2-Ethylhexyl Diphenyl Phosphate Affects Steroidogenesis and Lipidome Profile in Human Adrenal (H295R) Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40178524
PubMed Central
PMC12015954
DOI
10.1021/acs.chemrestox.5c00030
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- lipidomika MeSH
- metabolismus lipidů * účinky léků MeSH
- nadledviny * účinky léků metabolismus cytologie MeSH
- organofosfáty * farmakologie MeSH
- steroidy * biosyntéza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- organofosfáty * MeSH
- steroidy * MeSH
The ever-increasing use of chemicals and the rising incidence of adverse reproductive effects in the modern environment have become an emerging concern. Several studies have shown that environmental contaminants, such as organophosphate flame retardants (OPFRs), negatively impact reproductive health. To evaluate the potential endocrine-related adverse reproductive effects of widely used and priority-listed compound 2-Ethylhexyl diphenyl phosphate (EHDPP), we characterized its effects on adrenal steroidogenesis in human adrenocortical (H295R) cells. The cells were exposed to EHDPP (1 and 5 μM) for 48 h, and the production of hormones, including progesterone, androstenedione, testosterone, estradiol, cortisol, and aldosterone, was measured. In addition, LC-MS/MS-based lipidomics analysis was done to quantify intracellular lipid profiles, and transcriptional assays were performed to examine the expression of genes related to corticosteroidogenesis, lipid metabolism, and mitochondrial dynamics. Our findings indicate that EHDPP disrupts hormone regulation in vitro, as evidenced by increased estradiol, cortisol, and aldosterone secretion. The expression of key corticosteroidogenic genes (CYP11B2, CYP21A1, 3β-HSD2, and 17β-HSD1) was upregulated significantly upon EHDPP exposure. Intracellular lipidomics revealed EHDPP-mediated disruption, including reduced total cholesterol ester, sphingolipids, and increased phospholipids, triglyceride species, and saturated-monounsaturated lipids subspecies. These alterations were accompanied by decreased ACAT2 and SCD1 gene expression. Moreover, a shift in mitochondrial dynamics was indicated by increased MF1 expression and decreased FIS1 expression. These data suggest that EHDPP disrupts adrenal steroidogenesis and lipid homeostasis, emphasizing its potential endocrine-disrupting effects.
Zobrazit více v PubMed
van der Veen I.; De Boer J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere 2012, 88, 1119–1153. 10.1016/j.chemosphere.2012.03.067. PubMed DOI
Tan H.; Chen D.; Peng C.; Liu X.; Wu Y.; Li X.; Du R.; Wang B.; Guo Y.; Zeng E. Y. Novel and Traditional Organophosphate Esters in House Dust from South China: Association with Hand Wipes and Exposure Estimation. Environ. Sci. Technol. 2018, 52 (19), 11017–11026. 10.1021/acs.est.8b02933. PubMed DOI
Gbadamosi M. R.; Abdallah M. A. E.; Harrad S. A Critical Review of Human Exposure to Organophosphate Esters with a Focus on Dietary Intake. Sci. Total Environ. 2021, 771, 14475210.1016/j.scitotenv.2020.144752. PubMed DOI
Rantakokko P.; Kumar E.; Braber J.; Huang T.; Kiviranta H.; Cequier E.; Thomsen C. Concentrations of Brominated and Phosphorous Flame Retardants in Finnish House Dust and Insights into Children’s Exposure. Chemosphere 2019, 223, 99–107. 10.1016/j.chemosphere.2019.02.027. PubMed DOI
Demirtepe H.; Melymuk L.; Diamond M. L.; Bajard L.; Vojta Š.; Prokeš R.; Sáňka O.; Klánová J.; Palkovičová Murínová Ĺ.; Richterová D.; Rašplová V.; Trnovec T. Linking Past Uses of Legacy SVOCs with Today’s Indoor Levels and Human Exposure. Environ. Int. 2019, 127, 653–663. 10.1016/j.envint.2019.04.001. PubMed DOI
Zhao F.; Chen M.; Gao F.; Shen H.; Hu J. Organophosphorus Flame Retardants in Pregnant Women and Their Transfer to Chorionic Villi. Environ. Sci. Technol. 2017, 51 (11), 6489–6497. 10.1021/acs.est.7b01122. PubMed DOI
