Enamel-dentine junction morphology reveals population replacement and mobility in the late prehistoric Middle Nile Valley

. 2025 Apr 15 ; 122 (15) : e2419122122. [epub] 20250331

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, historické články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40163762

Grantová podpora
IRP ABASC Centre National de la Recherche Scientifique (CNRS)
project NeoNile French governement - University of Bordeaux IdEx "Investments for the Future" program / GPR "Human Past"
ANR-14-CE31 Agence Nationale de la Recherche (ANR)
23-06488S Grantová Agentura České Republiky (GAČR)
Cooperatio program Filozofická Fakulta, Univerzita Karlova v Praze (Faculty of Arts, Charles University)
DKRVO 2024-2028/7.I.a 7.I.b National Museum 00023272 Ministerstvo Kultury (Ministry of Culture)
UMO-2020/37/B/HS3/00519 Narodowe Centrum Nauki (NCN)

Transitions from foraging to food-production represent a worldwide turning point in recent human history. In the Middle Nile Valley this cultural shift occurred between the sixth and beginning of the fifth millennium BCE. Significant craniodental morphological differences remain inadequately tested by biometric analyses of ancestry and may reflect population origins or diet change between the last hunter-fisher-gatherers (Mesolithic) and first food-producers (Neolithic). Moreover, with no ancient DNA data for this region and very few morphological studies including large samples of Mesolithic individuals, the late prehistoric population history of the Nile Valley remains unclear. Here, we present enamel-dentine junction (EDJ) morphological analyses (based on X-ray microtomography) and biological affinities for 88 individuals spanning 14,000 y from Sudan and southern Egypt. Significant EDJ morphological differences between the last foragers and first food-producers suggest major biological discontinuity at the Neolithic transition. Nevertheless, the persistence of the earlier forager population in the Sudanese Eastern Sahara indicates settlement and population replacement mainly along the Nile. We also present biological evidence of interaction and mobility between these contemporaneous populations during the middle Holocene in the region. It supports the phylogenetic value of EDJ morphology for investigating population affinities at a microevolutionary scale. These results yield insights into the deep population history of the Nile Valley. They provide firm evidence for population replacement and migration toward the region at the onset of the Neolithic transition, attesting that these key changes were not solely triggered by cultural diffusion and diet change.

Zobrazit více v PubMed

Brass M., Early North African cattle domestication and its ecological setting: A reassessment. J. World Prehistory 31, 81–115 (2018).

Monroe S., Smith S. T., McClure S. B., Pastoralism, hunting, and coexistence: Domesticated and wild bovids in Neolithic Sudan. Int. J. Osteoarchaeol. 33, 517–531 (2023).

Salvatori S., Usai D., “The mesolithic and neolithic in sudan” in Handbook of Ancient Nubia, Raue D., Ed. (De Gruyter, 2019), pp. 171–194. 10.1515/9783110420388-009. DOI

Salvatori S., Usai D., The Neolithic and “pastoralism” along the Nile: A dissenting view. J. World Prehistory 32, 251–285 (2019).

Brass M., Revisiting a hoary chestnut: The nature of early cattle domestication in North-East Africa. Sahara 24, 65–70 (2013). PubMed PMC

Gautier A., “The evidence for the earliest livestock in North Africa: Or adventures with large bovids, ovicaprids, dogs and pigs” in Droughts, Food and Culture, Hassan F. A., Eds. (Kluwer Academic Publishers, Boston, 2002), pp. 195–207.

Honegger M., “The Holocene prehistory of Upper Nubia until the rise of the Kerma Kingdom” in Handbook of Ancient Nubia, Raue D., Ed. (De Gruyter, 2019), pp. 217–238. 10.1515/9783110420388-011. DOI

Honegger M., Williams M., Human occupations and environmental changes in the Nile Valley during the Holocene: The case of Kerma in Upper Nubia (northern Sudan). Quat. Sci. Rev. 130, 141–154 (2015).

