Identification of tumors with NRG1 rearrangement, including a novel putative pathogenic UNC5D-NRG1 gene fusion in prostate cancer by data-drilling a de-identified tumor database
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33583086
DOI
10.1002/gcc.22942
Knihovny.cz E-zdroje
- Klíčová slova
- EGF-like domain, ERBB, ERBB3, HER, HER 3, MAPK, NRG1, PIK, carcinoma, data drilling, gene fusion, gene rearrangement, genetics, lung, mRNA sequencing, molecular, neuregulin, next-generation sequencing, receptor heterodimerization, receptor tyrosine kinase,
- MeSH
- adenokarcinom genetika patologie MeSH
- antigeny diferenciační B-lymfocytární genetika MeSH
- dospělí MeSH
- fúzní onkogenní proteiny genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- membránový protein 2 asociovaný s vezikuly genetika MeSH
- MHC antigeny II. třídy genetika MeSH
- nádory plic genetika patologie MeSH
- nádory prostaty genetika patologie MeSH
- neuregulin-1 genetika MeSH
- receptory buněčného povrchu genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- syndekan-4 genetika MeSH
- tenascin genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny diferenciační B-lymfocytární MeSH
- fúzní onkogenní proteiny MeSH
- invariant chain MeSH Prohlížeč
- membránový protein 2 asociovaný s vezikuly MeSH
- MHC antigeny II. třídy MeSH
- neuregulin-1 MeSH
- NRG1 protein, human MeSH Prohlížeč
- receptory buněčného povrchu MeSH
- SDC4 protein, human MeSH Prohlížeč
- syndekan-4 MeSH
- tenascin MeSH
- TNC protein, human MeSH Prohlížeč
- UNC5D protein, human MeSH Prohlížeč
- VAMP2 protein, human MeSH Prohlížeč
The fusion genes containing neuregulin-1 (NRG1) are newly described potentially actionable oncogenic drivers. Initial clinical trials have shown a positive response to targeted treatment in some cases of NRG1 rearranged lung adenocarcinoma, cholangiocarcinoma, and pancreatic carcinoma. The cost-effective large scale identification of NRG1 rearranged tumors is an open question. We have tested a data-drilling approach by performing a retrospective assessment of a de-identified molecular profiling database of 3263 tumors submitted for fusion testing. Gene fusion detection was performed by RNA-based targeted next-generation sequencing using the Archer Fusion Plex kits for Illumina (ArcherDX Inc., Boulder, CO). Novel fusion transcripts were confirmed by a custom-designed RT-PCR. Also, the aberrant expression of CK20 was studied immunohistochemically. The frequency of NRG1 rearranged tumors was 0.2% (7/3263). The most common histologic type was lung adenocarcinoma (n = 5). Also, renal carcinoma (n = 1) and prostatic adenocarcinoma (n = 1) were found. Identified fusion partners were of a wide range (CD74, SDC4, TNC, VAMP2, UNC5D), with CD74, SDC4 being found twice. The UNC5D is a novel fusion partner identified in prostate adenocarcinoma. There was no co-occurrence with the other tested fusions nor KRAS, BRAF, and the other gene mutations specified in the applied gene panels. Immunohistochemically, the focal expression of CK20 was present in 2 lung adenocarcinomas. We believe it should be considered as an incidental finding. In conclusion, the overall frequency of tumors with NRG1 fusion was 0.2%. All tumors were carcinomas. We confirm (invasive mucinous) lung adenocarcinoma as being the most frequent tumor presenting NRG1 fusion. Herein novel putative pathogenic gene fusion UNC5D-NRG1 is described. The potential role of immunohistochemistry in tumor identification should be further addressed.
2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Clinical Oncology Na Homolce Hospital Prague Czech Republic
Department of Oncology Hospital České Budějovice České Budějovice Czech Republic
Department of Pathology FiHM Centro Integral Oncológico Hospital de Madrid Clara Campal Madrid Spain
Department of Pathology Medical Faculty in Pilsen Charles University Prague Pilsen Czech Republic
Institute of Biostatistics and Analyses Faculty of Medicine Masaryk University Brno Czech Republic
Molecular Genetics Department Bioptická Laboratoř s r o Pilsen Czech Republic
Zobrazit více v PubMed
Meyer D, Yamaai T, Garratt A, et al. Isoform-specific expression and function of neuregulin. Development. 1997;124:3575-3586.
Falls DL. Neuregulins: functions, forms, and signaling strategies. Exp Cell Res. 2003;284:14-30.
Pankonin MS, Sohi J, Kamholz J, Loeb JA. Differential distribution of neuregulin in the human brain and spinal fluid. Brain Res. 2009;1258:1-11.
Kwon OB, Paredes D, Gonzalez CM, et al. Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proc Natl Acad Sci USA. 2008;105:15587-15592.
Birchmeier C, Nave KA. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia. 2008;56:1491-1497.
