Understanding and predicting animal movements and distributions in the Anthropocene

. 2025 Jun ; 94 (6) : 1146-1164. [epub] 20250404

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid40183529

Grantová podpora
2020/07586-4 São Paulo Research Foundation
NE/V006916/1 Natural Environment Research Council
Regional Government of Andalusia and NextGenerationEU
IGA20243107 Faculty of Tropical AgriSciences-Czech University of Life Sciences Prague
NE/S007334/1 ARIES Doctoral Training Partnership
GBMF9881 Gordon and Betty Moore Foundation
NGS-82515R-20 National Geographic Society
Scottish Government's Rural and Environment Science and Analytical Services Division (RESAS)

Predicting animal movements and spatial distributions is crucial for our comprehension of ecological processes and provides key evidence for conserving and managing populations, species and ecosystems. Notwithstanding considerable progress in movement ecology in recent decades, developing robust predictions for rapidly changing environments remains challenging. To accurately predict the effects of anthropogenic change, it is important to first identify the defining features of human-modified environments and their consequences on the drivers of animal movement. We review and discuss these features within the movement ecology framework, describing relationships between external environment, internal state, navigation and motion capacity. Developing robust predictions under novel situations requires models moving beyond purely correlative approaches to a dynamical systems perspective. This requires increased mechanistic modelling, using functional parameters derived from first principles of animal movement and decision-making. Theory and empirical observations should be better integrated by using experimental approaches. Models should be fitted to new and historic data gathered across a wide range of contrasting environmental conditions. We need therefore a targeted and supervised approach to data collection, increasing the range of studied taxa and carefully considering issues of scale and bias, and mechanistic modelling. Thus, we caution against the indiscriminate non-supervised use of citizen science data, AI and machine learning models. We highlight the challenges and opportunities of incorporating movement predictions into management actions and policy. Rewilding and translocation schemes offer exciting opportunities to collect data from novel environments, enabling tests of model predictions across varied contexts and scales. Adaptive management frameworks in particular, based on a stepwise iterative process, including predictions and refinements, provide exciting opportunities of mutual benefit to movement ecology and conservation. In conclusion, movement ecology is on the verge of transforming from a descriptive to a predictive science. This is a timely progression, given that robust predictions under rapidly changing environmental conditions are now more urgently needed than ever for evidence-based management and policy decisions. Our key aim now is not to describe the existing data as well as possible, but rather to understand the underlying mechanisms and develop models with reliable predictive ability in novel situations.

Biological and Environmental Sciences Faculty of Natural Sciences University of Stirling Stirling UK

Biomathematics and Statistics Scotland Edinburgh UK

British Trust for Ornithology UK

CEFE Univ Montpellier CNRS EPHE IRD Montpellier France

Centre for Biological Diversity School of Biology University of St Andrews St Andrews UK

Department of Biodiversity and Environmental Management University of León León Spain

Department of Biology Ecology and Evolution University of Liege Liege Belgium

Department of Biosciences Swansea University Swansea UK

Department of Geography Durham University Durham UK

Department of Wildlife Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden

Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague Czechia

Heron Ecological Kingston Idaho USA

Norwegian Institute for Nature Research Oslo Norway

School of Biodiversity One Health and Veterinary Medicine University of Glasgow Glasgow UK

School of Biological and Marine Sciences University of Plymouth Plymouth UK

School of Biological Sciences University of Reading Reading UK

School of Biology and Environmental Science University College Dublin Dublin Ireland

School of Environmental Sciences University of East Anglia Norwich UK

School of Mathematical and Physical Sciences University of Sheffield Sheffield UK

School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK

Spatial Ecology and Conservation Lab Department of Biodiversity Institute of Biosciences São Paulo State University UNESP Rio Claro São Paulo Brazil

UK Centre for Ecology and Hydrology Penicuik UK

University of the Philippines Quezon City Philippines

Zoological Society of London London UK

Zoology Department Nelson Mandela University Port Elizabeth South Africa

Zobrazit více v PubMed

Abernathy, H. N. , Crawford, D. A. , Garrison, E. P. , Chandler, R. B. , Conner, M. L. , Miller, K. V. , & Cherry, M. J. (2019). Deer movement and resource selection during hurricane Irma: Implications for extreme climatic events and wildlife. Proceedings of the Royal Society B: Biological Sciences, 286(1916), 20192230. 10.1098/rspb.2019.2230 PubMed DOI PMC

Allen, A. M. , & Singh, N. J. (2016). Linking movement ecology with wildlife management and conservation. Frontiers in Ecology and Evolution, 3, 155. 10.3389/fevo.2015.00155 DOI

Amoroso, C. R. , Kappeler, P. M. , Fichtel, C. , & Nunn, C. L. (2020). Water availability impacts habitat use by red‐fronted lemurs (Eulemur rufifrons): An experimental and observational study. International Journal of Primatology, 41(1), 61–80. 10.1007/s10764-020-00136-9 DOI

Arroyo‐Rodríguez, V. , Fahrig, L. , Tabarelli, M. , Watling, J. I. , Tischendorf, L. , Benchimol, M. , Cazetta, E. , Faria, D. , Leal, I. R. , Melo, F. P. L. , Morante‐Filho, J. C. , Santos, B. A. , Arasa‐Gisbert, R. , Arce‐Peña, N. , Cervantes‐López, M. J. , Cudney‐Valenzuela, S. , Galán‐Acedo, C. , San‐José, M. , Vieira, I. C. G. , … Tscharntke, T. (2020). Designing optimal human‐modified landscapes for forest biodiversity conservation. Ecology Letters, 23(9), 1404–1420. 10.1111/ele.13535 PubMed DOI

Auger‐Méthé, M. , Newman, K. , Cole, D. , Empacher, F. , Gryba, R. , King, A. A. , Leos‐Barajas, V. , Mills Flemming, J. , Nielsen, A. , Petris, G. , & Thomas, L. (2021). A guide to state–space modeling of ecological time series. Ecological Monographs, 91(4), e01470. 10.1002/ecm.1470 DOI

Avgar, T. , Potts, J. R. , Lewis, M. A. , & Boyce, M. S. (2016). Integrated step selection analysis: Bridging the gap between resource selection and animal movement. Methods in Ecology and Evolution, 7(5), 619–630. 10.1111/2041-210X.12528 DOI

Barcelo‐Serra, M. , Cabanellas, S. , Palmer, M. , Bolgan, M. , & Alós, J. (2021). A state‐space model to derive motorboat noise effects on fish movement from acoustic tracking data. Scientific Reports, 11(1), 4765. 10.1038/s41598-021-84261-2 PubMed DOI PMC

Bates, A. E. , Primack, R. B. , Biggar, B. S. , Bird, T. J. , Clinton, M. E. , Command, R. J. , Richards, C. , Shellard, M. , Geraldi, N. R. , Vergara, V. , Acevedo‐Charry, O. , Colón‐Piñeiro, Z. , Ocampo, D. , Ocampo‐Peñuela, N. , Sánchez‐Clavijo, L. M. , Adamescu, C. M. , Cheval, S. , Racoviceanu, T. , Adams, M. D. , … Duarte, C. M. (2021). Global COVID‐19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 263, 109175. 10.1016/j.biocon.2021.109175 PubMed DOI PMC

Beever, E. A. , Hall, L. E. , Varner, J. , Loosen, A. E. , Dunham, J. B. , Gahl, M. K. , Smith, F. A. , & Lawler, J. J. (2017). Behavioral flexibility as a mechanism for coping with climate change. Frontiers in Ecology and the Environment, 15(6), 299–308. 10.1002/fee.1502 DOI

Bénard, A. , Lengagne, T. , & Bonenfant, C. (2024). Integration of animal movement into wildlife‐vehicle collision models. Ecological Modelling, 492, 110690. 10.1016/j.ecolmodel.2024.110690 DOI

Bender, E. A. , Case, T. J. , & Gilpin, M. E. (1984). Perturbation experiments in community ecology: Theory and practice. Ecology, 65(1), 1–13. 10.2307/1939452 DOI

Benítez‐López, A. , Alkemade, R. , & Verweij, P. A. (2010). The impacts of roads and other infrastructure on mammal and bird populations: A meta‐analysis. Biological Conservation, 143(6), 1307–1316. 10.1016/j.biocon.2010.02.009 DOI

Bennitt, E. , Bonyongo, M. C. , & Harris, S. (2018). Cape buffalo (Syncerus caffer caffer) social dynamics in a flood‐pulsed environment. Behavioral Ecology, 29(1), 93–105. 10.1093/beheco/arx138 DOI

Berger, A. , Barthel, L. M. F. , Rast, W. , Hofer, H. , & Gras, P. (2020). Urban hedgehog Behavioural responses to temporary habitat disturbance versus permanent fragmentation. Animals, 10(11), 2109. 10.3390/ani10112109 PubMed DOI PMC

Bicknell, A. W. J. , Oro, D. , Camphuysen, K., C. J. , & Votier, S. C. (2013). Potential consequences of discard reform for seabird communities. Journal of Applied Ecology, 50(3), 649–658. 10.1111/1365-2664.12072 DOI

Blackwell, P. G. , & Matthiopoulos, J. (2024). Joint inference for telemetry and spatial survey data. Ecology, 105(12), e4457. 10.1002/ecy.4457 PubMed DOI PMC