Kuper R., Kröpelin S., Climate-controlled Holocene occupation in the Sahara: Motor of Africa’s evolution. Science 313, 803–807 (2006). PubMed

Linseele V., Did specialized pastoralism develop differently in Africa than in the Near East? An example from the West African Sahel J. World Prehistory 23, 43–77 (2010).

Linseele V., Animal remains from the early Holocene sequence at Wadi El-Arab. Kerma 4, 16–18 (2012).

Ryan P., Out W. A., García-Granero J. J., Madella M., Usai D., “Plant microremains from the white deposits and skeletons of Ghaba and R12 cemeteries. Identification and implications” in Ghaba. An Early Neolithic cemetery in Central Sudan, Salvatori S., Usai D., Lecointe Y., Eds. (Africa Magna, Frankfurt, 2016), vol. 1, pp. 109–120.

Garcea E. A. A., “Early food production and food producers in prehistoric Sudan” in Landscape and resource management in Bronze Age Nubia: Archaeological perspectives on the exploitation of natural resources and the circulation of commodities in the Middle Nile, Budka J., Lemos R., Eds. (Harrassowitz Verlag, Wiesbaden, 2024), pp. 113–131.

Neumann K., “The romance of farming: Plant cultivation and domestication in Africa” in African Archaeology: A Critical Introduction, Stahl A. B., Ed. (Blackwell, Malden, MA, 2005), pp. 249–275.

Garcea E. A. A., Karul N., D’Ercole G., Southwest Asian domestic animals and plants in Africa: Routes, timing and cultural implications. Quat. Int. 412, 1–10 (2016), 10.1002/oa.3223. DOI

Olivieri A., et al. , Mitogenomes from Egyptian cattle breeds: New clues on the origin of haplogroup Q and the early spread of Bos taurus from the Near East. PLoS ONE 10, e0141170 (2015). PubMed PMC

Decker J. E., et al. , Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet 10, e1004254 (2014). PubMed PMC

Edwards D. N., The archaeology of Sudan and Nubia. Annu. Rev. Anthropol. 36, 211–228 (2007).

Gifford-Gonzalez D., Hanotte O., Domesticating animals in Africa: Implications of genetic and archaeological findings. J. World Prehistory 24, 1–23 (2011).

Garcea E. A. A., Multi-stage dispersal of Southwest Asian domestic livestock and the path of pastoralism in the Middle Nile Valley. Quat. Int. 412, 54–64 (2016).

Anderson J. E., “Late Paleolithic skeletal remains from Nubia” in Prehistory of Nubia, Wendorf F., Ed. (Southern Methodist University Press, 1968), pp. 996–1040.

Crevecoeur I., Rougier H., Grine F., Froment A., Modern human cranial diversity in the Late Pleistocene of Africa and Eurasia: Evidence from Nazlet Khater, Peştera cu Oase, and Hofmeyr. Am. J. Phys. Anthropol. 140, 347–358 (2009). PubMed

Irish J. D., Population continuity vs. discontinuity revisited: Dental affinities among late Paleolithic through Christian-era Nubians. Am. J. Phys. Anthropol. 128, 520–535 (2005). PubMed

Irish J. D., Usai D., The transition from hunting–gathering to agriculture in Nubia: Dental evidence for and against selection, population continuity and discontinuity. Proc. R. Soc. B Biol. Sci. 288, 20210969 (2021). PubMed PMC

Crevecoeur I., Etude anthropologique du squelette du Paléolithique supérieur de Nazlet Khater 2 (Egypte): Apport à la compréhension de la variabilité passée des Hommes modernes (Leuven University Press, 2008).

Greene D. L., Dental anthropology of early Egypt and Nubia. J. Hum. Evol. 1, 315–324 (1972).

Holliday T. W., Population affinities of the Jebel Sahaba skeletal sample: Limb proportion evidence. Int. J. Osteoarchaeol. 25, 466–476 (2015).

