; Richardson P. A phase 1 study of IPI-504 (retaspimycin hydrochloride) in patients with relapsed or relapsed and refractory multiple myeloma. Leuk. Lymphoma 2011, 52, 2308–2315. 10.3109/10428194.2011.600481. PubMed DOI
Wagner A. J.; Chugh R.; Rosen L. S.; Morgan J. A.; George S.; Gordon M.; Dunbar J.; Normant E.; Grayzel D.; Demetri G. D. A Phase I study of the Hsp90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin. Cancer Res. 2013, 19, 6020–6029. 10.1158/1078-0432.CCR-13-0953. PubMed DOI PMC
Oh W. K.; Galsky M. D.; Stadler W. M.; Srinivas S.; Chu F.; Bubley G.; Goddard J.; Dunbar J.; Ross R. W. Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (IPI-504), in patients with castration-resistant prostate cancer. Urology 2011, 78, 626–630. 10.1016/j.urology.2011.04.041. PubMed DOI PMC
Sequist L. V.; Gettinger S.; Senzer N. N.; Martins R. G.; Jänne P. A.; Lilenbaum R.; Gray J. E.; Iafrate A. J.; Katayama R.; Hafeez N.; Sweeney J.; Walker J. R.; Fritz C.; Ross R. W.; Grayzel D.; Engelman J. A.; Borger D. R.; Paez G.; Natale R. Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non–small-cell lung cancer. J. Clin. Oncol. 2010, 28, 4953–4960. 10.1200/JCO.2010.30.8338. PubMed DOI PMC
Modi S.; Saura C.; Henderson C.; Lin N. U.; Mahtani R.; Goddard J.; Rodenas E.; Hudis C.; O’Shaughnessy J.; Baselga J. A multicenter trial evaluating retaspimycin HCl (IPI-504) plus trastuzumab in patients with advanced or metastatic HER2-positive breast cancer. Breast Cancer Res. Treat. 2013, 139, 107–113. 10.1007/s10549-013-2510-5. PubMed DOI PMC
Chatterjee S.; Bhattacharya S.; Socinski M. A.; Burns T. F. Hsp90 inhibitors in lung cancer: Promise still unfulfilled. Clin. Adv. Hematol. Oncol. 2016, 14, 346–356. PubMed
Guo W.; Reigan P.; Siegel D.; Zirrolli J.; Gustafson D.; Ross D. Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:Quinone oxidoreductase 1 (NQO1): Role of 17-AAG hydroquinone in heat shock protein 90 inhibition. Cancer Res. 2005, 65, 10006–10015. 10.1158/0008-5472.CAN-05-2029. PubMed DOI
Reigan P.; Siegel D.; Guo W.; Ross D. A mechanistic and structural analysis of the inhibition of the 90-kDa heat shock protein by the benzoquinone and hydroquinone ansamycins. Mol. Pharmacol. 2011, 79, 823–832. 10.1124/mol.110.070086. PubMed DOI PMC
Schlager J. J.; Powis G. Cytosolic NAD(P)H-(quinone-acceptor)oxidoreductase in human normal and tumor-tissue - effects of cigarette-smoking and alcohol. Int. J. Cancer 1990, 45, 403–409. 10.1002/ijc.2910450304. PubMed DOI
Siegel D.; Ross D. Immunodetection of NAD(P)H:Quinone oxidoreductase 1 (NQO1) in human tissues. Free Radical Biol. Med. 2000, 29, 246–253. 10.1016/S0891-5849(00)00310-5. PubMed DOI
Siegel D.; Beall H.; Senekowitsch C.; Kasai M.; Arai H.; Gibson N. W.; Ross D. Bioreductive activation of mitomycin C by DT-diaphorase. Biochemistry 1992, 31, 7879–7885. 10.1021/bi00149a019. PubMed DOI
Dehn D. L.; Inayat-Hussain S. H.; Ross D. RH1 induces cellular damage in an NQO1-dependent manner: Relationship between DNA cross-linking, cell cycle perturbations and apoptosis. J. Pharmacol. Exp. Ther. 2005, 313, 771–779. 10.1124/jpet.104.081380. PubMed DOI