Boughman, J. W. , Brand, J. A. , Brooks, R. C. , Bonduriansky, R. , & Wong, B. B. M. (2024). Sexual selection and speciation in the Anthropocene. Trends in Ecology & Evolution, 39(7), 654–665. 10.1016/j.tree.2024.02.005 PubMed DOI

Brandt, M. J. , Diederichs, A. , Betke, K. , & Nehls, G. (2011). Responses of harbour porpoises to pile driving at the horns rev II offshore wind farm in the Danish North Sea. Marine Ecology Progress Series, 421, 205–216. 10.3354/meps08888 DOI

Bucci, K. , Tulio, M. , & Rochman, C. M. (2020). What is known and unknown about the effects of plastic pollution: A meta‐analysis and systematic review. Ecological Applications, 30(2), e02044. 10.1002/eap.2044 PubMed DOI

Burak, M. K. , Ferraro, K. M. , Orrick, K. D. , Sommer, N. R. , Ellis‐Soto, D. , & Schmitz, O. J. (2024). Context matters when rewilding for climate change. People and Nature, 6(2), 507–518. 10.1002/pan3.10609 DOI

Burton, A. C. , Beirne, C. , Gaynor, K. M. , Sun, C. , Granados, A. , Allen, M. L. , Alston, J. M. , Alvarenga, G. C. , Calderón, F. S. Á. , Amir, Z. , Anhalt‐Depies, C. , Appel, C. , Arroyo‐Arce, S. , Balme, G. , Bar‐Massada, A. , Barcelos, D. , Barr, E. , Barthelmess, E. L. , Baruzzi, C. , … Kays, R. (2024). Mammal responses to global changes in human activity vary by trophic group and landscape. Nature Ecology & Evolution, 8(5), 924–935. 10.1038/s41559-024-02363-2 PubMed DOI PMC

Calvin, K. , Dasgupta, D. , Krinner, G. , Mukherji, A. , Thorne, P. W. , Trisos, C. , Romero, J. , Aldunce, P. , Barrett, K. , Blanco, G. , Cheung, W. W. L. , Connors, S. , Denton, F. , Diongue‐Niang, A. , Dodman, D. , Garschagen, M. , Geden, O. , Hayward, B. , Jones, C. , … Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. In Core Writing Team , Lee H., & Romero J. (Eds.), Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. (P. Arias, M. Bustamante, I. Elgizouli, G. Flato, M. Howden, C. Méndez‐Vallejo, J. J. Pereira, R. Pichs‐Madruga, S. K. Rose, Y. Saheb, R. Sánchez Rodríguez, D. Ürge‐Vorsatz, C. Xiao, N. Yassaa, J. Romero, J. Kim, E. F. Haites, Y. Jung, R. Stavins, … C. Péan, Eds.). Intergovernmental Panel on Climate Change (IPCC). 10.59327/ipcc/ar6-9789291691647 DOI

Chakravarty, P. , Cozzi, G. , Ozgul, A. , & Aminian, K. (2019). A novel biomechanical approach for animal behaviour recognition using accelerometers. Methods in Ecology and Evolution, 10(6), 802–814. 10.1111/2041-210X.13172 DOI

Chambault, P. , Kovacs, K. M. , Lydersen, C. , Shpak, O. , Teilmann, J. , Albertsen, C. M. , & Heide‐Jørgensen, M. P. (2022). Future seasonal changes in habitat for Arctic whales during predicted ocean warming. Science Advances, 8(29), eabn2422. 10.1126/sciadv.abn2422 PubMed DOI PMC

Chan, W.‐P. , Lenoir, J. , Mai, G.‐S. , Kuo, H.‐C. , Chen, I.‐C. , & Shen, S.‐F. (2024). Climate velocities and species tracking in global mountain regions. Nature, 629(8010), 114–120. 10.1038/s41586-024-07264-9 PubMed DOI PMC

Chatterjee, N. , Wolfson, D. , Kim, D. , Velez, J. , Freeman, S. , Bacheler, N. M. , Shertzer, K. , Taylor, J. C. , & Fieberg, J. (2024). Modelling individual variability in habitat selection and movement using integrated step‐selection analysis. Methods in Ecology and Evolution, 15(6), 1034–1047. 10.1111/2041-210X.14321 DOI

Chow, P. K. Y. , Uchida, K. , & Koizumi, I. (2024). ‘Ripple effects’ of urban environmental characteristics on cognitive performances in Eurasian red squirrels. Journal of Animal Ecology, 93(8), 1078–1096. 10.1111/1365-2656.14126 PubMed DOI

Clavel, J. , Julliard, R. , & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment, 9(4), 222–228. 10.1890/080216 DOI

Costa‐Pereira, R. , Moll, R. J. , Jesmer, B. R. , & Jetz, W. (2022). Animal tracking moves community ecology: Opportunities and challenges. Journal of Animal Ecology, 91(7), 1334–1344. 10.1111/1365-2656.13698 PubMed DOI PMC

Courbin, N. , Garel, M. , Marchand, P. , Duparc, A. , Debeffe, L. , Börger, L. , & Loison, A. (2022). Interacting lethal and nonlethal human activities shape complex risk tolerance behaviors in a mountain herbivore. Ecological Applications, 32(7), e2640. 10.1002/eap.2640 PubMed DOI

Cowie, R. H. , Bouchet, P. , & Fontaine, B. (2022). The sixth mass extinction: Fact, fiction or speculation? Biological Reviews, 97(2), 640–663. 10.1111/brv.12816 PubMed DOI PMC

Crane, M. , Silva, I. , Marshall, B. M. , & Strine, C. T. (2021). Lots of movement, little progress: A review of reptile home range literature. PeerJ, 9, e11742. 10.7717/peerj.11742 PubMed DOI PMC

Davidson, S. C. , Cagnacci, F. , Newman, P. , Dettki, H. , Urbano, F. , Desmet, P. , Bajona, L. , Bryant, E. , Carneiro, A. P. B. , Dias, M. P. , Fujioka, E. , Gambin, D. , Hoenner, X. , Hunter, C. , Kato, A. , Kot, C. Y. , Kranstauber, B. , Lam, C. H. , Lepage, D. , … Rutz, C. (2025). Establishing bio‐logging data collections as dynamic archives of animal life on earth. Nature Ecology & Evolution, 9(2), 204–213. 10.1038/s41559-024-02585-4 PubMed DOI

Davoli, M. , Monsarrat, S. , Pedersen, R. Ø. , Scussolini, P. , Karger, D. N. , Normand, S. , & Svenning, J.‐C. (2024). Megafauna diversity and functional declines in Europe from the last interglacial to the present. Global Ecology and Biogeography, 33(1), 34–47. 10.1111/geb.13778 DOI

Delsink, A. , Vanak, A. T. , Ferreira, S. , & Slotow, R. (2013). Biologically relevant scales in large mammal management policies. Biological Conservation, 167, 116–126. 10.1016/j.biocon.2013.07.035 DOI

Dennhardt, A. J. , Duerr, A. E. , Brandes, D. , & Katzner, T. E. (2015). Integrating citizen‐science data with movement models to estimate the size of a migratory golden eagle population. Biological Conservation, 184, 68–78. 10.1016/j.biocon.2015.01.003 DOI

Dickie, M. , Serrouya, R. , McNay, R. S. , & Boutin, S. (2017). Faster and farther: Wolf movement on linear features and implications for hunting behaviour. Journal of Applied Ecology, 54(1), 253–263. 10.1111/1365-2664.12732 DOI

Ditmer, M. A. , Stoner, D. C. , Francis, C. D. , Barber, J. R. , Forester, J. D. , Choate, D. M. , Ironside, K. E. , Longshore, K. M. , Hersey, K. R. , Larsen, R. T. , McMillan, B. R. , Olson, D. D. , Andreasen, A. M. , Beckmann, J. P. , Holton, P. B. , Messmer, T. A. , & Carter, N. H. (2021). Artificial nightlight alters the predator–prey dynamics of an apex carnivore. Ecography, 44(2), 149–161. 10.1111/ecog.05251 DOI

Doherty, T. S. , Hays, G. C. , & Driscoll, D. A. (2021). Human disturbance causes widespread disruption of animal movement. Nature Ecology & Evolution, 5(4), 513–519. 10.1038/s41559-020-01380-1 PubMed DOI

Dombrovski, V. C. , Zhurauliou, D. V. , & Ashton‐Butt, A. (2022). Long‐term effects of rewilding on species composition: 22 years of raptor monitoring in the Chernobyl exclusion zone. Restoration Ecology, 30(8), e13633. 10.1111/rec.13633 DOI

Dominoni, D. M. , Halfwerk, W. , Baird, E. , Buxton, R. T. , Fernández‐Juricic, E. , Fristrup, K. M. , McKenna, M. F. , Mennitt, D. J. , Perkin, E. K. , Seymoure, B. M. , Stoner, D. C. , Tennessen, J. B. , Toth, C. A. , Tyrrell, L. P. , Wilson, A. , Francis, C. D. , Carter, N. H. , & Barber, J. R. (2020). Why conservation biology can benefit from sensory ecology. Nature Ecology & Evolution, 4(4), 502–511. 10.1038/s41559-020-1135-4 PubMed DOI

Ducatez, S. , Sayol, F. , Sol, D. , & Lefebvre, L. (2018). Are urban Vertebrates City specialists, artificial habitat exploiters, or environmental generalists? Integrative and Comparative Biology, 58(5), 929–938. 10.1093/icb/icy101 PubMed DOI

Dusenbery, D. B. (1992). Sensory ecology: How organisms acquire and respond to information. W.H. Freeman.

