Dermatofibrosarcoma protuberans with PDGFD rearrangements: a case series featuring a novel EMILIN1::PDGFD fusion and comprehensive literature review
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P30 CA023108
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
PubMed
40167642
DOI
10.1007/s00428-025-04088-4
PII: 10.1007/s00428-025-04088-4
Knihovny.cz E-zdroje
- Klíčová slova
- EMILIN1, PDGFD, DFSP, Dermatofibrosarcoma protuberans,
- Publikační typ
- časopisecké články MeSH
Dermatofibrosarcoma protuberans (DFSP) is a locally infiltrative mesenchymal neoplasm usually characterized by a COL1A1::PDGFB fusion. A minority of DFSPs have recently been shown to harbor alternative fusions, involving the PDGFD gene. The aim of this case series and literature review is to highlight the clinicopathologic and molecular features of PDGFD-rearranged DFSPs. Eighteen patients (twelve females and six males) with PDGFD-rearranged DFSPs were collected from the authors' institutional archives. Eight (44%) cases harbored a COL6A3::PDGFD fusion, five (28%) an EMILIN2::PDGFD fusion, and two (11%) an EMILIN1::PDGFD fusion. In three (17%) cases, the fusion partner was unknown. A literature review revealed 29 additional cases. Cumulatively, four alternative fusion genes have been detected: COL6A3::PDGFD (24/47, 51%), EMILIN2::PDGFD (12/47, 26%), EMILIN1::PDGFD (2/47, 4%), and TNC::PDGFD (1/47, 2%). In eight (17%) cases, the fusion partner was unknown. Most (20/24, 83%) COL6A3::PDGFD-fused DFSPs occurred in females with only four (17%) cases described in males. Additionally, half of them (12/24, 50%) developed in the breast/chest wall. EMILIN2::PDGFD-fused DFSPs often occurred in males, were located in the extremities (9/12, 75%), exhibited fibrosarcomatous transformation (9/12, 75%), were confined exclusively or primarily to the subcutis (10/12, 83%), and had a well-circumscribed contour (10/12, 83%). Specific molecular alterations in DFSPs correlate with certain clinicopathologic features. Notably, EMILIN2::PDGFD-fused DFSPs have a slight predilection for males, develop almost exclusively in the subcutis, tend to be well-circumscribed, and often exhibit fibrosarcomatous transformation, while COL6A3::PDGFD-fused DFSPs might have a predilection for the breast/chest wall of female patients. To the best of our knowledge, this is the first report of EMILIN1::PDGFD-fused DFSP.
Bioptical Laboratory Ltd Plzen Czech Republic
Department of Dermatology Geisinger Medical Center Danville PA USA
Department of Laboratory Medicine Geisinger Medical Center Danville PA USA
Department of Pathology and Laboratory Medicine Dartmouth Hitchcock Medical Center Lebanon NH USA
Department of Pathology and Laboratory Medicine University of British Columbia Vancouver Canada
Department of Pathology and Microbiology University of Nebraska Medical Center Omaha NE USA
Department of Pathology Aristotle University of Thessaloniki Thessaloniki Greece
Department of Pathology Faculty of Medicine in Plzen Charles University Prague Plzen Czech Republic
Department of Pathology Stanford University Stanford CA USA
Division of Molecular Pathology ProPath Dallas TX USA
Division of Surgical Pathology Department of Pathology Johns Hopkins Hospital Baltimore MD USA