Irish J. D., The Iberomaurusian enigma: North African progenitor or dead end? J. Hum. Evol. 39, 393–410 (2000). PubMed

Irish J. D., The mean measure of divergence: Its utility in model-free and model-bound analyses relative to the Mahalanobis D 2 distance for nonmetric traits. Am. J. Hum. Biol. 22, 378–395 (2010). PubMed

Shackelford L. L., Regional variation in the postcranial robusticity of Late Upper Paleolithic humans. Am. J. Phys. Anthropol. 133, 655–668 (2007). PubMed

Galland M., Van Gerven D. P., Von Cramon-Taubadel N., Pinhasi R., 11,000 years of craniofacial and mandibular variation in Lower Nubia. Sci. Rep. 6, 31040 (2016). PubMed PMC

Armelagos G. J., Van Gerven D. P., Goodman A. H., Calcagno J. M., Post-Pleistocene facial reduction, biomechanics and selection against morphologically complex teeth: A rejoinder to Macchiarelli and Bondioli. Hum. Evol. 4, 1–7 (1989).

Calcagno J. M., Gibson K. R., Human dental reduction: Natural selection or the probable mutation effect. Am. J. Phys. Anthropol. 77, 505–517 (1988). PubMed

Carlson D. S., Van Gerven D. P., Diffusion, biological determinism, and biocultural adaptation in the Nubian corridor. Am. Anthropol. 81, 561–580 (1979).

Greene D. L., Ewing G. H., Armelagos G. J., Dentition of a Mesolithic population from Wadi Halfa, Sudan. Am. J. Phys. Anthropol. 27, 41–55 (1967). PubMed

Benoiston A.-S., Bayle P., Crevecoeur I., “Biological affinity of the Mesolithic and Neolithic populations from El-Barga, Sudan: The dental remains” in Nubian archaeology in the XXIst century, Lenssen-Erz T., et al., Ed. (Peeters Publishers, Neuchâtel, 2018), pp. 805–817.

Crevecoeur I., Matu M., Dias-Meirinho M.-H., Bayle P., Pearson O., “Human evolution and population dynamics in Northeast Africa at the end of the Pleistocene and the beginning of the Holocene” in From the Big Dry to the Holocene in Eastern Africa and beyond, Actes de La Séance de La Société Préhistorique Française de Toulouse (Septembre 2019), Lesur J., et al., Eds. (Société préhistorique française, Paris, 2023), pp. 13–28.

Franciscus R. G., Later Pleistocene Nasofacial Variation in Western Eurasia and Africa and Modern Human Origins (University of New Mexico, 1995).

Martin N., et al. , From hunter-gatherers to food producers: New dental insights into the Nile Valley population history (Late Paleolithic–Neolithic). Am. J. Biol. Anthropol. 184, e24948 (2024). PubMed

Dal Sasso G., Artioli G., Maritan L., Angelini I. “A microscopic view of ancient bones: Archaeometry and taphonomy of human remains from Al-Khiday (Central Sudan)” in Tales of Three Worlds - Archaeology and Beyond: Asia, Italy, Africa: A tribute to Sandro Salvatori, Usai D., Tuzzato S., Vidale M., Eds. (Archaeopress Publishing Ltd, Oxford, 2020), pp. 234–249. doi: 10.2307/j.ctv10crdr5. DOI

Usai D., et al. , Excavating a unique pre-Mesolithic cemetery in central Sudan. Antiquity 84, 323 (2010).

Irish J. D., Kabaciński J., Do cultural and biological variation correspond in the Middle Nile Valley Neolithic? Some insight from dental morphology Antiquity (2024), 10.15184/aqy.2024.199. DOI

Corruccini R. S., The dentinoenamel junction in primates. Int. J. Primatol. 8, 99–114 (1987).

Monson T. A., Fecker D., Scherrer M., Neutral evolution of human enamel–dentine junction morphology. Proc. Natl. Acad. Sci. U.S.A. 117, 26183–26189 (2020). PubMed PMC

Morita W., Morphological comparison of the enamel–dentine junction and outer enamel surface of molars using a micro-computed tomography technique. J. Oral Biosci. 58, 95–99 (2016).