Elith, J. , & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. 10.1146/annurev.ecolsys.110308.120159 DOI

Ellis‐Soto, D. , Oliver, R. Y. , Brum‐Bastos, V. , Demšar, U. , Jesmer, B. , Long, J. A. , Cagnacci, F. , Ossi, F. , Queiroz, N. , Hindell, M. , Kays, R. , Loretto, M.‐C. , Mueller, T. , Patchett, R. , Sims, D. W. , Tucker, M. A. , Ropert‐Coudert, Y. , Rutz, C. , & Jetz, W. (2023). A vision for incorporating human mobility in the study of human–wildlife interactions. Nature Ecology & Evolution, 7(9), 1362–1372. 10.1038/s41559-023-02125-6 PubMed DOI

Fieberg, J. , Freeman, S. , & Signer, J. (2024). Using lineups to evaluate goodness of fit of animal movement models. Methods in Ecology and Evolution, 15(6), 1048–1059. 10.1111/2041-210X.14336 DOI

Fieberg, J. R. , Forester, J. D. , Street, G. M. , Johnson, D. H. , ArchMiller, A. A. , & Matthiopoulos, J. (2018). Used‐habitat calibration plots: A new procedure for validating species distribution, resource selection, and step‐selection models. Ecography, 41(5), 737–752. 10.1111/ecog.03123 DOI

Forman, R. T. T. , & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology, Evolution, and Systematics, 29, 207–231. 10.1146/annurev.ecolsys.29.1.207 DOI

Fortin, D. , Brooke, C. F. , Lamirande, P. , Fritz, H. , McLoughlin, P. D. , & Pays, O. (2020). Quantitative spatial ecology to promote human‐wildlife coexistence: A tool for integrated landscape management. Frontiers in Sustainable Food Systems, 4, 600363. 10.3389/fsufs.2020.600363 DOI

Fraser, K. C. , Davies, K. T. A. , Davy, C. M. , Ford, A. T. , Flockhart, D. T. T. , & Martins, E. G. (2018). Tracking the conservation promise of movement ecology. Frontiers in Ecology and Evolution, 6, 150. 10.3389/fevo.2018.00150 DOI

Fuchs, Y. H. , Edgar, G. , Bates, A. , Waldock, C. , & Smith, R. S. (2024). Limited net poleward movement amongst Australian reef species over a decade of climate extremes. Nature Climate Change, 14, 1087–1092. 10.1038/s41558-024-02116-w DOI

Fuentes, M. , Van Doren, B. M. , Fink, D. , & Sheldon, D. (2023). BirdFlow: Learning seasonal bird movements from eBird data. Methods in Ecology and Evolution, 14(3), 923–938. 10.1111/2041-210X.14052 DOI

Gable, T. D. , Johnson‐Bice, S. M. , Homkes, A. T. , Fieberg, J. , & Bump, J. K. (2023). Wolves alter the trajectory of forests by shaping the central place foraging behaviour of an ecosystem engineer. Proceedings of the Royal Society B: Biological Sciences, 290(2010), 20231377. 10.1098/rspb.2023.1377 PubMed DOI PMC

Gaynor, K. M. , Abrahms, B. , Manlove, K. R. , Oestreich, W. K. , & Smith, J. A. (2024). Anthropogenic impacts at the interface of animal spatial and social behaviour. Philosophical Transactions of the Royal Society, B: Biological Sciences, 379(1912), 20220527. 10.1098/rstb.2022.0527 PubMed DOI PMC

Gaynor, K. M. , Fiorella, K. J. , Gregory, G. H. , Kurz, D. J. , Seto, K. L. , Withey, L. S. , & Brashares, J. S. (2016). War and wildlife: Linking armed conflict to conservation. Frontiers in Ecology and the Environment, 14(10), 533–542. 10.1002/fee.1433 PubMed DOI PMC

Gilbert, N. I. , Correia, R. A. , Silva, J. P. , Pacheco, C. , Catry, I. , Atkinson, P. W. , Gill, J. A. , & Franco, A. M. A. (2016). Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Movement Ecology, 4(1), 7. 10.1186/s40462-016-0070-0 PubMed DOI PMC

Giroux, A. , Ortega, Z. , Attias, N. , Desbiez, A. L. J. , Valle, D. , Börger, L. , & Rodrigues Oliveira‐Santos, L. G. (2023). Activity modulation and selection for forests help giant anteaters to cope with temperature changes. Animal Behaviour, 201, 191–209. 10.1016/j.anbehav.2023.04.008 DOI

Griffin, A. S. , Netto, K. , & Peneaux, C. (2017). Neophilia, innovation and learning in an urbanized world: A critical evaluation of mixed findings. Current Opinion in Behavioral Sciences, 16, 15–22. 10.1016/j.cobeha.2017.01.004 DOI

Guerra, A. S. , Bui, A. , Klope, M. , Orr, D. A. , Shaffer, S. A. , & Young, H. S. (2022). Leaving more than footprints: Anthropogenic nutrient subsidies to a protected area. Ecosphere, 13(12), e4371. 10.1002/ecs2.4371 DOI

Gutmann Roberts, C. , Hindes, A. M. , & Britton, J. R. (2019). Factors influencing individual movements and behaviours of invasive European barbel Barbus barbus in a regulated river. Hydrobiologia, 830(1), 213–228. 10.1007/s10750-018-3864-9 DOI

Hale, R. , & Swearer, S. E. (2016). Ecological traps: Current evidence and future directions. Proceedings of the Royal Society B: Biological Sciences, 283(1824), 20152647. 10.1098/rspb.2015.2647 PubMed DOI PMC

Halfwerk, W. , & Slabbekoorn, H. (2015). Pollution going multimodal: The complex impact of the human‐altered sensory environment on animal perception and performance. Biology Letters, 11(4), 20141051. 10.1098/rsbl.2014.1051 PubMed DOI PMC

Harju, S. , Coates, P. , Dettenmaier, S. , Dinkins, J. , Jackson, P. , & Chenaille, M. (2021). Estimating trends of common raven populations in North America, 1966–2018. Human‐Wildlife Interactions, 15(3), 248–269. 10.26077/c27f-e335 DOI

Harris, J. , Bullock, J. , Pettorelli, N. , Perring, M. , & Mercer, T. (2024). Novel ecosystems: The new normal? https://www.britishecologicalsociety.org/novel‐ecosystems‐the‐new‐normal/

Hastie, G. D. , Lepper, P. , McKnight, J. C. , Milne, R. , Russell, D. J. F. , & Thompson, D. (2021). Acoustic risk balancing by marine mammals: Anthropogenic noise can influence the foraging decisions by seals. Journal of Applied Ecology, 58(9), 1854–1863. 10.1111/1365-2664.13931 DOI

Hawkes, C. (2009). Linking movement behaviour, dispersal and population processes: Is individual variation a key? Journal of Animal Ecology, 78(5), 894–906. 10.1111/j.1365-2656.2009.01534.x PubMed DOI

Hays, G. C. , Bailey, H. , Bograd, S. J. , Bowen, W. D. , Campagna, C. , Carmichael, R. H. , Casale, P. , Chiaradia, A. , Costa, D. P. , Cuevas, E. , de Bruyn, P. J. N. , Dias, M. P. , Duarte, C. M. , Dunn, D. C. , Dutton, P. H. , Esteban, N. , Friedlaender, A. , Goetz, K. T. , Godley, B. J. , … Sequeira, A. M. M. (2019). Translating marine animal tracking data into conservation policy and management. Trends in Ecology & Evolution, 34(5), 459–473. 10.1016/j.tree.2019.01.009 PubMed DOI

Hebblewhite, M. , & Merrill, E. H. (2009). Trade‐offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology, 90(12), 3445–3454. 10.1890/08-2090.1 PubMed DOI

Herbert‐Read, J. E. , Kremer, L. , Bruintjes, R. , Radford, A. N. , & Ioannou, C. C. (2017). Anthropogenic noise pollution from pile‐driving disrupts the structure and dynamics of fish shoals. Proceedings of the Royal Society B: Biological Sciences, 284(1863), 20171627. 10.1098/rspb.2017.1627 PubMed DOI PMC

Hertel, A. G. , Niemelä, P. T. , Dingemanse, N. J. , & Mueller, T. (2020). A guide for studying among‐individual behavioral variation from movement data in the wild. Movement Ecology, 8(1), 30. 10.1186/s40462-020-00216-8 PubMed DOI PMC

Hobbs, R. J. , Arico, S. , Aronson, J. , Baron, J. S. , Bridgewater, P. , Cramer, V. A. , Epstein, P. R. , Ewel, J. J. , Klink, C. A. , Lugo, A. E. , Norton, D. , Ojima, D. , Richardson, D. M. , Sanderson, E. W. , Valladares, F. , Vilà, M. , Zamora, R. , & Zobel, M. (2006). Novel ecosystems: Theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 15(1), 1–7. 10.1111/j.1466-822X.2006.00212.x DOI