Pink J. J.; Planchon S. M.; Tagliarino C.; Varnes M. E.; Siegel D.; Boothman D. A. NAD(P)H:Quinone oxidoreductase activity is the principal determinant of beta-lapachone cytotoxicity. J. Biol. Chem. 2000, 275, 5416–5424. 10.1074/jbc.275.8.5416. PubMed DOI
Beall H. D.; Liu Y.; Siegel D.; Bolton E. M.; Gibson N. W.; Ross D. Role of NAD(P)H:Quinone oxidoreductase (DT-diaphorase) in cytotoxicity and induction of DNA damage by streptonigrin. Biochem. Pharmacol. 1996, 51, 645–652. 10.1016/S0006-2952(95)00223-5. PubMed DOI
Siegel D.; Yan C.; Ross D. NAD(P)H:Quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem. Pharmacol. 2012, 83, 1033–1040. 10.1016/j.bcp.2011.12.017. PubMed DOI PMC
Robertson H.; Dinkova-Kostova A. T.; Hayes J. D. NRF2 and the ambiguous consequences of its activation during initiation and the subsequent stages of tumourigenesis. Cancers 2020, 12, 3609.10.3390/cancers12123609. PubMed DOI PMC
Baird L.; Kensler T. W.; Yamamoto M. Novel NRF2-activated cancer treatments utilizing synthetic lethality. IUBMB Life 2022, 74, 1209–1231. 10.1002/iub.2680. PubMed DOI PMC
Baird L.; Suzuki T.; Takahashi Y.; Hishinuma E.; Saigusa D.; Yamamoto M. Geldanamycin-derived Hsp90 inhibitors are synthetic lethal with NRF2. Mol. Cell. Biol. 2020, 40, e00377-20.10.1128/MCB.00377-20. PubMed DOI PMC
Baird L.; Yamamoto M. NRF2-dependent bioactivation of mitomycin C as a novel strategy to target KEAP1-NRF2 pathway activation in human cancer. Mol. Cell. Biol. 2021, 41, 00473.10.1128/MCB.00473-20. PubMed DOI PMC
Dernovšek J.; Tomašič T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol. Therapeut. 2023, 245, 10839610.1016/j.pharmthera.2023.108396. PubMed DOI
Stebbins C. E.; Russo A. A.; Schneider C.; Rosen N.; Hartl F. U.; Pavletich N. P. Crystal structure of an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell 1997, 89, 239–250. 10.1016/S0092-8674(00)80203-2. PubMed DOI
Roe S. M.; Prodromou C.; O’Brien R.; Ladbury J. E.; Piper P. W.; Pearl L. H. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 1999, 42, 260–266. 10.1021/jm980403y. PubMed DOI
Dehner A.; Furrer J.; Richter K.; Schuster I.; Buchner J.; Kessler H. NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADR AMP-PNP, geldanamycin, and radicicol. ChemBioChem. 2003, 4, 870–877. 10.1002/cbic.200300658. PubMed DOI
Tillotson B.; Slocum K.; Coco J.; Whitebread N.; Thomas B.; West K. A.; MacDougall J.; Ge J.; Ali J. A.; Palombella V. J.; Normant E.; Adams J.; Fritz C. C. Hsp90 (heat shock protein 90) inhibitor occupancy is a direct determinant of client protein degradation and tumor growth arrest in vivo. J. Biol. Chem. 2010, 285, 39835–39843. 10.1074/jbc.M110.141580. PubMed DOI PMC
Khandelwal A.; Kent C. N.; Balch M.; Peng S.; Mishra S. J.; Deng J.; Day V. W.; Liu W.; Subramanian C.; Cohen M.; Holzbeierlein J. M.; Matts R.; Blagg B. S. J. Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat. Commun. 2018, 9, 425.10.1038/s41467-017-02013-1. PubMed DOI PMC