Zobrazit více v PubMed
Darier J, Ferrand M (1924) Dermatofibromes progressifs et récidivants ou fibrosarcomes de la peau. Ann Dermatol Syph 5:545
WHO Classification of Tumours Editorial Board (2020) Soft tissue and bone tumours. (WHO classification of tumours series, 5th ed. vol 3. International Agency for Research on Cancer, Lyon (France). https://publications.iarc.fr/588
Taylor HB, Helwig EB (1962) Dermatofibrosarcoma protuberans. A study of 115 cases. Cancer 15:717–725. https://doi.org/10.1002/1097-0142(196207/08)15:4%3c717::aid-cncr2820150405>3.0.co;2-2 PubMed DOI
Burkhardt BR, Soule EH, Winkelmann RK, Ivins JC (1966) Dermatofibrosarcoma protuberans. Study of fifty-six cases. Am J Surg 111:638–644. https://doi.org/10.1016/0002-9610(66)90031-6 PubMed DOI
Fletcher CD, Evans BJ, MacArtney JC, Smith N, Wilson Jones E, McKee PH (1985) Dermatofibrosarcoma protuberans: a clinicopathological and immunohistochemical study with a review of the literature. Histopathology 9:921–938. https://doi.org/10.1111/j.1365-2559.1985.tb02878.x PubMed DOI
Bague S, Folpe AL (2008) Dermatofibrosarcoma protuberans presenting as a subcutaneous mass: a clinicopathological study of 15 cases with exclusive or near-exclusive subcutaneous involvement. Am J Dermatopathol 30:327–332. https://doi.org/10.1097/DAD.0b013e31817d32b2 PubMed DOI
Diaz-Cascajo C, Weyers W, Borghi S (1998) Sclerosing dermatofibrosarcoma protuberans. J Cutan Pathol 25:440–444. https://doi.org/10.1111/j.1600-0560.1998.tb01771.x PubMed DOI
Llombart B, Serra-Guillén C, Rubio L, Nagore E, Requena C, Traves V, Calomarde L, Bancalari B, López-Guerrero JA, Guillen-Barona C, Sanmartín O (2017) Subcutaneous dermatofibrosarcoma protuberans, a rare subtype with predilection for the head: a retrospective series of 18 cases. J Am Acad Dermatol 77:503-511.e1. https://doi.org/10.1016/j.jaad.2017.02.046 PubMed DOI
Shah KK, McHugh JB, Folpe AL, Patel RM (2018) Dermatofibrosarcoma protuberans of distal extremities and acral sites: a clinicopathologic analysis of 27 cases. Am J Surg Pathol 42:413–419. https://doi.org/10.1097/PAS.0000000000000998 PubMed DOI
Dickson BC, Hornick JL, Fletcher CDM, Demicco EG, Howarth DJ, Swanson D, Zhang L, Sung Y-S, Antonescu CR (2018) Dermatofibrosarcoma protuberans with a novel COL6A3-PDGFD fusion gene and apparent predilection for breast. Genes Chromosomes Cancer 57:437–445. https://doi.org/10.1002/gcc.22663 PubMed DOI PMC
Chandler B, Jing F, David MP, Nazarullah A (2023) Platelet-derived growth factor-d fusion-positive dermatofibrosarcoma protuberans: case report of an atypical breast mass and literature review. Int J Surg Pathol 31:1610–1617. https://doi.org/10.1177/10668969231160261 PubMed DOI
Lee P-H, Huang S-C, Wu P-S, Tai H-C, Lee C-H, Lee J-C, Kao Y-C, Tsai J-W, Hsieh T-H, Li C-F, Li W-S, Liu T-T, Su Y-L, Yu S-C, Huang H-Y (2022) Molecular characterization of dermatofibrosarcoma protuberans: the clinicopathologic significance of uncommon fusion gene rearrangements and their diagnostic importance in the exclusively subcutaneous and circumscribed lesions. Am J Surg Pathol 46:942–955. https://doi.org/10.1097/PAS.0000000000001866 PubMed DOI