Hody, J. W. , & Kays, R. (2018). Mapping the expansion of coyotes (Canis latrans) across north and Central America. ZooKeys, 759, 81–97. 10.3897/zookeys.759.15149 PubMed DOI PMC

Hoekstra, B. , Bouten, W. , Dokter, A. , van Gasteren, H. , Turnhout, C. , Kranstauber, B. , van Loon, E. , Leijnse, H. , & Shamoun‐Baranes, J. (2024). Fireworks disturbance across bird communities. Frontiers in Ecology and the Environment, 22(1), e2694. 10.1002/fee.2694 DOI

Holton, M. D. , Wilson, R. P. , Teilmann, J. , & Siebert, U. (2021). Animal tag technology keeps coming of age: An engineering perspective. Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1831), 20200229. 10.1098/rstb.2020.0229 PubMed DOI PMC

Hussey, N. E. , Kessel, S. T. , Aarestrup, K. , Cooke, S. J. , Cowley, P. D. , Fisk, A. T. , Harcourt, R. G. , Holland, K. N. , Iverson, S. J. , Kocik, J. F. , Mills Flemming, J. E. , & Whoriskey, F. G. (2015). Aquatic animal telemetry: A panoramic window into the underwater world. Science, 348(6240), 1255642. 10.1126/science.1255642 PubMed DOI

Imlay, T. L. , Nickerson, D. , & Horn, A. G. (2019). Temperature and breeding success for cliff swallows (Petrochelidon pyrrhonota) nesting on man‐made structures: Ecological traps? Canadian Journal of Zoology, 97(5), 429–435. 10.1139/cjz-2018-0224 DOI

Inamine, H. , Miller, A. , Roxburgh, S. , Buckling, A. , & Shea, K. (2022). Pulse and press disturbances have different effects on transient community dynamics. The American Naturalist, 200(4), 571–583. 10.1086/720618 PubMed DOI

IPBES . (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services (summary for policy makers). Zenodo. 10.5281/ZENODO.3553579 DOI

Johnson, C. J. , & St‐Laurent, M.‐H. (2011). Unifying framework for understanding impacts of human developments on wildlife. In Naugle D. E. (Ed.), Energy development and wildlife conservation in Western North America (pp. 27–54). Island Press/Center for Resource Economics. 10.5822/978-1-61091-022-4_3 DOI

Jones, P. F. , Jakes, A. F. , Vegter, S. E. , & Verhage, M. S. (2022). Is it the road or the fence? Influence of linear anthropogenic features on the movement and distribution of a partially migratory ungulate. Movement Ecology, 10(1), 37. 10.1186/s40462-022-00336-3 PubMed DOI PMC

Kadykalo, A. N. , Buxton, R. T. , Morrison, P. , Anderson, C. M. , Bickerton, H. , Francis, C. M. , Smith, A. C. , & Fahrig, L. (2021). Bridging research and practice in conservation. Conservation Biology, 35(6), 1725–1737. 10.1111/cobi.13732 PubMed DOI PMC

Katzner, T. E. , & Arlettaz, R. (2020). Evaluating Contributions of recent tracking‐based animal movement ecology to conservation management. Frontiers in Ecology and Evolution, 7, 519. 10.3389/fevo.2019.00519 DOI

Kays, R. , Crofoot, M. C. , Jetz, W. , & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. Science, 348(6240), aaa2478. 10.1126/science.aaa2478 PubMed DOI

Kays, R. , Davidson, S. C. , Berger, M. , Bohrer, G. , Fiedler, W. , Flack, A. , Hirt, J. , Hahn, C. , Gauggel, D. , Russell, B. , Kölzsch, A. , Lohr, A. , Partecke, J. , Quetting, M. , Safi, K. , Scharf, A. , Schneider, G. , Lang, I. , Schaeuffelhut, F. , … Wikelski, M. (2021). The Movebank system for studying global animal movement and demography. Methods in Ecology and Evolution, 13(2), 419–431. 10.1111/2041-210x.13767 DOI

Kemppinen, J. , Lembrechts, J. J. , Van Meerbeek, K. , Carnicer, J. , Chardon, N. I. , Kardol, P. , Lenoir, J. , Liu, D. , Maclean, I. , Pergl, J. , Saccone, P. , Senior, R. A. , Shen, T. , Słowińska, S. , Vandvik, V. , von Oppen, J. , Aalto, J. , Ayalew, B. , Bates, O. , … De Frenne, P. (2024). Microclimate, an important part of ecology and biogeography. Global Ecology and Biogeography, 33(6), e13834. 10.1111/geb.13834 DOI

Klappstein, N. J. , Michelot, T. , Fieberg, J. , Pedersen, E. J. , & Mills Flemming, J. (2024). Step selection functions with non‐linear and random effects. Methods in Ecology and Evolution, 15(8), 1332–1346. 10.1111/2041-210X.14367 DOI

Klappstein, N. J. , Potts, J. R. , Michelot, T. , Börger, L. , Pilfold, N. W. , Lewis, M. A. , & Derocher, A. E. (2022). Energy‐based step selection analysis: Modelling the energetic drivers of animal movement and habitat use. Journal of Animal Ecology, 91(5), 946–957. 10.1111/1365-2656.13687 PubMed DOI

Kölzsch, A. , Lameris, T. K. , Müskens, G. J. D. M. , Schreven, K. H. T. , Buitendijk, N. H. , Kruckenberg, H. , Moonen, S. , Heinicke, T. , Cao, L. , Madsen, J. , Wikelski, M. , & Nolet, B. A. (2023). Wild goose chase: Geese flee high and far, and with aftereffects from new Year's fireworks. Conservation Letters, 16(1), e12927. 10.1111/conl.12927 DOI

Kristan, W. B. , & Boarman, W. I. (2007). Effects of anthropogenic developments on common raven nesting biology in the West Mojave Desert. Ecological Applications, 17(6), 1703–1713. 10.1890/06-1114.1 PubMed DOI

Leblond, M. , Dussault, C. , & Ouellet, J.‐.P. (2013). Avoidance of roads by large herbivores and its relation to disturbance intensity. Journal of Zoology, 289(1), 32–40. 10.1111/j.1469-7998.2012.00959.x DOI

Lempidakis, E. , Shepard, E. L. C. , Ross, A. N. , Matsumoto, S. , Koyama, S. , Takeuchi, I. , & Yoda, K. (2022). Pelagic seabirds reduce risk by flying into the eye of the storm. Proceedings of the National Academy of Sciences of the United States of America, 119(41), e2212925119. 10.1073/pnas.2212925119 PubMed DOI PMC

Lesmerises, F. , Dussault, C. , & St‐Laurent, M.‐H. (2013). Major roadwork impacts the space use behaviour of gray wolf. Landscape and Urban Planning, 112, 18–25. 10.1016/j.landurbplan.2012.12.011 DOI

Levin, S. A. , & Paine, R. T. (1974). Disturbance, patch formation, and community structure. Proceedings of the National Academy of Sciences of the United States of America, 71(7), 2744–2747. 10.1073/pnas.71.7.2744 PubMed DOI PMC

Loss, S. R. , Will, T. , Loss, S. S. , & Marra, P. P. (2014). Bird–building collisions in the United States: Estimates of annual mortality and species vulnerability. The Condor, 116(1), 8–23. 10.1650/CONDOR-13-090.1 DOI

Loss, S. R. , Will, T. , & Marra, P. P. (2013). Estimates of bird collision mortality at wind facilities in the contiguous United States. Biological Conservation, 168, 201–209. 10.1016/j.biocon.2013.10.007 DOI

Lustenhouwer, N. , Moerman, F. , Altermatt, F. , Bassar, R. D. , Bocedi, G. , Bonte, D. , Dey, S. , Fronhofer, E. A. , Da Rocha, É. G. , Giometto, A. , Lancaster, L. T. , Prather, R. B. , Saastamoinen, M. , Travis, J. M. J. , Urquhart, C. A. , Weiss‐Lehman, C. , Williams, J. L. , Börger, L. , & Berger, D. (2023). Experimental evolution of dispersal: Unifying theory, experiments and natural systems. Journal of Animal Ecology, 92(6), 1113–1123. 10.1111/1365-2656.13930 PubMed DOI

Ma, D. , Abrahms, B. , Allgeier, J. , Newbold, T. , Weeks, B. C. , & Carter, N. H. (2024). Global expansion of human‐wildlife overlap in the 21st century. Science Advances, 10(34), eadp7706. 10.1126/sciadv.adp7706 PubMed DOI PMC

Macdonald, D. W. , & Johnson, D. D. P. (2015). Patchwork planet: The resource dispersion hypothesis, society, and the ecology of life. Journal of Zoology, 295(2), 75–107. 10.1111/jzo.12202 DOI

Maes, S. L. , Perring, M. P. , Cohen, R. , Akinnifesi, F. K. , Bargués‐Tobella, A. , Bastin, J.‐F. , Bauters, M. , Bernardino, P. N. , Brancalion, P. H. S. , Bullock, J. M. , Ellison, D. , Fayolle, A. , Fremout, T. , Gann, G. D. , Hishe, H. , Holmgren, M. , Ilstedt, U. , Mahy, G. , Messier, C. , … Muys, B. (2024). Explore before you restore: Incorporating complex systems thinking in ecosystem restoration. Journal of Applied Ecology, 61(5), 922–939. 10.1111/1365-2664.14614 DOI