Lei W.; Duron D. I.; Stine C.; Mishra S.; Blagg B. S. J.; Streicher J. M. The alpha isoform of heat shock protein 90 and the co-chaperones p23 and Cdc37 promote opioid anti-nociception in the brain. Front. Mol. Neurosci 2019, 12, 294.10.3389/fnmol.2019.00294. PubMed DOI PMC
Mishra S. J.; Liu W.; Beebe K.; Banerjee M.; Kent C. N.; Munthali V.; Koren J.; Taylor J. A.; Neckers L. M.; Holzbeierlein J.; Blagg B. S. J. The development of Hsp90β-selective inhibitors to overcome detriments associated with pan-Hsp90 inhibition. J. Med. Chem. 2021, 64, 1545–1557. 10.1021/acs.jmedchem.0c01700. PubMed DOI PMC
Maiti S.; Picard D. Cytosolic Hsp90 isoform-specific functions and clinical significance. Biomolecules 2022, 12, 1166.10.3390/biom12091166. PubMed DOI PMC
Yu J.; Zhang C.; Song C. Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. Eur. J. Med. Chem. 2022, 238, 11451610.1016/j.ejmech.2022.114516. PubMed DOI
Skrzypczak N.; Pyta K.; Ruszkowski P.; Gdaniec M.; Bartl F.; Przybylski P. Synthesis, structure and anticancer activity of new geldanamycin amine analogs containing C(17)- or C(20)- flexible and rigid arms as well as closed or open ansa-bridges. Eur. J. Med. Chem. 2020, 202, 11262410.1016/j.ejmech.2020.112624. PubMed DOI
Skrzypczak N.; Pyta K.; Ruszkowski P.; Mikolajczak P.; Kucinska M.; Murias M.; Gdaniec M.; Bartl F.; Przybylski P. Anticancer activity and toxicity of new quaternary ammonium geldanamycin derivative salts and their mixtures with potentiators. J. Enzym. Inhib. Med. Chem. 2021, 36, 1898–1904. 10.1080/14756366.2021.1960829. PubMed DOI PMC
Skrzypczak N.; Buczkowski A.; Bohusz W.; Nowak E.; Tokarska K.; Lesniewska A.; Alzebari A. M.; Ruszkowski P.; Gdaniec M.; Bartl F.; Przybylski P. Modifications of geldanamycin via CuAAC altering affinity to chaperone protein Hsp90 and cytotoxicity. Eur. J. Med. Chem. 2023, 256, 11545010.1016/j.ejmech.2023.115450. PubMed DOI
Pyta K.; Skrzypczak N.; Ruszkowski P.; Bartl F.; Przybylski P. Regioselective approach to colchiceine tropolone ring functionalization at C(9) and C(10) yielding new anticancer hybrid derivatives containing heterocyclic structural motifs. J. Enzym. Inhib. Med. Chem. 2022, 37, 597–605. 10.1080/14756366.2022.2028782. PubMed DOI PMC
Takahisa H.; Kurosaki N.; Ujino M.; Shimotono K.. Antiviral agent. Japan Patent JP2007238442A, 2007.
Le Brazidec J. Y.; Kamal A.; Busch D.; Thao L.; Zhang L.; Timony G.; Grecko R.; Trent K.; Lough R.; Salazar T.; Khan S.; Burrows F.; Boehm M. F. Synthesis and biological evaluation of a new class of geldanamycin derivatives as potent inhibitors of Hsp90. J. Med. Chem. 2004, 47, 3865–3873. 10.1021/jm0306125. PubMed DOI
Hu Z.; Liu Y.; Tian Z.-Q.; Ma W.; Starks C. M.; Regentin R.; Licari P.; Myles D. C.; Hutchinson C. R. Isolation and characterization of novel geldanamycin analogues. J. Antibiot. 2004, 57, 421–428. 10.7164/antibiotics.57.421. PubMed DOI
Skrzypczak N.; Pyta K.; Bohusz W.; Lesniewska A.; Gdaniec M.; Ruszkowski P.; Schilf W.; Bartl F.; Przybylski P. Cascade transformation of the ansamycin benzoquinone core into benzoxazole influencing anticancer activity and selectivity. J. Org. Chem. 2023, 88, 9469–9474. 10.1021/acs.joc.3c00493. PubMed DOI PMC
