Identification of tumors with NRG1 rearrangement, including a novel putative pathogenic UNC5D-NRG1 gene fusion in prostate cancer by data-drilling a de-identified tumor database

. 2021 Jul ; 60 (7) : 474-481. [epub] 20210224

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33583086

The fusion genes containing neuregulin-1 (NRG1) are newly described potentially actionable oncogenic drivers. Initial clinical trials have shown a positive response to targeted treatment in some cases of NRG1 rearranged lung adenocarcinoma, cholangiocarcinoma, and pancreatic carcinoma. The cost-effective large scale identification of NRG1 rearranged tumors is an open question. We have tested a data-drilling approach by performing a retrospective assessment of a de-identified molecular profiling database of 3263 tumors submitted for fusion testing. Gene fusion detection was performed by RNA-based targeted next-generation sequencing using the Archer Fusion Plex kits for Illumina (ArcherDX Inc., Boulder, CO). Novel fusion transcripts were confirmed by a custom-designed RT-PCR. Also, the aberrant expression of CK20 was studied immunohistochemically. The frequency of NRG1 rearranged tumors was 0.2% (7/3263). The most common histologic type was lung adenocarcinoma (n = 5). Also, renal carcinoma (n = 1) and prostatic adenocarcinoma (n = 1) were found. Identified fusion partners were of a wide range (CD74, SDC4, TNC, VAMP2, UNC5D), with CD74, SDC4 being found twice. The UNC5D is a novel fusion partner identified in prostate adenocarcinoma. There was no co-occurrence with the other tested fusions nor KRAS, BRAF, and the other gene mutations specified in the applied gene panels. Immunohistochemically, the focal expression of CK20 was present in 2 lung adenocarcinomas. We believe it should be considered as an incidental finding. In conclusion, the overall frequency of tumors with NRG1 fusion was 0.2%. All tumors were carcinomas. We confirm (invasive mucinous) lung adenocarcinoma as being the most frequent tumor presenting NRG1 fusion. Herein novel putative pathogenic gene fusion UNC5D-NRG1 is described. The potential role of immunohistochemistry in tumor identification should be further addressed.

Zobrazit více v PubMed

Meyer D, Yamaai T, Garratt A, et al. Isoform-specific expression and function of neuregulin. Development. 1997;124:3575-3586.

Falls DL. Neuregulins: functions, forms, and signaling strategies. Exp Cell Res. 2003;284:14-30.

Pankonin MS, Sohi J, Kamholz J, Loeb JA. Differential distribution of neuregulin in the human brain and spinal fluid. Brain Res. 2009;1258:1-11.

Kwon OB, Paredes D, Gonzalez CM, et al. Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proc Natl Acad Sci USA. 2008;105:15587-15592.

Birchmeier C, Nave KA. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia. 2008;56:1491-1497.

Dixon M, Lumsden A. Distribution of neuregulin-1 (nrg1) and erbB4 transcripts in embryonic chick hindbrain. Mol Cell Neurosci. 1999;13:237-258.

Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 2008;9:437-452.

Fernandez-Cuesta L, Plenker D, Osada H, et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 2014;4:415-422.

Tsai CJ, Nussinov R. Emerging allosteric mechanism of EGFR activation in physiological and pathological contexts. Biophys J. 2019;117:5-13.

Bao J, Wolpowitz D, Role LW, Talmage DA. Back signaling by the Nrg-1 intracellular domain. J Cell Biol. 2003;161:1133-1141.

Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177-184.

Hobbs SS, Coffing SL, Le AT, et al. Neuregulin isoforms exhibit distinct patterns of ErbB family receptor activation. Oncogene. 2002;21:8442-8452.

Jonna S, Feldman RA, Swensen J, et al. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25:4966-4972.

Adélaïde J, Huang H-E, Murati A, et al. A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene. Genes Chromosomes Cancer. 2003;37:333-345. https://doi.org/10.1002/gcc.10218.