Malishev, M. , & Kramer‐Schadt, S. (2021). Movement, models, and metabolism: Individual‐based energy budget models as next‐generation extensions for predicting animal movement outcomes across scales. Ecological Modelling, 441, 109413. 10.1016/j.ecolmodel.2020.109413 DOI

Manly, B. F. J. , McDonald, L. L. , & Thomas, T. (2002). Review of resource selection by animals: Statistical design and analysis for field studies ‐ second edition. Journal of Animal Ecology, 63(3), 745–746. 10.2307/5247 DOI

Månsson, J. , Eriksson, L. , Hodgson, I. , Elmberg, J. , Bunnefeld, N. , Hessel, R. , Johansson, M. , Liljebäck, N. , Nilsson, L. , Olsson, C. , Pärt, T. , Sandström, C. , Tombre, I. , & Redpath, S. M. (2023). Understanding and overcoming obstacles in adaptive management. Trends in Ecology & Evolution, 38(1), 55–71. 10.1016/j.tree.2022.08.009 PubMed DOI

Marshall, B. M. , Crane, M. , Silva, I. , Strine, C. T. , Jones, M. D. , Hodges, C. W. , Suwanwaree, P. , Artchawakom, T. , Waengsothorn, S. , & Goode, M. (2020). No room to roam: King cobras reduce movement in agriculture. Movement Ecology, 8(1), 33. 10.1186/s40462-020-00219-5 PubMed DOI PMC

Masden, E. A. , Haydon, D. T. , Fox, A. D. , Furness, R. W. , Bullman, R. , & Desholm, M. (2009). Barriers to movement: Impacts of wind farms on migrating birds. ICES Journal of Marine Science, 66(4), 746–753. 10.1093/icesjms/fsp031 DOI

Matthiopoulos, J. (2003). The use of space by animals as a function of accessibility and preference. Ecological Modelling, 159(2), 239–268. 10.1016/S0304-3800(02)00293-4 DOI

Matthiopoulos, J. (2022). Defining, estimating, and understanding the fundamental niches of complex animals in heterogeneous environments. Ecological Monographs, 92(4), e1545. 10.1002/ecm.1545 DOI

Matthiopoulos, J. , Hebblewhite, M. , Aarts, G. , & Fieberg, J. (2011). Generalized functional responses for species distributions. Ecology, 92(3), 583–589. 10.1890/10-0751.1 PubMed DOI

McClintock, B. T. , & Michelot, T. (2018). momentuHMM: R package for generalized hidden Markov models of animal movement. Methods in Ecology and Evolution, 9(6), 1518–1530. 10.1111/2041-210X.12995 DOI

McCrea, R. , King, R. , Graham, L. , & Börger, L. (2023). Realising the promise of large data and complex models. Methods in Ecology and Evolution, 14(1), 4–11. 10.1111/2041-210X.14050 DOI

McGowan, J. , Beger, M. , Lewison, R. L. , Harcourt, R. , Campbell, H. , Priest, M. , Dwyer, R. G. , Lin, H.‐Y. , Lentini, P. , Dudgeon, C. , McMahon, C. , Watts, M. , & Possingham, H. P. (2017). Integrating research using animal‐borne telemetry with the needs of conservation management. Journal of Applied Ecology, 54(2), 423–429. 10.1111/1365-2664.12755 DOI

McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127(3), 247–260. 10.1016/j.biocon.2005.09.005 DOI

Meisingset, E. L. , Loe, L. E. , Brekkum, Ø. , Bischof, R. , Rivrud, I. M. , Lande, U. S. , Zimmermann, B. , Veiberg, V. , & Mysterud, A. (2018). Spatial mismatch between management units and movement ecology of a partially migratory ungulate. Journal of Applied Ecology, 55(2), 745–753. 10.1111/1365-2664.13003 DOI

Mensinger, M. A. , Hawkes, J. P. , Goulette, G. S. , Mortelliti, A. , Blomberg, E. J. , & Zydlewski, J. D. (2024). Dams facilitate predation during Atlantic salmon (Salmo salar) smolt migration. Canadian Journal of Fisheries and Aquatic Sciences, 81(1), 38–51. 10.1139/cjfas-2023-0175 DOI

Merkle, J. A. , Potts, J. R. , & Fortin, D. (2017). Energy benefits and emergent space use patterns of an empirically parameterized model of memory‐based patch selection. Oikos, 126(2), 185–195. 10.1111/oik.03356 DOI

Michelot, T. , Blackwell, P. G. , Chamaillé‐Jammes, S. , & Matthiopoulos, J. (2020). Inference in MCMC step selection models. Biometrics, 76(2), 438–447. 10.1111/biom.13170 PubMed DOI

Michelot, T. , Blackwell, P. G. , & Matthiopoulos, J. (2019). Linking resource selection and step selection models for habitat preferences in animals. Ecology, 100(1), e02452. 10.1002/ecy.2452 PubMed DOI

Michelot, T. , Gloaguen, P. , Blackwell, P. G. , & Étienne, M.‐P. (2019). The Langevin diffusion as a continuous‐time model of animal movement and habitat selection. Methods in Ecology and Evolution, 10(11), 1894–1907. 10.1111/2041-210X.13275 DOI

Milner, J. E. , Blackwell, P. G. , & Niu, M. (2021). Modelling and inference for the movement of interacting animals. Methods in Ecology and Evolution, 12(1), 54–69. 10.1111/2041-210X.13468 DOI

Moorcroft, P. R. , Lewis, M. A. , & Crabtree, R. L. (2006). Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. Proceedings of the Royal Society B: Biological Sciences, 273(1594), 1651–1659. 10.1098/rspb.2005.3439 PubMed DOI PMC

Muff, S. , Signer, J. , & Fieberg, J. (2020). Accounting for individual‐specific variation in habitat‐selection studies: Efficient estimation of mixed‐effects models using Bayesian or frequentist computation. Journal of Animal Ecology, 89(1), 80–92. 10.1111/1365-2656.13087 PubMed DOI

Nathan, R. , Getz, W. M. , Revilla, E. , Holyoak, M. , Kadmon, R. , Saltz, D. , & Smouse, P. E. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19052–19059. 10.1073/pnas.0800375105 PubMed DOI PMC

Nathan, R. , Monk, C. T. , Arlinghaus, R. , Adam, T. , Alós, J. , Assaf, M. , Baktoft, H. , Beardsworth, C. E. , Bertram, M. G. , Bijleveld, A. I. , Brodin, T. , Brooks, J. L. , Campos‐Candela, A. , Cooke, S. J. , Gjelland, K. Ø. , Gupte, P. R. , Harel, R. , Hellström, G. , Jeltsch, F. , … Jarić, I. (2022). Big‐data approaches lead to an increased understanding of the ecology of animal movement. Science, 375(6582), eabg1780. 10.1126/science.abg1780 PubMed DOI

Newbold, T. , Hudson, L. N. , Hill, S. L. L. , Contu, S. , Lysenko, I. , Senior, R. A. , Börger, L. , Bennett, D. J. , Choimes, A. , Collen, B. , Day, J. , De Palma, A. , Díaz, S. , Echeverria‐Londoño, S. , Edgar, M. J. , Feldman, A. , Garon, M. , Harrison, M. L. K. , Alhusseini, T. , … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50. 10.1038/nature14324 PubMed DOI

Newman, K. , King, R. , Elvira, V. , de Valpine, P. , McCrea, R. S. , & Morgan, B. J. T. (2023). State‐space models for ecological time‐series data: Practical model‐fitting. Methods in Ecology and Evolution, 14(1), 26–42. 10.1111/2041-210X.13833 DOI

Newman, R. , & Noy, I. (2023). The global costs of extreme weather that are attributable to climate change. Nature Communications, 14(1), 6103. 10.1038/s41467-023-41888-1 PubMed DOI PMC

Newsome, S. D. , Ralls, K. , Van Horn Job, C. , Fogel, M. L. , & Cypher, B. L. (2010). Stable isotopes evaluate exploitation of anthropogenic foods by the endangered San Joaquin kit fox (Vulpes macrotis mutica). Journal of Mammalogy, 91(6), 1313–1321. 10.1644/09-MAMM-A-362.1 DOI

Niebuhr, B. B. , Sant'Ana, D. , Panzacchi, M. , van Moorter, B. , Sandström, P. , Morato, R. G. , & Skarin, A. (2022). Renewable energy infrastructure impacts biodiversity beyond the area it occupies. Proceedings of the National Academy of Sciences of the United States of America, 119(48), e2208815119. 10.1073/pnas.2208815119 PubMed DOI PMC

Nimmo, D. G. , Avitabile, S. , Banks, S. C. , Bliege Bird, R. , Callister, K. , Clarke, M. F. , Dickman, C. R. , Doherty, T. S. , Driscoll, D. A. , Greenville, A. C. , Haslem, A. , Kelly, L. T. , Kenny, S. A. , Lahoz‐Monfort, J. J. , Lee, C. , Leonard, S. , Moore, H. , Newsome, T. M. , Parr, C. L. , … Bennett, A. F. (2019). Animal movements in fire‐prone landscapes. Biological Reviews, 94(3), 981–998. 10.1111/brv.12486 PubMed DOI