Skinner M. M., et al. , Dental trait expression at the enamel-dentine junction of lower molars in extant and fossil hominoids. J. Hum. Evol. 54, 173–186 (2008). PubMed

Smith T. M., Olejniczak A. J., Reid D. J., Ferrell R. J., Hublin J. J., Modern human molar enamel thickness and enamel–dentine junction shape. Arch. Oral Biol. 51, 974–995 (2006). PubMed

Davies T. W., et al. , Dental morphology in Homo habilis and its implications for the evolution of early Homo. Nat. Commun. 15, 286 (2024). PubMed PMC

Pan L., et al. , Intra-individual metameric variation expressed at the enamel-dentine junction of lower post-canine dentition of South African fossil hominins and modern humans. Am. J. Phys. Anthropol. 163, 806–815 (2017). PubMed

Skinner M. M., et al. , Contributions of enamel-dentine junction shape and enamel deposition to primate molar crown complexity. Am. J. Phys. Anthropol. 142, 157–163 (2010), 10.1002/ajpa.21248. PubMed DOI

Zanolli C., et al. , Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia. Nat. Ecol. Evol. 3, 755–764 (2019). PubMed

Zanolli C., et al. , Dental data challenge the ubiquitous presence of Homo in the Cradle of Humankind. Proc. Natl. Acad. Sci. U.S.A. 119, e2111212119 (2022). PubMed PMC

Le Luyer M., Bayle P., Microevolution of outer and inner structures of upper molars in Late Pleistocene and early Holocene humans. Comptes. Rendus Palevol. 16, 632–644 (2017).

Gamarra B., et al. , Identifying biological affinities of Holocene northern Iberian populations through the inner structures of the upper first molars. Archaeol. Anthropol. Sci. 14, 38 (2022).

Le Luyer M., Coquerelle M., Rottier S., Bayle P., Internal tooth structure and burial practices: Insights into the Neolithic necropolis of Gurgy (France, 5100–4000 cal. BC). PLOS ONE 11, e0159688 (2016). PubMed PMC

Martin R. M. G., Hublin J.-J., Gunz P., Skinner M. M., The morphology of the enamel–dentine junction in Neanderthal molars: Gross morphology, non-metric traits, and temporal trends. J. Hum. Evol. 103, 20–44 (2017). PubMed

Beaudet A., et al. , Morphoarchitectural variation in South African fossil cercopithecoid endocasts. J. Hum. Evol. 101, 65–78 (2016). PubMed

Beaudet A., et al. , Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids. J. Human Evol. 95, 104–120 (2016). PubMed

Durrleman S., Pennec X., Trouvé A., Ayache N., Braga J., Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J. Hum. Evol. 62, 74–88 (2012). PubMed

Durrleman S., et al. , Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014). PubMed PMC

Wendorf F., “Late Palaeolithic sites in Egyptian Nubia” in The Prehistory of Nubia, Wendorf F. Ed. (Southern Methodist University Press, Dallas, 1969), vol. II, pp. 791–953.

Leplongeon A., The main Nile Valley at the end of the Pleistocene (28–15 ka): Dispersal corridor or environmental refugium? Front. Earth Sci. 8, 607183 (2021).

Wendorf F., “Site 117: A Nubian final Paleolithic graveyard near Jebel Sahaba, Sudan” in Prehistory of Nubia, Wendorf F., Ed. (Southern Methodist University Press, Dallas, 1968), pp. 954–995.

Zazzo A., Bone and enamel carbonate diagenesis: A radiocarbon prospective. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 168–178 (2014).

Honegger M., El-Barga: Un site clé pour la compréhension du Mésolithique et du début du Néolithique en Nubie. Rev. Paléobiol. 10, 95–104 (2005).

Crevecoeur I., First anthropological insights on the Early Holocene funerary assemblages from El-Barga. Kerma, Documents de la mission archéologique suisse au Soudan 4, 19–28 (2012).