Carignan C. C.; Minguez-Alarcón L.; Butt C. M.; Williams P. L.; Meeker J. D.; Stapleton H. M.; Toth T. L.; Ford J. B.; Hauser R. Urinary Concentrations of Organophosphate Flame Retardant Metabolites and Pregnancy Outcomes among Women Undergoing in Vitro Fertilization. Environ. Health Perspect. 2017, 125 (8), 1–8. 10.1289/EHP1021. PubMed DOI PMC
Zhao F.; Wan Y.; Zhao H.; Hu W.; Mu D.; Webster T. F.; Hu J. Levels of Blood Organophosphorus Flame Retardants and Association with Changes in Human Sphingolipid Homeostasis. Environ. Sci. Technol. 2016, 50 (16), 8896–8903. 10.1021/acs.est.6b02474. PubMed DOI
Saillenfait A. M.; Ndaw S.; Robert A.; Sabaté J. P. Recent Biomonitoring Reports on Phosphate Ester Flame Retardants: A Short Review. Arch. Toxicol. 2018, 92, 2749–2778. 10.1007/s00204-018-2275-z. PubMed DOI
van der Schyff V.; Kalina J.; Govarts E.; Gilles L.; Schoeters G.; Castaño A.; Esteban-López M.; Kohoutek J.; Kukučka P.; Covaci A.; Koppen G.; Andrýsková L.; Piler P.; Klánová J.; Jensen T. K.; Rambaud L.; Riou M.; Lamoree M.; Kolossa-Gehring M.; Vogel N.; Weber T.; Göen T.; Gabriel C.; Sarigiannis D. A.; Sakhi A. K.; Haug L. S.; Murinova L. P.; Fabelova L.; Tratnik J. S.; Mazej D.; Melymuk L. Exposure to Flame Retardants in European Children — Results from the HBM4 EU Aligned Studies. International Journal of Hygiene and Environmental Health 2023, 247, 11407010.1016/j.ijheh.2022.114070. PubMed DOI PMC
Wang A.; Padula A.; Sirota M.; Woodruff T. J. Environmental Influences on Reproductive Health: The Importance of Chemical Exposures. Fertility and Sterility 2016, 106, 905–929. 10.1016/j.fertnstert.2016.07.1076. PubMed DOI PMC
Rodprasert W.; Toppari J.; Virtanen H. E. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Frontiers in Endocrinology 2021, 12, 70653210.3389/fendo.2021.706532. PubMed DOI PMC
Yang R.; Wang X.; Wang J.; Chen P.; Liu Q.; Zhong W.; Zhu L. Insights into the Sex-Dependent Reproductive Toxicity of 2-Ethylhexyl Diphenyl Phosphate on Zebrafish (Danio Rerio). Environ. Int. 2022, 158, 10692810.1016/j.envint.2021.106928. PubMed DOI
Li Y.; Kang Q.; Chen R.; He J.; Liu L.; Wang L.; Hu J. 2-Ethylhexyl Diphenyl Phosphate and Its Hydroxylated Metabolites Are Anti-Androgenic and Cause Adverse Reproductive Outcomes in Male Japanese Medaka (Oryzias Latipes). Environ. Sci. Technol. 2020, 54 (14), 8919–8925. 10.1021/acs.est.0c02775. PubMed DOI
Gao F.; Zhang X.; Shen X.; Zhao F.; Shen H.; Hu J. Exposure Assessment of Aryl-Organophosphate Esters Based on Specific Urinary Biomarkers and Their Associations with Reproductive Hormone Homeostasis Disruption in Women of Childbearing Age. Environ. Int. 2022, 169, 10750310.1016/j.envint.2022.107503. PubMed DOI
Negi C. K.; Bajard L.; Kohoutek J.; Blaha L. An Adverse Outcome Pathway Based in Vitro Characterization of Novel Flame Retardants-Induced Hepatic Steatosis. Environ. Pollut. 2021, 289, 11785510.1016/j.envpol.2021.117855. PubMed DOI
Negi C. K.; Gadara D.; Kohoutek J.; Bajard L.; Spáčil Z.; Blaha L. Replacement Flame-Retardant 2-Ethylhexyldiphenyl Phosphate (EHDPP) Disrupts Hepatic Lipidome: Evidence from Human 3D Hepatospheroid Cell Culture. Environ. Sci. Technol. 2023, 57 (5), 2006–2018. 10.1021/acs.est.2c03998. PubMed DOI PMC
Sun W.; Duan X.; Chen H.; Zhang L.; Sun H. Adipogenic Activity of 2-Ethylhexyl Diphenyl Phosphate via Peroxisome Proliferator-Activated Receptor γ Pathway. Sci. Total Environ. 2020, 711, 13481010.1016/j.scitotenv.2019.134810. PubMed DOI
Hansen M.; Flatt T.; Aguilaniu H. Reproduction, Fat Metabolism, and Life Span: What Is the Connection?. Cell Metab. 2013, 17 (1), 10–19. 10.1016/j.cmet.2012.12.003. PubMed DOI PMC
Torre S. D.; Benedusi V.; Fontana R.; Maggi A. Energy Metabolism and Fertility - A Balance Preserved for Female Health. Nat. Rev. Endocrinol. 2014, 10 (1), 13–23. 10.1038/nrendo.2013.203. PubMed DOI
Strauss J. F.; FitzGerald G. A.. Steroid Hormones and Other Lipid Molecules Involved in Human Reproduction. Yen Jaffe’s Reprod. Endocrinol. Physiol. Pathophysiol. Clin. Manag. Eighth Ed., 2019; pp 75–114.e7.