Nisi, A. C. , Benson, J. F. , & Wilmers, C. C. (2022). Puma responses to unreliable human cues suggest an ecological trap in a fragmented landscape. Oikos, 2022(5), e09051. 10.1111/oik.09051 DOI

Niu, M. , Blackwell, P. G. , & Skarin, A. (2016). Modeling interdependent animal movement in continuous time. Biometrics, 72(2), 315–324. 10.1111/biom.12454 PubMed DOI

Nuijten, R. J. M. , Katzner, T. E. , Allen, A. M. , Bijleveld, A. I. , Boorsma, T. , Börger, L. , Cagnacci, F. , Hart, T. , Henley, M. A. , Herren, R. M. , Kok, E. M. A. , Maree, B. , Nebe, B. , Shohami, D. , Vogel, S. M. , Walker, P. , Heitkönig, I. M. A. , & Milner‐Gulland, E. J. (2023). Priorities for translating goodwill between movement ecologists and conservation practitioners into effective collaboration. Conservation Science and Practice, 5(1), e12870. 10.1111/csp2.12870 DOI

Oliver, R. , Chapman, M. , Ellis‐Soto, D. , Brum‐Bastos, V. , Cagnacci, F. , Long, J. , Loretto, M.‐C. , Patchett, R. B. , & Rutz, C. (2024). Access to human‐mobility data is essential for building a sustainable future. Cell Reports Sustainability, 1(4), 100077. 10.1016/j.crsus.2024.100077 DOI

Oro, D. , Genovart, M. , Tavecchia, G. , Fowler, M. S. , & Martínez‐Abraín, A. (2013). Ecological and evolutionary implications of food subsidies from humans. Ecology Letters, 16(12), 1501–1514. 10.1111/ele.12187 PubMed DOI

Owen, M. A. , Swaisgood, R. R. , & Blumstein, D. T. (2017). Contextual influences on animal decision‐making: Significance for behavior‐based wildlife conservation and management. Integrative Zoology, 12(1), 32–48. 10.1111/1749-4877.12235 PubMed DOI

Patterson, T. A. , Thomas, L. , Wilcox, C. , Ovaskainen, O. , & Matthiopoulos, J. (2008). State–space models of individual animal movement. Trends in Ecology & Evolution, 23(2), 87–94. 10.1016/j.tree.2007.10.009 PubMed DOI

Pereira, H. M. , Martins, I. S. , Rosa, I. M. D. , Kim, H. , Leadley, P. , Popp, A. , van Vuuren, D. P. , Hurtt, G. , Quoss, L. , Arneth, A. , Baisero, D. , Bakkenes, M. , Chaplin‐Kramer, R. , Chini, L. , Di Marco, M. , Ferrier, S. , Fujimori, S. , Guerra, C. A. , Harfoot, M. , … Alkemade, R. (2024). Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science, 384(6694), 458–465. 10.1126/science.adn3441 PubMed DOI

Perona, A. M. , Urios, V. , & López‐López, P. (2019). Holidays? Not for all. Eagles have larger home ranges on holidays as a consequence of human disturbance. Biological Conservation, 231, 59–66. 10.1016/j.biocon.2019.01.010 DOI

Pfaller, J. B. , Goforth, K. M. , Gil, M. A. , Savoca, M. S. , & Lohmann, K. J. (2020). Odors from marine plastic debris elicit foraging behavior in sea turtles. Current Biology, 30(5), R213–R214. 10.1016/j.cub.2020.01.071 PubMed DOI

Plummer, K. E. , Hale, J. D. , O'Callaghan, M. J. , Sadler, J. P. , & Siriwardena, G. M. (2016). Investigating the impact of street lighting changes on garden moth communities. Journal of Urban Ecology, 2(1), juw004. 10.1093/jue/juw004 DOI

Poloczanska, E. S. , Brown, C. J. , Sydeman, W. J. , Kiessling, W. , Schoeman, D. S. , Moore, P. J. , Brander, K. , Bruno, J. F. , Buckley, L. B. , Burrows, M. T. , Duarte, C. M. , Halpern, B. S. , Holding, J. , Kappel, C. V. , O'Connor, M. I. , Pandolfi, J. M. , Parmesan, C. , Schwing, F. , Thompson, S. A. , & Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3(10), 919–925. 10.1038/nclimate1958 DOI

Potts, J. R. , & Börger, L. (2023). How to scale up from animal movement decisions to spatiotemporal patterns: An approach via step selection. Journal of Animal Ecology, 92(1), 16–29. 10.1111/1365-2656.13832 PubMed DOI PMC

Potts, J. R. , Börger, L. , Strickland, B. K. , & Street, G. M. (2022). Assessing the predictive power of step selection functions: How social and environmental interactions affect animal space use. Methods in Ecology and Evolution, 13(8), 1805–1818. 10.1111/2041-210X.13904 DOI

Potts, J. R. , & Lewis, M. A. (2014). How do animal territories form and change? Lessons from 20 years of mechanistic modelling. Proceedings of the Royal Society B: Biological Sciences, 281(1784), 20140231. 10.1098/rspb.2014.0231 PubMed DOI PMC

Potts, J. R. , & Schlägel, U. E. (2020). Parametrizing diffusion‐taxis equations from animal movement trajectories using step selection analysis. Methods in Ecology and Evolution, 11(9), 1092–1105. 10.1111/2041-210X.13406 DOI

Ranc, N. , Moorcroft, P. R. , Ossi, F. , & Cagnacci, F. (2021). Experimental evidence of memory‐based foraging decisions in a large wild mammal. Proceedings of the National Academy of Sciences of the United States of America, 118(15), e2014856118. 10.1073/pnas.2014856118 PubMed DOI PMC

Ratnayake, M. N. , Amarathunga, D. C. , Zaman, A. , Dyer, A. G. , & Dorin, A. (2022). Spatial monitoring and insect behavioural analysis using computer vision for precision pollination. International Journal of Computer Vision, 131(3), 591–606. 10.1007/s11263-022-01715-4 DOI

Richardson, K. , Steffen, W. , Lucht, W. , Bendtsen, J. , Cornell, S. E. , Donges, J. F. , Drüke, M. , Fetzer, I. , Bala, G. , von Bloh, W. , Feulner, G. , Fiedler, S. , Gerten, D. , Gleeson, T. , Hofmann, M. , Huiskamp, W. , Kummu, M. , Mohan, C. , Nogués‐Bravo, D. , … Rockström, J. (2023). Earth beyond six of nine planetary boundaries. Science Advances, 9(37), eadh2458. 10.1126/sciadv.adh2458 PubMed DOI PMC

Rieber, C. J. , Hefley, T. J. , & Haukos, D. A. (2024). Treed gaussian processes for animal movement modeling. Ecology and Evolution, 14(6), e11447. 10.1002/ece3.11447 PubMed DOI PMC

Rilov, G. , Canning‐Clode, J. , & Guy‐Haim, T. (2024). Ecological impacts of invasive ecosystem engineers: A global perspective across terrestrial and aquatic systems. Functional Ecology, 38(1), 37–51. 10.1111/1365-2435.14406 DOI

Rinella, M. J. , Strong, D. J. , & Vermeire, L. T. (2020). Omitted variable bias in studies of plant interactions. Ecology, 101(6), e03020. 10.1002/ecy.3020 PubMed DOI

Riotte‐Lambert, L. , & Matthiopoulos, J. (2020). Environmental predictability as a cause and consequence of animal movement. Trends in Ecology & Evolution, 35(2), 163–174. 10.1016/j.tree.2019.09.009 PubMed DOI

Rolland, R. M. , Parks, S. E. , Hunt, K. E. , Castellote, M. , Corkeron, P. J. , Nowacek, D. P. , Wasser, S. K. , & Kraus, S. D. (2012). Evidence that ship noise increases stress in right whales. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2363–2368. 10.1098/rspb.2011.2429 PubMed DOI PMC

Romano, M. D. , Piatt, J. F. , & Roby, D. D. (2006). Testing the junk‐food hypothesis on marine birds: Effects of prey type on growth and development. Waterbirds, 29(4), 407–414. 10.1675/1524-4695(2006)29[407:TTJHOM]2.0.CO;2 DOI

Rueda‐Uribe, C. , Herrera‐Alsina, L. , Lancaster, L. T. , Capellini, I. , Layton, K. K. S. , & Travis, J. M. J. (2024). Citizen science data reveal altitudinal movement and seasonal ecosystem use by hummingbirds in the Andes Mountains. Ecography, 2024(3), e06735. 10.1111/ecog.06735 DOI

Russell, C. J. G. , Franco, A. M. A. , Atkinson, P. W. , Väli, Ü. , & Ashton‐Butt, A. (2024). Active European warzone impacts raptor migration. Current Biology, 34(10), 2272–2277.e2. 10.1016/j.cub.2024.04.047 PubMed DOI

Rutz, C. (2022a). Register animal‐tracking tags to boost conservation. Nature, 609(7926), 221. 10.1038/d41586-022-02821-6 PubMed DOI