Karanian M, Pérot G, Coindre J-M, Chibon F, Pedeutour F, Neuville A (2015) Fluorescence in situ hybridization analysis is a helpful test for the diagnosis of dermatofibrosarcoma protuberans. Mod Pathol 28:230–237. https://doi.org/10.1038/modpathol.2014.97 PubMed DOI
Nakamura I, Kariya Y, Okada E, Yasuda M, Matori S, Ishikawa O, Uezato H, Takahashi K (2015) A novel chromosomal translocation associated with COL1A2-PDGFB gene fusion in dermatofibrosarcoma protuberans: PDGF expression as a new diagnostic tool. JAMA Dermatol 151:1330–1337. https://doi.org/10.1001/jamadermatol.2015.2389 PubMed DOI
Patel KU, Szabo SS, Hernandez VS, Prieto VG, Abruzzo LV, Lazar AJF, López-Terrada D (2008) Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization. Hum Pathol 39:184–193. https://doi.org/10.1016/j.humpath.2007.06.009 PubMed DOI
Salgado R, Llombart B, Pujol M, R, Fernández-Serra A, Sanmartín O, Toll A, Rubio L, Segura S, Barranco C, Serra-Guillén C, Yébenes M, Salido M, Traves V, Monteagudo C, Sáez E, Hernández T, de Álava E, Llombart-Bosch A, Solé F, Guillén C, Espinet B, López-Guerrero JA, (2011) Molecular diagnosis of dermatofibrosarcoma protuberans: a comparison between reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization methodologies. Genes Chromosomes Cancer 50:510–517. https://doi.org/10.1002/gcc.20874
Segura S, Salgado R, Toll A, Martín-Ezquerra G, Yébenes M, Sáez A, Solé F, Barranco C, Umbert P, Espinet B, Pujol RM (2011) Identification of t(17;22)(q22;q13) (COL1A1/PDGFB) in dermatofibrosarcoma protuberans by fluorescence in situ hybridization in paraffin-embedded tissue microarrays. Hum Pathol 42:176–184. https://doi.org/10.1016/j.humpath.2010.07.015 PubMed DOI
Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O’Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP (1997) Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 15:95–98. https://doi.org/10.1038/ng0197-95 PubMed DOI
Dadone-Montaudié B, Alberti L, Duc A, Delespaul L, Lesluyes T, Pérot G, Lançon A, Paindavoine S, Di Mauro I, Blay J-Y, de la Fouchardière A, Chibon F, Karanian M, MacGrogan G, Kubiniek V, Keslair F, Cardot-Leccia N, Michot A, Perrin V, Zekri Y, Coindre J-M, Tirode F, Pedeutour F, Ranchère-Vince D, Le Loarer F, Pissaloux D (2018) Alternative PDGFD rearrangements in dermatofibrosarcomas protuberans without PDGFB fusions. Mod Pathol an Off J United States Can Acad Pathol Inc 31:1683–1693. https://doi.org/10.1038/s41379-018-0089-4 DOI
Chen Y, Shi Y-Z, Feng X-H, Wang X-T, He X-L, Zhao M (2021) Novel TNC-PDGFD fusion in fibrosarcomatous dermatofibrosarcoma protuberans: a case report. Diagn Pathol 16:63. https://doi.org/10.1186/s13000-021-01123-1 PubMed DOI PMC
Zhu G, Benayed R, Ho C, Mullaney K, Sukhadia P, Rios K, Berry R, Rubin BP, Nafa K, Wang L, Klimstra DS, Ladanyi M, Hameed MR (2019) Diagnosis of known sarcoma fusions and novel fusion partners by targeted RNA sequencing with identification of a recurrent ACTB-FOSB fusion in pseudomyogenic hemangioendothelioma. Mod Pathol Off J United States Can Acad Pathol Inc 32:609–620. https://doi.org/10.1038/s41379-018-0175-7 DOI
Chang KTE, Goytain A, Tucker T, Karsan A, Lee C-H, Nielsen TO, Ng TL (2018) Development and evaluation of a pan-sarcoma fusion gene detection assay using the nanostring nCounter platform. J Mol Diagn 20:63–77. https://doi.org/10.1016/j.jmoldx.2017.09.007 PubMed DOI