Hecker M.; Newsted J. L.; Murphy M. B.; Higley E. B.; Jones P. D.; Wu R.; Giesy J. P. Human Adrenocarcinoma (H295R) Cells for Rapid in Vitro Determination of Effects on Steroidogenesis: Hormone Production. Toxicol. Appl. Pharmacol. 2006, 217 (1), 114–124. 10.1016/j.taap.2006.07.007. PubMed DOI
Maglich J. M.; Kuhn M.; Chapin R. E.; Pletcher M. T. More than Just Hormones: H295R Cells as Predictors of Reproductive Toxicity. Reprod. Toxicol. 2014, 45, 77–86. 10.1016/j.reprotox.2013.12.009. PubMed DOI
OECD . Test Guideline No. 456 H295R Steroidogenesis Assay; OECD Guidelines for the Testing of Chemicals, Section 4; OECD, 2022.
Huynh K.; Barlow C. K.; Jayawardana K. S.; Weir J. M.; Mellett N. A.; Cinel M.; Magliano D. J.; Shaw J. E.; Drew B. G.; Meikle P. J. High-Throughput Plasma Lipidomics: Detailed Mapping of the Associations with Cardiometabolic Risk Factors. Cell Chem. Biol. 2019, 26 (1), 71–84.e4. 10.1016/j.chembiol.2018.10.008. PubMed DOI
Xuan Q.; Hu C.; Yu D.; Wang L.; Zhou Y.; Zhao X.; Li Q.; Hou X.; Xu G. Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance Liquid Chromatography-Mass Spectrometry. Anal. Chem. 2018, 90 (12), 7608–7616. 10.1021/acs.analchem.8b01331. PubMed DOI PMC
Miranda A. M.; Bravo F. V.; Chan R. B.; Sousa N.; Di Paolo G.; Oliveira T. G. Differential Lipid Composition and Regulation along the Hippocampal Longitudinal Axis. Transl. Psychiatry 2019, 9 (1), 1–12. 10.1038/s41398-019-0478-6. PubMed DOI PMC
Vaňková Z.; Peterka O.; Chocholoušková M.; Wolrab D.; Jirásko R.; Holčapek M. Retention Dependences Support Highly Confident Identification of Lipid Species in Human Plasma by Reversed-Phase UHPLC/MS. Anal. Bioanal. Chem. 2022, 414 (1), 319–331. 10.1007/s00216-021-03492-4. PubMed DOI
Hilscherova K.; Jones P. D.; Gracia T.; Newsted J. L.; Zhang X.; Sanderson J. T.; Yu R. M. K.; Wu R. S. S.; Giesy J. P. Assessment of the Effects of Chemicals on the Expression of Ten Steroidogenic Genes in the H295R Cell Line Using Real-Time PCR. Toxicol. Sci. 2004, 81 (1), 78–89. 10.1093/toxsci/kfh191. PubMed DOI
Livak K. J.; Schmittgen T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25 (4), 402–408. 10.1006/meth.2001.1262. PubMed DOI
Bajard L.; Vespalcová H.; Negi C. K.; Kohoutek J.; Bláha L.; Sovadinová I. Anti-Androgenic Activity of Novel Flame Retardants in Mixtures: Newly Identified Contribution from Tris(2,3-Dibromopropyl) Isocyanurate (TDBP-TAZTO). Chemosphere 2023, 341, 14000410.1016/j.chemosphere.2023.140004. PubMed DOI
Schang G.; Robaire B.; Hales B. F. Organophosphate Flame Retardants Act as Endocrine-Disrupting Chemicals in MA-10 Mouse Tumor Leydig Cells. Toxicol. Sci. 2016, 150 (2), 499–509. 10.1093/toxsci/kfw012. PubMed DOI
Tachachartvanich P.; Sangsuwan R.; Duangta S.; Navasumrit P.; Ruchirawat S.; Ruchirawat M. Estrogenic and Anti-Estrogenic Assessment of the Flame Retardant, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), and Its Metabolites: Evidence from in Vitro, in Silico, and Transcriptome Studies. J. Hazard. Mater. 2025, 488, 13730310.1016/J.JHAZMAT.2025.137303. PubMed DOI
Bajard L.; Negi C. K.; Mustieles V.; Melymuk L.; Jomini S.; Barthelemy-Berneron J.; Fernandez M. F.; Blaha L. Endocrine Disrupting Potential of Replacement Flame Retardants–Review of Current Knowledge for Nuclear Receptors Associated with Reproductive Outcomes. Environ. Int. 2021, 153, 10655010.1016/j.envint.2021.106550. PubMed DOI