Rutz, C. (2022b). Studying pauses and pulses in human mobility and their environmental impacts. Nature Reviews Earth and Environment, 3(3), 157–159. 10.1038/s43017-022-00276-x DOI

Rutz, C. , Loretto, M.‐C. , Bates, A. E. , Davidson, S. C. , Duarte, C. M. , Jetz, W. , Johnson, M. , Kato, A. , Kays, R. , Mueller, T. , Primack, R. B. , Ropert‐Coudert, Y. , Tucker, M. A. , Wikelski, M. , & Cagnacci, F. (2020). COVID‐19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nature Ecology & Evolution, 4(9), 1156–1159. 10.1038/s41559-020-1237-z PubMed DOI

Sarkar, R. , & Bhadra, A. (2022). How do animals navigate the urban jungle? A review of cognition in urban‐adapted animals. Current Opinion in Behavioral Sciences, 46, 101177. 10.1016/j.cobeha.2022.101177 DOI

Schaub, A. , Ostwald, J. , & Siemers, B. M. (2008). Foraging bats avoid noise. Journal of Experimental Biology, 211(19), 3174–3180. 10.1242/jeb.022863 PubMed DOI

Schlaepfer, M. A. , Runge, M. C. , & Sherman, P. W. (2002). Ecological and evolutionary traps. Trends in Ecology & Evolution, 17(10), 474–480. 10.1016/S0169-5347(02)02580-6 DOI

Schlägel, U. E. , Signer, J. , Herde, A. , Eden, S. , Jeltsch, F. , Eccard, J. A. , & Dammhahn, M. (2019). Estimating interactions between individuals from concurrent animal movements. Methods in Ecology and Evolution, 10(8), 1234–1245. 10.1111/2041-210X.13235 DOI

Schmitz, O. J. , Sylvén, M. , Atwood, T. B. , Bakker, E. S. , Berzaghi, F. , Brodie, J. F. , Cromsigt, J. P. G. M. , Davies, A. B. , Leroux, S. J. , Schepers, F. J. , Smith, F. A. , Stark, S. , Svenning, J.‐C. , Tilker, A. , & Ylänne, H. (2023). Trophic rewilding can expand natural climate solutions. Nature Climate Change, 13(4), 324–333. 10.1038/s41558-023-01631-6 DOI

Schoen, J. M. , DeFries, R. , & Cushman, S. (2025). Open‐source, environmentally dynamic machine learning models demonstrate behavior‐dependent utilization of mixed‐use landscapes by jaguars (Panthera onca). Biological Conservation, 302, 110978. 10.1016/j.biocon.2025.110978 DOI

Selier, J. , Slotow, R. , & Di Minin, E. (2015). Large mammal distribution in a Transfrontier landscape: Trade‐offs between resource availability and human disturbance. Biotropica, 47(3), 389–397. 10.1111/btp.12217 DOI

Serra‐Medeiros, S. , Ortega, Z. , Antunes, P. C. , Miraglia Herrera, H. , & Oliveira‐Santos, L. G. R. (2021). Space use and activity of capybaras in an urban area. Journal of Mammalogy, 102(3), 814–825. 10.1093/jmammal/gyab005 DOI

Shaw, A. K. (2020). Causes and consequences of individual variation in animal movement. Movement Ecology, 8(1), 12. 10.1186/s40462-020-0197-x PubMed DOI PMC

Shepard, E. L. C. , & Lambertucci, S. A. (2013). From daily movements to population distributions: Weather affects competitive ability in a guild of soaring birds. Journal of the Royal Society Interface, 10(88), 20130612. 10.1098/rsif.2013.0612 PubMed DOI PMC

Shepard, E. L. C. , Williamson, C. , & Windsor, S. P. (2016). Fine‐scale flight strategies of gulls in urban airflows indicate risk and reward in city living. Philosophical Transactions of the Royal Society, B: Biological Sciences, 371(1704), 20150394. 10.1098/rstb.2015.0394 PubMed DOI PMC

Shepard, E. L. C. , Wilson, R. P. , Rees, W. G. , Grundy, E. , Lambertucci, S. A. , & Vosper, S. B. (2013). Energy landscapes shape animal movement ecology. The American Naturalist, 182(3), 298–312. 10.1086/671257 PubMed DOI

Shochat, E. , Warren, P. S. , Faeth, S. H. , McIntyre, N. E. , & Hope, D. (2006). From patterns to emerging processes in mechanistic urban ecology. Trends in Ecology & Evolution, 21(4), 186–191. 10.1016/j.tree.2005.11.019 PubMed DOI

Signer, J. , Fieberg, J. , Reineking, B. , Schlägel, U. , Smith, B. , Balkenhol, N. , & Avgar, T. (2024). Simulating animal space use from fitted integrated step‐selection functions (iSSF). Methods in Ecology and Evolution, 15(1), 43–50. 10.1111/2041-210X.14263 DOI

Sih, A. (2013). Understanding variation in behavioural responses to human‐induced rapid environmental change: A conceptual overview. Animal Behaviour, 85(5), 1077–1088. 10.1016/j.anbehav.2013.02.017 DOI

Silovský, V. , Landler, L. , Faltusová, M. , Börger, L. , Burda, H. , Holton, M. , Lagner, O. , Malkemper, E. P. , Olejarz, A. , Spießberger, M. , Váchal, A. , & Ježek, M. (2024). A GPS assisted translocation experiment to study the homing behavior of red deer. Scientific Reports, 14(1), 6770. 10.1038/s41598-024-56951-0 PubMed DOI PMC

Simonis, A. E. , Brownell, R. L. , Thayre, B. J. , Trickey, J. S. , Oleson, E. M. , Huntington, R. , & Baumann‐Pickering, S. (2020). Co‐occurrence of beaked whale strandings and naval sonar in the Mariana Islands, Western Pacific. Proceedings of the Royal Society B: Biological Sciences, 287(1921), 20200070. 10.1098/rspb.2020.0070 PubMed DOI PMC

Skarin, A. , Nellemann, C. , Rönnegård, L. , Sandström, P. , & Lundqvist, H. (2015). Wind farm construction impacts reindeer migration and movement corridors. Landscape Ecology, 30(8), 1527–1540. 10.1007/s10980-015-0210-8 DOI

Soriano‐Redondo, A. , Bearhop, S. , Cleasby, I. R. , Lock, L. , Votier, S. C. , & Hilton, G. M. (2016). Ecological responses to extreme flooding events: A Case study with a reintroduced Bird. Scientific Reports, 6(1), 28595. 10.1038/srep28595 PubMed DOI PMC

Spelt, A. , Williamson, C. , Shamoun‐Baranes, J. , Shepard, E. , Rock, P. , & Windsor, S. (2019). Habitat use of urban‐nesting lesser black‐backed gulls during the breeding season. Scientific Reports, 9(1), 10527. 10.1038/s41598-019-46890-6 PubMed DOI PMC

Strum, S. C. (2010). The development of primate raiding: Implications for management and conservation. International Journal of Primatology, 31(1), 133–156. 10.1007/s10764-009-9387-5 PubMed DOI PMC

Sueur, C. (2023). A deep learning model to unlock secrets of animal movement and behaviour. Peer community in Ecology, 1, 100531. 10.24072/pci.ecology.100531 DOI

Sunday, J. M. , Bates, A. E. , & Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2(9), 686–690. 10.1038/nclimate1539 DOI

Suraci, J. P. , Clinchy, M. , Zanette, L. Y. , & Wilmers, C. C. (2019). Fear of humans as apex predators has landscape‐scale impacts from mountain lions to mice. Ecology Letters, 22(10), 1578–1586. 10.1111/ele.13344 PubMed DOI

Svenning, J.‐C. , Buitenwerf, R. , & Le Roux, E. (2024). Trophic rewilding as a restoration approach under emerging novel biosphere conditions. Current Biology, 34(9), R435–R451. 10.1016/j.cub.2024.02.044 PubMed DOI

Svenning, J.‐C. , McGeoch, M. A. , Normand, S. , Ordonez, A. , & Riede, F. (2024). Navigating ecological novelty towards planetary stewardship: Challenges and opportunities in biodiversity dynamics in a transforming biosphere. Philosophical Transactions of the Royal Society, B: Biological Sciences, 379(1902), 20230008. 10.1098/rstb.2023.0008 PubMed DOI PMC

Symons, S. C. , & Diamond, A. W. (2019). Short‐term tracking tag attachment disrupts chick provisioning by Atlantic puffins Fratercula arctica and razorbills Alca torda . Bird Study, 66(1), 53–63. 10.1080/00063657.2019.1612850 DOI

te Velde, K. , Mairo, A. , Peeters, E. T. H. M. , Winter, H. V. , Tudorache, C. , & Slabbekoorn, H. (2024). Natural soundscapes of lowland river habitats and the potential threat of urban noise pollution to migratory fish. Environmental Pollution, 359, 124517. 10.1016/j.envpol.2024.124517 PubMed DOI

Trombulak, S. C. , & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14(1), 18–30. 10.1046/j.1523-1739.2000.99084.x DOI

Tucker, M. A. , Böhning‐Gaese, K. , Fagan, W. F. , Fryxell, J. M. , Van Moorter, B. , Alberts, S. C. , Ali, A. H. , Allen, A. M. , Attias, N. , Avgar, T. , Bartlam‐Brooks, H. , Bayarbaatar, B. , Belant, J. L. , Bertassoni, A. , Beyer, D. , Bidner, L. , van Beest, F. M. , Blake, S. , Blaum, N. , … Mueller, T. (2018). Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 359(6374), 466–469. 10.1126/science.aam9712 PubMed DOI