Sasaki K.; Inoue Y.. Geldanamycin derivatives. Germany Patent DE3006097, 1980
Cysyk R. L.; Parker R. J.; Barchi J. J.; Steeg P. S.; Hartman N. R.; Strong J. M. Reaction of geldanamycin and C17-substituted analogues with glutathione: Product identifications and pharmacological implications. Chem. Res. Toxicol. 2006, 19, 376–381. 10.1021/tx050237e. PubMed DOI
Kitson R. R. A.; Chang C.-H.; Xiong R.; Williams H. E. L.; Davis A. L.; Lewis W.; Dehn D. L.; Siegel D.; Roe S. M.; Prodromou C.; Ross D.; Moody C. J. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90. Nat. Chem. 2013, 5, 307–314. 10.1038/nchem.1596. PubMed DOI PMC
Wang X.; Zhang Y.; Ponomareva L. V.; Qiu Q.; Woodcock R.; Elshahawi S. I.; Chen X.; Zhou Z.; Hatcher B. E.; Hower J. C.; Zhan C.-G.; Parkin S.; Kharel M. K.; Voss S. R.; Shaaban K. A.; Thorson J. S. Mccrearamycins A-D, geldanamycin-derived cyclopentenone macrolactams from an eastern Kentucky abandoned coal mine microbe. Angew. Chem., Int. Ed. 2017, 56, 2994–2998. 10.1002/anie.201612447. PubMed DOI PMC
Xie Y.; Guo L.; Huang J.; Huang X.; Cong Z.; Liu Q.; Wang Q.; Pang X.; Xiang S.; Zhou X.; Liu Y.; Wang J.; Wang J. Cyclopentenone-containing tetrahydroquinoline and geldanamycin alkaloids from Streptomyces malaysiensis as potential anti-androgens against prostate cancer cells. J. Nat. Prod. 2021, 84, 2004–2011. 10.1021/acs.jnatprod.1c00297. PubMed DOI
Muroi M.; Haibara K.; Asai M.; Kamiya K.; Kishi T. The structures of macbecin I and II: New antitumor antibiotics. Tetrahedron 1981, 37, 1123–1130. 10.1016/S0040-4020(01)92041-1. DOI
Shibata K.; Satsumabayashi S.; Nakagawa A.; Omura S. The structure and cytocidal activity of herbimycin C. J. Antibiot. 1986, 39, 1630–1633. 10.7164/antibiotics.39.1630. PubMed DOI
Stead P.; Latif S.; Blackaby A. P.; Sidebottom P. J.; Deakin A.; Taylor N. L.; Life P.; Spaull J.; Burrell F.; Jones R.; Lewis J.; Davidson I.; Mander T. Discovery of novel ansamycins possessing potent inhibitory activity in a cell-based oncostatin msignalling assay. J. Antibiot. 2000, 53, 657–663. 10.7164/antibiotics.53.657. PubMed DOI
Takatsu T.; Ohtsuki M.; Muramatsu A.; Enokita R.; Kurakata S.-I. Reblastatin, a novel benzenoid ansamycin-type cell cycle inhibitor. J. Antibiot. 2000, 53, 1310–1312. 10.7164/antibiotics.53.1310. PubMed DOI
Skrzypczak N.; Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat. Prod. Rep. 2022, 39, 1678–1704. 10.1039/D2NP00004K. PubMed DOI
Eichner S.; Floss H. G.; Sasse F.; Kirschning A. New, highly active nonbenzoquinone geldanamycin derivatives by using mutasynthesis. ChemBioChem. 2009, 10, 1801–1805. 10.1002/cbic.200900246. PubMed DOI
Mohammadi-Ostad-Kalayeh S.; Stahl F.; Scheper T.; Kock K.; Herrmann C.; Batista F. A. H.; Borges J. C.; Sasse F.; Eichner S.; Ongouta J.; Zeilinger C.; Kirschning A. Heat shock proteins revisited: Using a mutasynthetically generated reblastatin library to compare the inhibition of human and Leishmania Hsp90s. ChemBioChem 2018, 19, 562–574. 10.1002/cbic.201700616. PubMed DOI
Hermane J.; Eichner S.; Mancuso L.; Schröder B.; Sasse F.; Zeilinger C.; Kirschning A. New geldanamycin derivatives with anti Hsp properties by mutasynthesis. Org. Biomol. Chem. 2019, 17, 5269–5278. 10.1039/C9OB00892F. PubMed DOI