Drilon A, Somwar R, Mangatt BP, et al. Response to ERBB3-directed targeted therapy in NRG1-rearranged cancers. Cancer Discov. 2018;8:686-695.

Jung Y, Yong S, Kim P, et al. VAMP2-NRG1 fusion gene is a novel oncogenic driver of non-small-cell lung adenocarcinoma. J Thorac Oncol. 2015;10:1107-1111.

Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644-648. https://doi.org/10.1126/science.1117679.

Tomlins SA, Laxman B, Dhanasekaran SM, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448:595-599. https://doi.org/10.1038/nature06024.

Alhamar M, Tudor VI, Smith SC, et al. Gene fusion characterisation of rare aggressive prostate cancer variants-adenosquamous carcinoma, pleomorphic giant-cell carcinoma, and sarcomatoid carcinoma: an analysis of 19 cases. Histopathology. 2020;77:890-899.

Zhang Z, Karthaus WR, Lee YS, et al. Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer. Cancer Cell. 2020;38(2):279-296. https://doi.org/10.1016/j.ccell.2020.06.005.

Nakaoku T, Tsuta K, Ichikawa H, et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin Cancer Res. 2014;20:3087-3093.

Heining C, Horak P, Uhrig S, et al. NRG1 fusions in KRAS wildtype pancreatic cancer. Cancer Discov. 2018;8:1087-1095.

Jones MR, Williamson LM, Topham JT, et al. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wildtype pancreatic ductal adenocarcinoma. Clin Cancer Res. 2019;25:4674-4681.

Cadranel J, Liu SV, Duruisseaux M, et al. Therapeutic potential of Afatinib in NRG1 fusion-driven solid tumors: a case series. Oncologist. 2020;26:7-16. https://doi.org/10.1634/theoncologist.2020-0379.

Trombetta D, Graziano P, Scarpa A, et al. Frequent NRG1 fusions in Caucasian pulmonary mucinous adenocarcinoma predicted by phospho-ErbB3 expression. Oncotarget. 2018;9:9661-9671.

Shin DH, Lee D, Hong DW, et al. Oncogenic function and clinical implications of SLC3A2-NRG1 fusion in invasive mucinous adenocarcinoma of the lung. Oncotarget. 2016;7:69450-69465.

Fernandez-Cuesta L, Thomas RK. Molecular pathways: targeting NRG1 fusions in lung cancer. Clin Cancer Res. 2015;21:1989-1994.

Gaborit N, Lindzen M, Yarden Y. Emerging anti-cancer antibodies and combination therapies targeting HER3/ERBB3. Hum Vaccin Immunother. 2016;12:576-592.

Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT. HER3 signaling and targeted therapy in cancer. Oncol Rev. 2018;12:355.

Duruisseaux M, Liu SV, Han JY, et al. NRG1 fusion-positive lung cancers: clinicopathologic profile and treatment outcomes from a global multicenter registry. J Clin Oncol. 2019;37(15):9081-9081.

Laskin J, Liu SV, Tolba K, et al. NRG1 fusion-driven tumors: biology, detection, and the therapeutic role of afatinib and other ErbB-targeting agents. Ann Oncol. 2020;20:27-25. https://doi.org/10.1016/j.annonc.2020.08.2335.

Dhanasekaran SM, Balbin OA, Chen G, et al. Transcriptome metaanalysis of lung cancer reveals recurrent aberrations in NRG1 and hippo pathway genes. Nat Commun. 2014;5:5893.

McCoach CE, Le AT, Gowan K, et al. Resistance mechanisms to targeted therapies in ROS1(+) and ALK(+) non-small cell lung cancer. Clin Cancer Res. 2018;24:3334-3347.

Pan Y, Zhang Y, Ye T, et al. Detection of novel NRG1, EGFR, and MET fusions in lung adenocarcinomas in the Chinese population. J Thorac Oncol. 2019;14:2003-2008.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...