Varadzinová L., Varadzin L., Ambrose S. H., New radiocarbon dates for postglacial reoccupation of the Sudanese Nile. Quat. Sci. Rev. 303, 107953 (2023).

Brukner Havelková P., et al. , Palaeodemography and palaeopathology of Khartoum Mesolithic skeletal remains from Jebel Sabaloka in central Sudan: First insights from the site of Sphinx. J. Natl. Mus. Prague Nat. Hist. Ser. 191, 65–82 (2022).

Varadzinová L., Varadzin L., Brukner Havelková P., Crevecoeur I., Garcea E. A. A., Archaeology of Holocene hunter-gatherers at the sixth Nile cataract, central Sudan. Bulletin d’archéologie marocaine 27, 101–118 (2022).

Varadzinová L., Varadzin L., Crevecoeur I., Kapustka K., McCool J.-P., Excavations at the prehistoric site of Fox Hill in the western part of Jebel Sabaloka (2017–2018). Sudan Nubia 26, 160–181 (2022), 10.32028/9781803274096-160-181. DOI

Salvatori S., Usai D., Zerboni A., Mesolithic site formation and palaeoenvironment along the White Nile (Central Sudan). Afr. Archaeol. Rev. 28, 177–211 (2011).

Salvatori S., et al. , “Archaeology at El-Khiday: new insight on the prehistory and history of Central Sudan” in The Fourth Cataract and Beyond. Proceedings of the 12th International Conference for Nubian Studies (2014).

Irish J. D., De Groote I., “The human skeletal remains from Ghaba: A physical anthropological assessment” in Ghaba: an Early Neolithic Cemetery in Central Sudan, Salvatori S., Usai D., Lecointe Y., Eds. (Africa Magna, Frankfurt, 2016), vol. 1, pp. 85–108.

Salvatori S., Usai D., Zerboni A., Eds., GHABA: An Early Neolithic cemetery in Central Sudan (Africa Magna, Frankfurt am Main, 2016).

Osypińska M., et al. , The PalaeoAffad project and the prehistory of the Middle Nile. APa 58, 79–97 (2020).

Osypiński P., et al. , Unearthing a Middle Nile crossroads – exploring the prehistory of the Letti Basin (Sudan). Pol. Archaeol. Mediterr. 31, 18 (2022).

Osypiński P., et al. , New advances in research on pre- and proto-historic settlement of Argi and Letti. Upper Nubia. Pol. Archaeol. Mediterr. 32, 12 (2023).

Reinold J., Kadruka and the Neolithic in the Northern Dongola Reach. Sudan Nubia 2–10 (2001).

Jesse F., Cattle, sherds and mighty walls–The Wadi Howar from Neolithic to Kushite times. Sudan Nubia 10, 43–54 (2006).

Jesse F., Keding B., “Death in the Desert—Burials in the Wadi Howar region (Eastern Sahara)” in Tides of the Desert: contributions to the archaeology and environmental history of Africa in honour of Rudolph Kuper, Jennerstrasse A., Eds (Heinrich-Barth-Institut, Köln, 2002), pp. 277–293.

Jesse F. “Time of experimentation?—The 4th and 3rd millennia BC in lower Wadi Howar, northwestern Sudan” in Between the Cataracts. Proceedings of the 11th Conference for Nubian Studies. Warsaw University, 27 August–2 September 2006 (Warsaw, 2008), PAM Supplement Series, vol. 2.1, pp. 49–74.

Schuck W., “Steinzeitliche Gräber im Wadi Shaw (Nordsudan)” in Tides of the Desert: Contributions to the archaeology and environmental history of Africa in honour of Rudolph Kuper, Lenssen-Erz T., et al., Eds. (Heinrich-Barth-Institut, 2002), pp. 239–255.