Li S.; Ni S.; Wu L.; Li L.; Jiang B.; Wang H.; Sun G.; Gan M.; Li J.; He W.; Lin L.; Wang Y.; Bai S.; Si S. 19-[(1′S,4′R)-4′-hydroxy-1′-methoxy-2′-oxopentyl]geldanamycin, a natural geldanamycin analogue from Streptomyces hygroscopicus 17997. J. Nat. Prod. 2013, 76, 969–973. 10.1021/np4000679. PubMed DOI
Li Y. P.; Chen J. J.; Shen J. J.; Cui J.; Wu L. Z.; Wang Z.; Li Z. R. Synthesis and biological evaluation of geldanamycin analogs against human cancer cells. Cancer Chemother. Pharmacol. 2015, 75, 773–782. 10.1007/s00280-015-2696-9. PubMed DOI
Chang C.-H.; Drechsel D. A.; Kitson R. R. A.; Siegel D.; You Q.; Backos D. S.; Ju C.; Moody C. J.; Ross D. 19-substituted benzoquinone ansamycin heat shock protein-90 inhibitors: Biological activity and decreased off-target toxicity. Mol. Pharmacol. 2014, 85, 849–857. 10.1124/mol.113.090654. PubMed DOI PMC
Liu Y.-F.; Zhong J.-J.; Lin L.; Liu J.-J.; Wang Y.-G.; He W.-Q.; Yang Z.-Y. New C-19–modified geldanamycin derivatives: Synthesis, antitumor activities, and physical properties study. J. Asian Nat. Prod. Res. 2016, 18, 752–764. 10.1080/10286020.2016.1160896. PubMed DOI
Díaz-Cruz G. A.; Liu J.; Tahlan K.; Bignell D. R. D. Nigericin and geldanamycin are phytotoxic specialized metabolites produced by the plant pathogen Streptomyces sp. 11–1-2. Microbiol. Spectrum 2022, 10, e02314-21.10.1128/spectrum.02314-21. PubMed DOI PMC
Shan G.-z.; Peng Z.-g.; Li Y.-h.; Li D.; Li Y.-p.; Meng S.; Gao L.-y.; Jiang J.-d.; Li Z.-r. A novel class of geldanamycin derivatives as HCV replication inhibitors targeting on Hsp90: Synthesis, structure–activity relationships and anti-HCV activity in GS4.3 replicon cells. J. Antibiot. 2011, 64, 177–182. 10.1038/ja.2010.161. PubMed DOI
Li Y.-P.; Shan G.-Z.; Peng Z.-G.; Zhu J.-H.; Meng S.; Zhang T.; Gao L.-Y.; Tao P.-Z.; Gao R.-M.; Li Y.-H.; Jiang J.-D.; Li Z. R. Synthesis and biological evaluation of heat-shock protein 90 inhibitors: Geldanamycin derivatives with broad antiviral activities. Antiviral Chem. Chemother. 2010, 20, 259–268. 10.3851/IMP1631. PubMed DOI
Sasaki K.; Inoue Y.. Novel geldanamycin derivatives as pharmaceutically active ingredients and their preparation. Japan Patent JP 57-163369, 1981.
Wu L.; Wang Y.; Liu X.; Li J.; Wang H.; Ni S.; He W.; Lin L.. 19S-Methyl geldanamycin and 4,5-dihydrogen-19S-methyl geldanamycin and preparation method thereof. China Patent CN102120730A, 2011.
Yanping L.; Linzhuan W.; Zhen W.; Zhuorong L.; Zhi J.; Jing C.. Geldanamycin analogues with multiple tumor resistance activity, preparation method and application thereof. China Patent CN104292163B, 2015.
Guo W.; Reigan P.; Siegel D.; Ross D. Enzymatic reduction and glutathione conjugation of benzoquinone ansamycin heat shock protein 90 inhibitors: Relevance for toxicity and mechanism of action. Drug Metab. Dispos. 2008, 36, 2050–2057. 10.1124/dmd.108.022004. PubMed DOI PMC
He W.; Ni S.; Wang H.; Wang Y.; Wang Y.; Wu L.. Geldanamycin biosynthetic analog 19-O-glycyl geldanamicin. China Patent CN101792418A, 2010.