Zhang Q.; Wang J.; Zhu J.; Liu J.; Zhao M. Potential Glucocorticoid and Mineralocorticoid Effects of Nine Organophosphate Flame Retardants. Environ. Sci. Technol. 2017, 51 (10), 5803–5810. 10.1021/acs.est.7b01237. PubMed DOI
Payne A. H.; Hales D. B. Overview of Steroidogenic Enzymes in the Pathway from Cholesterol to Active Steroid Hormones. Endocr. Rev. 2004, 25 (6), 947–970. 10.1210/er.2003-0030. PubMed DOI
Hu W.; Gao F.; Zhang H.; Hiromori Y.; Arakawa S.; Nagase H.; Nakanishi T.; Hu J. Activation of Peroxisome Proliferator-Activated Receptor Gamma and Disruption of Progesterone Synthesis of 2-Ethylhexyl Diphenyl Phosphate in Human Placental Choriocarcinoma Cells: Comparison with Triphenyl Phosphate. Environ. Sci. Technol. 2017, 51 (7), 4061–4068. 10.1021/acs.est.7b00872. PubMed DOI
Miller W. L.; Auchus R. J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011, 32 (1), 81–151. 10.1210/er.2010-0013. PubMed DOI PMC
Labrie F.; Luu-The V.; Lin S. X.; Labrie C.; Simard J.; Breton R.; Bélanger A. The Key Role of 17β-Hydroxysteroid Dehydrogenases in Sex Steroid Biology. Steroids 1997, 62 (1), 148–158. 10.1016/S0039-128X(96)00174-2. PubMed DOI
Kurlbaum M.; Sbiera S.; Kendl S.; Martin Fassnacht M.; Kroiss M. Steroidogenesis in the NCI-H295 Cell Line Model Is Strongly Affected by Culture Conditions and Substrain. Exp. Clin. Endocrinol. Diabetes 2020, 128 (10), 672–680. 10.1055/A-1105-6332/ID/R08-2019-0382-ENDO-0005/BIB. PubMed DOI
Yue J.; Sun C.; Tang J.; Zhang Q.; Lou M.; Sun H.; Zhang L. Downregulation of MiRNA-155–5p Contributes to the Adipogenic Activity of 2-Ethylhexyl Diphenyl Phosphate in 3T3-L1 Preadipocytes. Toxicology 2023, 487, 15345210.1016/j.tox.2023.153452. PubMed DOI
Li Z.; Hales B. F.; Robaire B. Impact of Exposure to a Mixture of Organophosphate Esters on Adrenal Cell Phenotype, Lipidome, and Function. Endocrinology (United States) 2024, 165 (4), bqae02410.1210/endocr/bqae024. PubMed DOI PMC
Lucki N. C.; Sewer M. B. Multiple Roles for Sphingolipids in Steroid Hormone Biosynthesis. Subcell. Biochem. 2008, 49, 387–412. 10.1007/978-1-4020-8831-5_15. PubMed DOI PMC
Ozbay T.; Merrill A. H.; Sewer M. B. ACTH Regulates Steroidogenic Gene Expression and Cortisol Biosynthesis in the Human Adrenal Cortex via Sphingolipid Metabolism. Endocr. Res. 2004, 30 (4), 787–794. 10.1081/ERC-200044040. PubMed DOI
Mauvoisin D.; Mounier C. Hormonal and Nutritional Regulation of SCD1 Gene Expression. Biochimie 2011, 93 (1), 78–86. 10.1016/j.biochi.2010.08.001. PubMed DOI
Simons K.; Ehehalt R. Cholesterol, Lipid Rafts, and Disease. J. Clin. Invest. 2002, 110 (5), 597–603. 10.1172/JCI16390. PubMed DOI PMC
Van Meer G.; De Kroon A. I. P. M. Lipid Map of the Mammalian Cell. J. Cell Sci. 2011, 124 (Pt 1), 5–8. 10.1242/JCS.071233. PubMed DOI
Peng H. M.; Barlow C.; Auchus R. J. Catalytic Modulation of Human Cytochromes P450 17A1 and P450 11B2 by Phospholipid. J. Steroid Biochem. Mol. Biol. 2018, 181, 63–72. 10.1016/j.jsbmb.2018.03.003. PubMed DOI PMC
Eckel R. H.; Grundy S. M.; Zimmet P. Z. The Metabolic Syndrome. Lancet (London, England) 2005, 365 (9468), 1415–1428. 10.1016/S0140-6736(05)66378-7. PubMed DOI
Chakraborty S.; Pramanik J.; Mahata B. Revisiting Steroidogenesis and Its Role in Immune Regulation with the Advanced Tools and Technologies. Genes and Immunity 2021, 22, 125–140. 10.1038/s41435-021-00139-3. PubMed DOI PMC