Dixon M, Lumsden A. Distribution of neuregulin-1 (nrg1) and erbB4 transcripts in embryonic chick hindbrain. Mol Cell Neurosci. 1999;13:237-258.
Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci. 2008;9:437-452.
Fernandez-Cuesta L, Plenker D, Osada H, et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 2014;4:415-422.
Tsai CJ, Nussinov R. Emerging allosteric mechanism of EGFR activation in physiological and pathological contexts. Biophys J. 2019;117:5-13.
Bao J, Wolpowitz D, Role LW, Talmage DA. Back signaling by the Nrg-1 intracellular domain. J Cell Biol. 2003;161:1133-1141.
Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177-184.
Hobbs SS, Coffing SL, Le AT, et al. Neuregulin isoforms exhibit distinct patterns of ErbB family receptor activation. Oncogene. 2002;21:8442-8452.
Jonna S, Feldman RA, Swensen J, et al. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25:4966-4972.
Adélaïde J, Huang H-E, Murati A, et al. A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene. Genes Chromosomes Cancer. 2003;37:333-345. https://doi.org/10.1002/gcc.10218.
Drilon A, Somwar R, Mangatt BP, et al. Response to ERBB3-directed targeted therapy in NRG1-rearranged cancers. Cancer Discov. 2018;8:686-695.
Jung Y, Yong S, Kim P, et al. VAMP2-NRG1 fusion gene is a novel oncogenic driver of non-small-cell lung adenocarcinoma. J Thorac Oncol. 2015;10:1107-1111.
Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644-648. https://doi.org/10.1126/science.1117679.
Tomlins SA, Laxman B, Dhanasekaran SM, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448:595-599. https://doi.org/10.1038/nature06024.
Alhamar M, Tudor VI, Smith SC, et al. Gene fusion characterisation of rare aggressive prostate cancer variants-adenosquamous carcinoma, pleomorphic giant-cell carcinoma, and sarcomatoid carcinoma: an analysis of 19 cases. Histopathology. 2020;77:890-899.
Zhang Z, Karthaus WR, Lee YS, et al. Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer. Cancer Cell. 2020;38(2):279-296. https://doi.org/10.1016/j.ccell.2020.06.005.
Nakaoku T, Tsuta K, Ichikawa H, et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin Cancer Res. 2014;20:3087-3093.
Heining C, Horak P, Uhrig S, et al. NRG1 fusions in KRAS wildtype pancreatic cancer. Cancer Discov. 2018;8:1087-1095.
Jones MR, Williamson LM, Topham JT, et al. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wildtype pancreatic ductal adenocarcinoma. Clin Cancer Res. 2019;25:4674-4681.
Cadranel J, Liu SV, Duruisseaux M, et al. Therapeutic potential of Afatinib in NRG1 fusion-driven solid tumors: a case series. Oncologist. 2020;26:7-16. https://doi.org/10.1634/theoncologist.2020-0379.
Trombetta D, Graziano P, Scarpa A, et al. Frequent NRG1 fusions in Caucasian pulmonary mucinous adenocarcinoma predicted by phospho-ErbB3 expression. Oncotarget. 2018;9:9661-9671.
Shin DH, Lee D, Hong DW, et al. Oncogenic function and clinical implications of SLC3A2-NRG1 fusion in invasive mucinous adenocarcinoma of the lung. Oncotarget. 2016;7:69450-69465.
Fernandez-Cuesta L, Thomas RK. Molecular pathways: targeting NRG1 fusions in lung cancer. Clin Cancer Res. 2015;21:1989-1994.
Gaborit N, Lindzen M, Yarden Y. Emerging anti-cancer antibodies and combination therapies targeting HER3/ERBB3. Hum Vaccin Immunother. 2016;12:576-592.
Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT. HER3 signaling and targeted therapy in cancer. Oncol Rev. 2018;12:355.
Duruisseaux M, Liu SV, Han JY, et al. NRG1 fusion-positive lung cancers: clinicopathologic profile and treatment outcomes from a global multicenter registry. J Clin Oncol. 2019;37(15):9081-9081.
Laskin J, Liu SV, Tolba K, et al. NRG1 fusion-driven tumors: biology, detection, and the therapeutic role of afatinib and other ErbB-targeting agents. Ann Oncol. 2020;20:27-25. https://doi.org/10.1016/j.annonc.2020.08.2335.
Dhanasekaran SM, Balbin OA, Chen G, et al. Transcriptome metaanalysis of lung cancer reveals recurrent aberrations in NRG1 and hippo pathway genes. Nat Commun. 2014;5:5893.
McCoach CE, Le AT, Gowan K, et al. Resistance mechanisms to targeted therapies in ROS1(+) and ALK(+) non-small cell lung cancer. Clin Cancer Res. 2018;24:3334-3347.
Pan Y, Zhang Y, Ye T, et al. Detection of novel NRG1, EGFR, and MET fusions in lung adenocarcinomas in the Chinese population. J Thorac Oncol. 2019;14:2003-2008.