Li Y.; He W.; Wang Y.; Wang Y.; Shao R. A new post-PKS modification process in the carbamoyltransferase gene inactivation strain of Streptomyces hygroscopicus 17997. J. Antibiot. 2008, 61, 347–355. 10.1038/ja.2008.49. PubMed DOI
Smith N. F.; Hayes A.; Nutley B. P.; Raynaud F. I.; Workman P. Evaluation of the cassette dosing approach for assessing the pharmacokinetics of geldanamycin analogues in mice. Cancer Chemother. Pharmacol. 2004, 54, 475–486. 10.1007/s00280-004-0853-7. PubMed DOI
Sorensen D. M.; Büll C.; Madsen T. D.; Lira-Navarrete E.; Clausen T. M.; Clark A. E.; Garretson A. F.; Karlsson R.; Pijnenborg J. F. A.; Yin X.; Miller R. L.; Chanda S. K.; Boltje T. J.; Schjoldager K. T.; Vakhrushev S. Y.; Halim A.; Esko J. D.; Carlin A. F.; Hurtado-Guerrero R.; Weigert R.; Clausen H.; Narimatsu Y. Identification of global inhibitors of cellular glycosylation. Nat. Commun. 2023, 14, 948.10.1038/s41467-023-36598-7. PubMed DOI PMC
Kitson R. R. A.; Moody C. J. Synthesis of novel geldanamycin derivatives. Tetrahedron 2021, 82, 13192710.1016/j.tet.2021.131927. DOI
Lang W.; Caldwell G. W.; Li J.; Leo G. C.; Jones W. J.; Masucci J. A. Biotransformation of geldanamycin and 17-allylamino-17-demethoxygeldanamycin by human liver microsomes: Reductive versus oxidative metabolism and implications. Drug Metab. Dispos. 2007, 35, 21–29. 10.1124/dmd.106.009639. PubMed DOI
Rinehart K. L.; Shield L. S. Chemistry of the ansamycin antibiotics. Prog. Chem. Org. Nat. Prod. 1976, 33, 231–307. 10.1007/978-3-7091-3262-3_3. PubMed DOI
Schnur R. C.; Corman M. L. Tandem [3,3]-sigmatropic rearrangements in an ansamycin - stereospecific conversion of an (S)-allylic alcohol to an (Sw)-allylic amine derivative. J. Org. Chem. 1994, 59, 2581–2584. 10.1021/jo00088a047. DOI
Jez J. M.; Chen J. C.-H.; Rastelli G.; Stroud R. M.; Santi D. V. Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem. Biol. 2003, 10, 361–368. 10.1016/S1074-5521(03)00075-9. PubMed DOI
Lee Y.-S.; Marcu M. G.; Neckers L. Quantum chemical calculations and mutational analysis suggest heat shock protein 90 catalyzes trans-cis isomerization of geldanamycin. Chem. Biol. 2004, 11, 991–998. 10.1016/j.chembiol.2004.05.010. PubMed DOI
Thepchatri P.; Eliseo T.; Cicero D. O.; Myles D.; Snyder J. P. Relationship among ligand conformations in solution, in the solid state, and at the Hsp90 binding site: Geldanamycin and radicicol. J. Am. Chem. Soc. 2007, 129, 3127–3134. 10.1021/ja064863p. PubMed DOI
Kitson R. R. A.; Moody C. J. An improved route to 19-substituted geldanamycins as novel Hsp90 inhibitors - potential therapeutics in cancer and neurodegeneration. Chem. Commun. 2013, 49, 8441–8443. 10.1039/c3cc43457e. PubMed DOI PMC
Morimoto H.; Tsubogo T.; Litvinas N. D.; Hartwig J. F. A broadly applicable copper reagent for trifluoromethylations and perfluoroalkylations of aryl iodides and bromides. Angew. Chem., Int. Ed. 2011, 50, 3793–3798. 10.1002/anie.201100633. PubMed DOI PMC
Vozzolo L.; Loh B.; Gane P. J.; Tribak M.; Zhou L.; Anderson I.; Nyakatura E.; Jenner R. G.; Selwood D.; Fassati A. Gyrase B inhibitor impairs HIV-1 replication by targeting Hsp90 and the capsid protein. J. Biol. Chem. 2010, 285, 39314–39328. 10.1074/jbc.M110.155275. PubMed DOI PMC
Roesch F.; Meziane O.; Kula A.; Nisole S.; Porrot F.; Anderson I.; Mammano F.; Fassati A.; Marcello A.; Benkirane M.; Schwartz O. Hyperthermia stimulates HIV-1 replication. PLoS Pathog. 2012, 8, e100279210.1371/journal.ppat.1002792. PubMed DOI PMC