Simon C., Menk R., Kramar C., “The human remains from Wadi Shaw (Sudan): A study of physical anthropology and paleopathology” in Tides of the Desert: contributions to the archaeology and environmental history of Africa in honour of Rudolph Kuper, Lenssen-Erz T., et al., Eds. (Heinrich-Barth-Institut, 2002), pp. 257–275.

y’Edynak G.Fleisch S., Microevolution and biological adaptability in the transition from food-collecting to food-producing in the Iron Gates of Yugoslavia. J. Hum. Evol. 12, 279–296 (1983).

Dahlberg A. A., The changing dentition of Man. J. Am. Dent. Assoc. 32, 676–690 (1945).

Quam R., Bailey S., Wood B., Evolution of M1 crown size and cusp proportions in the genus Homo. J. Anat. 214, 655–670 (2009). PubMed PMC

Skinner M. M., Gunz P., The presence of accessory cusps in chimpanzee lower molars is consistent with a patterning cascade model of development. J. Anat. 217, 245–253 (2010). PubMed PMC

Evans A. R., et al. , A simple rule governs the evolution and development of hominin tooth size. Nature 530, 477–480 (2016). PubMed

Olejniczak A. J., et al. , Morphology of the enamel-dentine junction in sections of anthropoid primate maxillary molars. J. Hum. Evol. 53, 292–301 (2007). PubMed

Gatto M. C., Zerboni A., Holocene supra-regional environmental changes as trigger for major socio-cultural processes in Northeastern Africa and the Sahara. Afr. Archaeol. Rev. 32, 301–333 (2015).

Jesse F. “A permanent link?—The Wadi Howar region and the Nile” in Acta Nubica. Proceedings of the X International conference of Nubian studies (Lebreria dello stato, Rome, 2006), pp. 73–80.

Le Moyne C., et al. , Ecological flexibility and adaptation to past climate change in the Middle Nile Valley: A multiproxy investigation of dietary shifts between the Neolithic and Kerma periods at Kadruka 1 and Kadruka 21. PLoS ONE 18, e0280347 (2023). PubMed PMC

Huffer D., Bentley R. A., Oxenham M. F., “Community and kinship during the transition to agriculture in Northern Vietnam” in The Oxford Handbook of Early Southeast Asia, Higham C. F. W., Kim N. C., Eds. (Oxford University Press, 2022), pp. 271–298. 10.1093/oxfordhb/9780199355358.013.6. DOI

Irish J. D., Scott G. R., Eds., A Companion to Dental Anthropology (Wiley Blackwell, Chichester, 2016).

Scott G. R., Turner C. G., The Anthropology of Modern Human Teeth: Dental Morphology and Its Variation in Recent Human Populations (Cambridge University Press, Cambridge; New York, 1997).

Khudaverdyan A. Y., Non-metric dental traits in human skeletal remains from Transcaucasian populations: Phylogenetic and diachronic evidence. Anthropol. Rev. 77, 151–174 (2014).

Osypiński P., et al. , Unearthing a Middle Nile crossroads—exploring the prehistory of the Letti Basin (Sudan). PAM 31, 18 (2022).

Usai D., Ghaba in context in Ghaba. An early Neolithic cemetery in Central Sudan, Salvatori S., Usai D., Lecointe Y., Eds. (Africa Magna, Frankfurt, 2016), vol. 1, pp. 121–135.

Becker E., The Prehistoric Inhabitants of the Wadi Howar: An Anthropological Study of Human Skeletal Remains from the Sudanese Part of the Eastern Sahara (Johannes Gutenberg-Universität Mainz, 2011).

Jesse F., Keding B., “Holocene settlement dynamics in the Wadi Howar region (Sudan) and the Ennedi mountains (Chad)” in Atlas of Cultural and Environmental Change in Arid Africa, Bubenzer O., Bolten A., Darius F., Eds. (Heinrich-Barth-Institut, Köln, 2007), pp. 42–49.

Keding B., New data on the Holocene occupation of the Wadi Howar region (eastern Sahara/Sudan). Recent research into the stone age of northeastern Africa. Stud. Afr. Archaeol. 7, 89–104 (2000).