Decock A, Creytens D, Lefever S, Van der Meulen J, Anckaert J, De Ganck A, Deleu J, De Wilde B, Fierro C, Kuersten S, Luypaert M, Rottiers I, Schroth GP, Steyaert S, Vanderheyden K, Vanden Eynde E, Verniers K, Verreth J, Van Dorpe J, Vandesompele J (2022) mRNA capture sequencing and RT-qPCR for the detection of pathognomonic, novel, and secondary fusion transcripts in FFPE tissue: a sarcoma showcase. Int J Mol Sci 23:11007. https://doi.org/10.3390/ijms231911007 PubMed DOI PMC
Shah PS, Hughes EG, Sukhadia SS, Green DC, Houde BE, Tsongalis GJ, Tafe LJ (2024) Validation and implementation of a somatic-only tumor exome for routine clinical application. J Mol Diagn 26:815–824. https://doi.org/10.1016/j.jmoldx.2024.05.013 PubMed DOI
Kao Y-C, Sung Y-S, Zhang L, Chen C-L, Vaiyapuri S, Rosenblum MK, Antonescu CR (2017) EWSR1 fusions with CREB family transcription factors define a novel myxoid mesenchymal tumor with predilection for intracranial location. Am J Surg Pathol 41:482–490. https://doi.org/10.1097/PAS.0000000000000788 PubMed DOI PMC
Abbott JJ, Erickson-Johnson M, Wang X, Nascimento AG, Oliveira AM (2006) Gains of COL1A1-PDGFB genomic copies occur in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mod Pathol an Off J United States Can Acad Pathol Inc 19:1512–1518. https://doi.org/10.1038/modpathol.3800695 DOI
Frierson HF, Cooper PH (1983) Myxoid variant of dermatofibrosarcoma protuberans. Am J Surg Pathol 7:445–450. https://doi.org/10.1097/00000478-198307000-00007 PubMed DOI
Bednar B (1957) Storiform neurofibromas of the skin, pigmented and nonpigmented. Cancer 10:368–376. https://doi.org/10.1002/1097-0142(195703/04)10:2<368::aid-cncr2820100218>3.0.co;2-3 PubMed
Calonje E, Fletcher CD (1996) Myoid differentiation in dermatofibrosarcoma protuberans and its fibrosarcomatous variant: clinicopathologic analysis of 5 cases. J Cutan Pathol 23:30–36. https://doi.org/10.1111/j.1600-0560.1996.tb00774.x PubMed DOI
Lambert WC, Abramovits W, Gonzalez-Sevra A, Souchon E, Schwartz RA, Little WPJ (1985) Dermatofibrosarcoma non-protuberans: description and report of five cases of a morpheaform variant of dermatofibrosarcoma. J Surg Oncol 28:7–11. https://doi.org/10.1002/jso.2930280104 PubMed DOI
Banerjee SS, Harris M, Eyden BP, Hamid BN (1990) Granular cell variant of dermatofibrosarcoma protuberans. Histopathology 17:375–378. https://doi.org/10.1111/j.1365-2559.1990.tb00745.x PubMed DOI
Mentzel T, Beham A, Katenkamp D, Dei Tos AP, Fletcher CD (1998) Fibrosarcomatous (“high-grade”) dermatofibrosarcoma protuberans: clinicopathologic and immunohistochemical study of a series of 41 cases with emphasis on prognostic significance. Am J Surg Pathol 22:576–587 PubMed
Abbott JJ, Oliveira AM, Nascimento AG (2006) The prognostic significance of fibrosarcomatous transformation in dermatofibrosarcoma protuberans. Am J Surg Pathol 30:436–443. https://doi.org/10.1097/00000478-200604000-00002 PubMed DOI
Goldblum JR, Reith JD, Weiss SW (2000) Sarcomas arising in dermatofibrosarcoma protuberans: a reappraisal of biologic behavior in eighteen cases treated by wide local excision with extended clinical follow up. Am J Surg Pathol 24:1125–1130. https://doi.org/10.1097/00000478-200008000-00010 PubMed DOI