Anderson I.; Low J. S.; Weston S.; Weinberger M.; Zhyvoloup A.; Labokha A. A.; Corazza G.; Kitson R. A.; Moody C. J.; Marcello A.; Fassati A. Heat shock protein 90 controls HIV-1 reactivation from latency. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E1528–E1537. 10.1073/pnas.1320178111. PubMed DOI PMC
Chaudhury S.; Keegan B. M.; Blagg B. S. J. The role and therapeutic potential of Hsp90, Hsp70, and smaller heat shock proteins in peripheral and central neuropathies. Med. Res. Rev. 2021, 41, 202–222. 10.1002/med.21729. PubMed DOI PMC
Waza M.; Adachi H.; Katsuno M.; Minamiyama M.; Sang C.; Tanaka F.; Inukai A.; Doyu M.; Sobue G. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat. Med. 2005, 11, 1088–1095. 10.1038/nm1298. PubMed DOI
Dimant H.; Ebrahimi-Fakhari D.; McLean P. J. Molecular chaperones and co-chaperones in Parkinson disease. Neuroscientist 2012, 18, 589–601. 10.1177/1073858412441372. PubMed DOI PMC
Carman A.; Kishinevsky S.; Koren J. III; Lou W.; Chiosis G. Chaperone-dependent neurodegeneration: A molecular perspective on therapeutic intervention. J. Alzheimers Dis. Parkinsonism 2013, Suppl 10, 007.10.4172/2161-0460.S10-007. PubMed DOI PMC
Auluck P. K.; Meulener M. C.; Bonini N. M. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. J. Biol. Chem. 2005, 280, 2873–2878. 10.1074/jbc.M412106200. PubMed DOI
Putcha P.; Danzer K. M.; Kranich L. R.; Scott A.; Silinski M.; Mabbett S.; Hicks C. D.; Veal J. M.; Steed P. M.; Hyman B. T.; McLean P. J. Brain-permeable small-molecule inhibitors of Hsp90 prevent α-synuclein oligomer formation and rescue α-synuclein-induced toxicity. J. Pharmacol. Exp. Ther. 2010, 332, 849–857. 10.1124/jpet.109.158436. PubMed DOI PMC
Xiong R.; Zhou W.; Siegel D.; Kitson R. R. A.; Freed C. R.; Moody C. J.; Ross D. A novel Hsp90 inhibitor activates compensatory heat shock protein responses and autophagy and alleviates mutant A53T α-synuclein toxicity. Mol. Pharmacol. 2015, 88, 1045–1054. 10.1124/mol.115.101451. PubMed DOI PMC
Taipale M.; Jarosz D. F.; Lindquist S. Hsp90 at the hub of protein homeostasis: Emerging mechanistic insights. Nat. Rev. Cell Biol. 2010, 11, 515–528. 10.1038/nrm2918. PubMed DOI
Prodromou C. Mechanisms of Hsp90 regulation. Biochem. J. 2016, 473, 2439–2452. 10.1042/BCJ20160005. PubMed DOI PMC
Chiosis G.; Digwal C. S.; Trepel J. B.; Neckers L. Structural and functional complexity of Hsp90 in cellular homeostasis and disease. Nat. Rev. Mol. Cell Biol. 2023, 24, 797–815. 10.1038/s41580-023-00640-9. PubMed DOI PMC
Shelton L. B.; Baker J. D.; Zheng D.; Sullivan L. E.; Solanki P. K.; Webster J. M.; Sun Z.; Sabbagh J. J.; Nordhues B. A.; Koren J.; Ghosh S.; Blagg B. S. J.; Blair L. J.; Dickey C. A. Hsp90 activator Aha1 drives production of pathological tau aggregates. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 9707–9712. 10.1073/pnas.1707039114. PubMed DOI PMC
Zhang X.; Li S.; Li Z.; Cheng L.; Liu Z.; Wang C. The therapeutic potential of targeting Hsp90-Cdc37 interactions in several diseases. Curr. Drug Targets 2022, 23, 1023–1038. 10.2174/1389450123666220408101544. PubMed DOI
Gracia L.; Lora G.; Blair L. J.; Jinwal U. K. Therapeutic potential of the Hsp90/Cdc37 interaction in neurodegenerative diseases. Front. Neurosci. 2019, 13, 163.10.3389/fnins.2019.01263. PubMed DOI PMC
Kurop M. K.; Huyen C. M.; Kelly J. H.; Blagg B. S. J. The heat shock response and small molecule regulators. Eur. J. Med. Chem. 2021, 226, 11384610.1016/j.ejmech.2021.113846. PubMed DOI PMC