Jesse F., North of the Lower Wadi Howar—A first reconnaissance in the area between Jebel Abyad and the Nile Valley. Sudan Nubia 12, 17–25 (2008).

Irish J. D., Turner C. G. II, West African dental affinity of Late Pleistocene Nubians. II. Peopling of the Eurafrican-South Asian triangle. Homo—J. Comp. Hum. Biol. 10, 42–53 (1990).

Henke W., Becker E., Stang M., “Menschliche Skelettreste aus dem Wadi Howar (Sudan)—vorläufige anthropologische Befunde” in Tides of the Desert: contributions to the archaeology and environmental history of Africa in honour of Rudolph Kuper, Lenssen-Erz T., et al., Eds (Heinrich-Barth-Institut, Köln, 2002), pp. 295–312.

Sawchuk E. A., Goldstein S. T., Grillo K. M., Hildebrand E. A., Cemeteries on a moving frontier: Mortuary practices and the spread of pastoralism from the Sahara into eastern Africa. Journal of Anthropological Archaeology 51, 187–205 (2018).

Prendergast M. E., et al. , Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, eaaw6275 (2019). PubMed PMC

Crevecoeur I., Dias-Meirinho M.-H., Zazzo A., Antoine D., Bon F., New insights on interpersonal violence in the Late Pleistocene based on the Nile valley cemetery of Jebel Sahaba. Sci. Rep. 11, 9991 (2021). PubMed PMC

Maines E., Diversité biologique et archéologique de la mort: une approche populationnelle et culturelle du Néolithique soudanais (Haute-Nubie). Thesis (Panthéon-Sorbonne, Paris, 2019).

Molnar S., Human tooth wear, tooth function and cultural variability. Am. J. Phys. Anthropol. 34, 175–189 (1971). PubMed

Zanolli C., et al. , The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high resolution endostructural assessment. PLoS ONE 13, e0189773 (2018). PubMed PMC

Kupczik K., Hublin J.-J., Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens. J. Hum. Evol. 59, 525–541 (2010). PubMed

R Core Team, R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2022). https://www.R-project.org/. Accessed 22 April 2024.

Dryden I. L., shapes: Statistical Shape Analysis (R package, Nottingham, United Kingdom, 2023). 10.32614/CRAN.package.shapes. Accessed 22 April 2024. DOI

Dumoncel J., RToolsForDeformetrica: R script for Deformetrica output (GitLab, 2020). https://gitlab.com/jeandumoncel/tools-for-deformetrica. Accessed 22 April 2024.

Braga J., et al. , Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J. Human Evol. 130, 21–35 (2019). PubMed

Bougeard S., Dray S., Supervised multiblock analysis in R with the ade4 package. J. Stat. Softw. 86, 1–17 (2018).

Dray S., Dufour A.-B., The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

Thioulouse J., Renaud S., Dufour A.-B., Dray S., Overcoming the spurious groups problem in between-group PCA. Evol. Biol. 48, 458–471 (2021).

Schlager S., “Morpho and Rvcg—Shape analysis in R” in Statistical shape and deformation analysis, Zheng G., Li S., Szekely G., Eds. (Academic Press, 2017), pp. 217–256.

Cardini A., Polly P. D., Cross-validated between group PCA scatterplots: A solution to spurious group separation? Evol. Biol. 47, 85–95 (2020).

Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning (Springer, New York, New York, NY, 2009).

Bookstein F. L., Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, 1992).

Martinez Arbizu P., pairwiseAdonis: Pairwise multilevel comparison using Adonis. GitHub. https://github.com/pmartinezarbizu/pairwiseAdonis/. Accessed 22 April 2024.

Rothman K. J., No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990). PubMed

Cardini A., O’Higgins P., Rohlf F. J., Seeing distinct groups where there are none: Spurious patterns from between-group PCA. Evol. Biol. 46, 303–316 (2019).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...