Cesinaro AM, Mataca E, Gambini C, Kutzner H (2016) An unusual presentation of dermatofibrosarcoma protuberans with pleomorphic sarcomatous transformation: potential pitfall and diagnostic strategy. J Cutan Pathol 43:589–593 PubMed
Swaby MG, Evans HL, Fletcher CDM, Prieto VG, Patel KU, Lev DC, Lòpez-Terrada D, Lazar AJF, Wang W-L (2011) Dermatofibrosarcoma protuberans with unusual sarcomatous transformation: a series of 4 cases with molecular confirmation. Am J Dermatopathol 33:354–360. https://doi.org/10.1097/DAD.0b013e3182014631 PubMed DOI
Mendenhall WM, Zlotecki RA, Scarborough MT (2004) Dermatofibrosarcoma protuberans. Cancer 101:2503–2508. https://doi.org/10.1002/cncr.20678 PubMed DOI
Harati K, Lange K, Goertz O, Lahmer A, Kapalschinski N, Stricker I, Lehnhardt M, Daigeler A (2017) A single-institutional review of 68 patients with dermatofibrosarcoma protuberans: wide re-excision after inadequate previous surgery results in a high rate of local control. World J Surg Oncol 15:5. https://doi.org/10.1186/s12957-016-1075-2 PubMed DOI PMC
Saiag P, Lebbe C, Brochez L, Emile J-F, Forsea AM, Harwood C, Hauschild A, Italiano A, Kandolf L, Kelleners-Smeets NW, Lallas A, Leiter U, Llombart B, Longo C, Malvehy J, Mijuskovic Z, Moreno-Ramirez D, Mosterd K, Tagliaferri L, Ugurel S, Vieira R, Zalaudek I, Garbe C (2025) Diagnosis and treatment of dermatofibrosarcoma protuberans. European interdisciplinary guideline - update 2024. Eur J Cancer 218:115265. https://doi.org/10.1016/j.ejca.2025.115265 PubMed DOI
Bridge JA, Neff JR, Sandberg AA (1990) Cytogenetic analysis of dermatofibrosarcoma protuberans. Cancer Genet Cytogenet 49:199–202. https://doi.org/10.1016/0165-4608(90)90142-w PubMed DOI
Minoletti F, Miozzo M, Pedeutour F, Sard L, Pilotti S, Azzarelli A, Turc-Carel C, Pierotti MA, Sozzi G (1995) Involvement of chromosomes 17 and 22 in dermatofibrosarcoma protuberans. Genes Chromosomes Cancer 13:62–65. https://doi.org/10.1002/gcc.2870130110 PubMed DOI
Pedeutour F, Simon MP, Minoletti F, Barcelo G, Terrier-Lacombe MJ, Combemale P, Sozzi G, Ayraud N, Turc-Carel C (1996) Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet 72:171–174. https://doi.org/10.1159/000134178 PubMed DOI
Shmookler BM, Enzinger FM, Weiss SW (1989) Giant cell fibroblastoma. A juvenile form of dermatofibrosarcoma protuberans. Cancer 64:2154–2161. https://doi.org/10.1002/1097-0142(19891115)64:10%3c2154::aid-cncr2820641030>3.0.co;2-n PubMed DOI
Dal Cin P, Sciot R, de Wever I, Brock P, Casteels-Van Daele M, Van Damme B, Van Den Berghe H (1996) Cytogenetic and immunohistochemical evidence that giant cell fibroblastoma is related to dermatofibrosarcoma protuberans. Genes Chromosomes Cancer 15:73–75. https://doi.org/10.1002/(SICI)1098-2264(199601)15:1%3c73::AID-GCC10>3.0.CO;2-Q DOI
Macarenco RS, Zamolyi R, Franco MF, Nascimento AG, Abott JJ, Wang X, Erickson-Johnson MR, Oliveira AM (2008) Genomic gains of COL1A1-PDFGB occur in the histologic evolution of giant cell fibroblastoma into dermatofibrosarcoma protuberans. Genes Chromosomes Cancer 47:260–265. https://doi.org/10.1002/gcc.20530 PubMed DOI
Sandberg AA, Bridge JA (2003) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Dermatofibrosarcoma protuberans and giant cell fibroblastoma. Cancer Genet Cytogenet 140:1–12. https://doi.org/10.1016/s0165-4608(02)00848-8 PubMed DOI
Craver RD, Correa H, Kao YS, Van Brunt T, Golladay ES (1995) Aggressive giant cell fibroblastoma with a balanced 17;22 translocation. Cancer Genet Cytogenet 80:20–22. https://doi.org/10.1016/0165-4608(94)00152-2 PubMed DOI
Alguacil-Garcia A (1991) Giant cell fibroblastoma recurring as dermatofibrosarcoma protuberans. Am J Surg Pathol 15:798–801. https://doi.org/10.1097/00000478-199108000-00011 PubMed DOI
Coyne J, Kaftan SM, Craig RD (1992) Dermatofibrosarcoma protuberans recurring as a giant cell fibroblastoma. Histopathology 21:184–187. https://doi.org/10.1111/j.1365-2559.1992.tb00372.x PubMed DOI
Pitt MA, Coyne JD, Harris M, McWilliam LJ (1994) Dermatofibrosarcoma protuberans recurring as a giant cell fibroblastoma with subsequent fibrosarcomatous change. Histopathology 24:197–198 PubMed
Jha P, Moosavi C, Fanburg-Smith JC (2007) Giant cell fibroblastoma: an update and addition of 86 new cases from the Armed Forces Institute of Pathology, in honor of Dr. Franz M Enzinger. Ann Diagn Pathol 11:81–88. https://doi.org/10.1016/j.anndiagpath.2006.12.010 PubMed DOI
Terrier-Lacombe M-J, Guillou L, Maire G, Terrier P, Vince DR, de Saint Aubain Somerhausen N, Collin F, Pedeutour F, Coindre J-M, (2003) Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data–a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol 27:27–39. https://doi.org/10.1097/00000478-200301000-00004
Agrawal S, Ameline B, Folpe AL, Azzato E, Astbury C, Mentzel T, Knapp C, Rütten A, Creytens D, Sukov W, Baumhoer D, Billings SD, Fritchie KJ (2024) ALK-rearranged, CD34-positive spindle cell neoplasms resembling dermatofibrosarcoma protuberans: a study of seven cases. Histopathology 85:649–659. https://doi.org/10.1111/his.15239 PubMed DOI
Croce S, Hostein I, Longacre TA, Mills AM, Pérot G, Devouassoux-Shisheboran M, Velasco V, Floquet A, Guyon F, Chakiba C, Querleu D, Khalifa E, Mayeur L, Rebier F, Leguellec S, Soubeyran I, McCluggage WG (2019) Uterine and vaginal sarcomas resembling fibrosarcoma: a clinicopathological and molecular analysis of 13 cases showing common NTRK-rearrangements and the description of a COL1A1-PDGFB fusion novel to uterine neoplasms. Mod Pathol an Off J United States Can Acad Pathol Inc 32:1008–1022. https://doi.org/10.1038/s41379-018-0184-6 DOI
Olson N, Rouhi O, Zhang L, Angeles C, Bridge J, Lopez-Terrada D, Royce T, Linos K (2018) A novel case of an aggressive superficial spindle cell sarcoma in an adult resembling fibrosarcomatous dermatofibrosarcoma protuberans and harboring an EML4-NTRK3 fusion. J Cutan Pathol 45:933–939 PubMed
O’Brien KP, Seroussi E, Dal Cin P, Sciot R, Mandahl N, Fletcher JA, Turc-Carel C, Dumanski JP (1998) Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Genes Chromosomes Cancer 23:187–193 PubMed
Heldin C-H, Lennartsson J (2013) Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harb Perspect Biol 5:a009100. https://doi.org/10.1101/cshperspect.a009100 PubMed DOI PMC
Campbell K, Bridge JA, DiMaio D, Wilson J, Shalin SC, Gardner JM (2022) Dermatofibrosarcoma protuberans with platelet-derived growth factor-D rearrangement; two cases with morphologically distinct presentations. J Cutan Pathol 49:274–277 PubMed
Wang Z, Kong D, Li Y, Sarkar FH (2009) PDGF-D signaling: a novel target in cancer therapy. Curr Drug Targets 10:38–41. https://doi.org/10.2174/138945009787122914 PubMed DOI
LaRochelle WJ, Jeffers M, McDonald WF, Chillakuru RA, Giese NA, Lokker NA, Sullivan C, Boldog FL, Yang M, Vernet C, Burgess CE, Fernandes E, Deegler LL, Rittman B, Shimkets J, Shimkets RA, Rothberg JM, Lichenstein HS (2001) PDGF-D, a new protease-activated growth factor. Nat Cell Biol 3:517–521. https://doi.org/10.1038/35074593 PubMed DOI
Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH, Alitalo K, Eriksson U (2001) PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 3:512–516. https://doi.org/10.1038/35074588 PubMed DOI
Di Martino A, Cescon M, D’Agostino C, Schilardi F, Sabatelli P, Merlini L, Faldini C (2023) Collagen VI in the musculoskeletal system. Int J Mol Sci 24:5095. https://doi.org/10.3390/ijms24065095 PubMed DOI PMC
Möller E, Mandahl N, Mertens F, Panagopoulos I (2008) Molecular identification of COL6A3-CSF1 fusion transcripts in tenosynovial giant cell tumors. Genes Chromosomes Cancer 47:21–25. https://doi.org/10.1002/gcc.20501 PubMed DOI
Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978. https://doi.org/10.1101/cshperspect.a004978 PubMed DOI PMC
Foulkes WD, Flanders TY, Pollock PM, Hayward NK (1997) The CDKN2A (p16) gene and human cancer. Mol Med 3:5–20 PubMed PMC
Serra S, Chetty R (2018) J Clin Pathol 71:853–858. https://doi.org/10.1136/jclinpath-2018-205216
Liggett WHJ, Sidransky D (1998) Role of the p16 tumor suppressor gene in cancer. J Clin Oncol Off J Am Soc Clin Oncol 16:1197–1206. https://doi.org/10.1200/JCO.1998.16.3.1197 DOI
Chiquet-Ehrismann R, Chiquet M (2003) Tenascins: regulation and putative functions during pathological stress. J Pathol 200:488–499. https://doi.org/10.1002/path.1415 PubMed DOI
Ptáková N, Martínek P, Holubec L, Janovský V, Vančurová J, Grossmann P, Navarro PA, Rodriguez Moreno JF, Alaghehbandan R, Hes O, Májek O, Pešek M, Michal M, Ondič O (2021) Identification of tumors with NRG1 rearrangement, including a novel putative pathogenic UNC5D-NRG1 gene fusion in prostate cancer by data-drilling a de-identified tumor database. Genes Chromosomes Cancer 60:474–481. https://doi.org/10.1002/gcc.22942 PubMed DOI
Chung T, Rhee H, Shim HS, Yoo JE, Choi GH, Kim H, Park YN (2022) Genetic, clinicopathological, and radiological features of intrahepatic cholangiocarcinoma with ductal plate malformation pattern. Gut Liver 16:613–624. https://doi.org/10.5009/gnl210174 PubMed DOI
Šekoranja D, Zupan A, Mavčič B, Martinčič D, Salapura V, Snoj Ž, Limpel Novak AK, Pižem J (2020) Novel ASAP1-USP6, FAT1-USP6, SAR1A-USP6, and TNC-USP6 fusions in primary aneurysmal bone cyst. Genes Chromosomes Cancer 59:357–365. https://doi.org/10.1002/gcc.22836 PubMed DOI
Eisenberg JM, Buckwalter VJA, Snow AN, Davick J (2022) Cellular fibroma of tendon sheath with novel TNC-USP6 gene fusion clinically mimicking arthritis in a 7-year-old boy. Pediatr Dev Pathol Off J Soc Pediatr Pathol Paediatr Pathol Soc 25:192–196. https://doi.org/10.1177/10935266211043869 DOI
Legrand M, Tallegas M, Coeugnet A, Macagno N, Jullié M-L, Kervarrec T (2023) Superficial spindle cell tumour with TNC::PDGFD fusion is a distinct entity from dermatofibrosarcoma protuberans. Pathology 55:562–564 PubMed