Tucker, M. A. , Schipper, A. M. , Adams, T. S. F. , Attias, N. , Avgar, T. , Babic, N. L. , Barker, K. J. , Bastille‐Rousseau, G. , Behr, D. M. , Belant, J. L. , Beyer, D. E. , Blaum, N. , Blount, J. D. , Bockmühl, D. , Pires Boulhosa, R. L. , Brown, M. B. , Buuveibaatar, B. , Cagnacci, F. , Calabrese, J. M. , … Mueller, T. (2023). Behavioral responses of terrestrial mammals to COVID‐19 lockdowns. Science, 380(6649), 1059–1064. 10.1126/science.abo6499 PubMed DOI

Tuia, D. , Kellenberger, B. , Beery, S. , Costelloe, B. R. , Zuffi, S. , Risse, B. , Mathis, A. , Mathis, M. W. , van Langevelde, F. , Burghardt, T. , Kays, R. , Klinck, H. , Wikelski, M. , Couzin, I. D. , van Horn, G. , Crofoot, M. C. , Stewart, C. V. , & Berger‐Wolf, T. (2022). Perspectives in machine learning for wildlife conservation. Nature Communications, 13(1), 792. 10.1038/s41467-022-27980-y PubMed DOI PMC

Tuomainen, U. , & Candolin, U. (2011). Behavioural responses to human‐induced environmental change. Biological Reviews, 86(3), 640–657. 10.1111/j.1469-185X.2010.00164.x PubMed DOI

Tuxbury, S. M. , & Salmon, M. (2005). Competitive interactions between artificial lighting and natural cues during seafinding by hatchling marine turtles. Biological Conservation, 121(2), 311–316. 10.1016/j.biocon.2004.04.022 DOI

Uyeda, L. T. , Iskandar, E. , Kyes, R. C. , & Wirsing, A. J. (2015). Encounter rates, agonistic interactions, and social hierarchy among garbage‐feeding water monitor lizards (Varanus salvator bivittatus) on Tinjil Island, Indonesia. Herpetological Conservation and Biology, 10(2), 753–764.

van der Ree, R. , Smith, D. J. , & Grilo, C. (2015). The ecological effects of linear infrastructure and traffic. In Forman R. T. T. (Ed.), Handbook of road ecology (pp. 1–9). John Wiley & Sons, Ltd. 10.1002/9781118568170.ch1 DOI

van Klink, R. , August, T. , Bas, Y. , Bodesheim, P. , Bonn, A. , Fossøy, F. , Høye, T. T. , Jongejans, E. , Menz, M. H. M. , Miraldo, A. , Roslin, T. , Roy, H. E. , Ruczyński, I. , Schigel, D. , Schäffler, L. , Sheard, J. K. , Svenningsen, C. , Tschan, G. F. , Wäldchen, J. , … Bowler, D. E. (2022). Emerging technologies revolutionise insect ecology and monitoring. Trends in Ecology & Evolution, 37(10), 872–885. 10.1016/j.tree.2022.06.001 PubMed DOI

Vedor, M. , Queiroz, N. , Mucientes, G. , Couto, A. , da Costa, I. , dos Santos, A. , Vandeperre, F. , Fontes, J. , Afonso, P. , Rosa, R. , Humphries, N. E. , & Sims, D. W. (2021). Climate‐driven deoxygenation elevates fishing vulnerability for the ocean's widest ranging shark. eLife, 10, e62508. 10.7554/eLife.62508 PubMed DOI PMC

Venter, O. , Sanderson, E. W. , Magrach, A. , Allan, J. R. , Beher, J. , Jones, K. R. , Possingham, H. P. , Laurance, W. F. , Wood, P. , Fekete, B. M. , Levy, M. A. , & Watson, J. E. M. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 7(1), 12558. 10.1038/ncomms12558 PubMed DOI PMC

Vilà, M. , Espinar, J. L. , Hejda, M. , Hulme, P. E. , Jarošík, V. , Maron, J. L. , Pergl, J. , Schaffner, U. , Sun, Y. , & Pyšek, P. (2011). Ecological impacts of invasive alien plants: A meta‐analysis of their effects on species, communities and ecosystems. Ecology Letters, 14(7), 702–708. 10.1111/j.1461-0248.2011.01628.x PubMed DOI

Wacher, T. , Amin, R. , Newby, J. , Hatcha, M. H. , Abeye, K. , Ali, H. , Bourtchiakbé, S. Z. , & Banlongar, F. N. (2023). Gazelle–livestock interactions and impact of water resource development in the Ouadi Rimé–Ouadi Achim reserve, Chad. Oryx, 57(2), 205–215. 10.1017/S0030605321001629 DOI

Webster, M. M. , & Rutz, C. (2020). How STRANGE are your study animals? Nature, 582(7812), 337–340. 10.1038/d41586-020-01751-5 PubMed DOI

Werner, K. M. , Haslob, H. , Reichel, A. F. , Gimpel, A. , & Stelzenmüller, V. (2024). Offshore wind farm foundations as artificial reefs: The devil is in the detail. Fisheries Research, 272, 106937. 10.1016/j.fishres.2024.106937 DOI

Whyte, K. F. , Russell, D. J. F. , Sparling, C. E. , Binnerts, B. , & Hastie, G. D. (2020). Estimating the effects of pile driving sounds on seals: Pitfalls and possibilitiesa. The Journal of the Acoustical Society of America, 147(6), 3948–3958. 10.1121/10.0001408 PubMed DOI

Wijeyakulasuriya, D. A. , Eisenhauer, E. W. , Shaby, B. A. , & Hanks, E. M. (2020). Machine learning for modeling animal movement. PLoS One, 15(7), e0235750. 10.1371/journal.pone.0235750 PubMed DOI PMC

Williams, B. K. , & Brown, E. D. (2024). Managing ecosystems with resist–accept–direct (RAD). Methods in Ecology and Evolution, 15(5), 796–805. 10.1111/2041-210X.14309 DOI

Williams, H. J. , Taylor, L. A. , Benhamou, S. , Bijleveld, A. I. , Clay, T. A. , de Grissac, S. , Demšar, U. , English, H. M. , Franconi, N. , Gómez‐Laich, A. , Griffiths, R. C. , Kay, W. P. , Morales, J. M. , Potts, J. R. , Rogerson, K. F. , Rutz, C. , Spelt, A. , Trevail, A. M. , Wilson, R. P. , & Börger, L. (2020). Optimizing the use of biologgers for movement ecology research. The Journal of Animal Ecology, 89(1), 186–206. 10.1111/1365-2656.13094 PubMed DOI PMC

Williamson, M. J. , Tebbs, E. J. , Curnick, D. J. , Ferretti, F. , Carlisle, A. B. , Chapple, T. K. , Schallert, R. J. , Tickler, D. M. , Block, B. A. , & Jacoby, D. M. P. (2024). Environmental stress reduces shark residency to coral reefs. Communications Biology, 7(1), 1–12. 10.1038/s42003-024-06707-3 PubMed DOI PMC

Yanco, S. W. , Rutz, C. , Abrahms, B. , Cooper, N. W. , Marra, P. P. , Mueller, T. , Weeks, B. C. , Wikelski, M. , & Oliver, R. Y. (2025). Tracking individual animals can reveal the mechanisms of species loss. Trends in Ecology & Evolution, 40(1), 47–56. 10.1016/j.tree.2024.09.008 PubMed DOI

Yates, K. L. , Bouchet, P. J. , Caley, M. J. , Mengersen, K. , Randin, C. F. , Parnell, S. , Fielding, A. H. , Bamford, A. J. , Ban, S. , Barbosa, A. M. , Dormann, C. F. , Elith, J. , Embling, C. B. , Ervin, G. N. , Fisher, R. , Gould, S. , Graf, R. F. , Gregr, E. J. , Halpin, P. N. , … Sequeira, A. M. M. (2018). Outstanding challenges in the transferability of ecological models. Trends in Ecology & Evolution, 33(10), 790–802. 10.1016/j.tree.2018.08.001 PubMed DOI

Yirga, G. , Leirs, H. , Iongh, H. H. D. , Asmelash, T. , Gebrehiwot, K. , Deckers, J. , & Bauer, H. (2015). Spotted hyena (Crocuta crocuta) concentrate around urban waste dumps across Tigray, northern Ethiopia. Wildlife Research, 42(7), 563–569. 10.1071/WR14228 DOI

Yun, J. , Shin, W. , Kim, J. , Thorne, J. H. , & Song, Y. (2024). Citizen‐science data identifies the daily movement patterns and habitat associations of a nocturnal urban‐invading bird species (Corvus frugilegus). Urban Ecosystems, 27(5), 1407–1416. 10.1007/s11252-024-01508-2 DOI

Zanette, L. Y. , Frizzelle, N. R. , Clinchy, M. , Peel, M. J. S. , Keller, C. B. , Huebner, S. E. , & Packer, C. (2023). Fear of the human “super predator” pervades the south African savanna. Current Biology, 33(21), 4689–4696.e4. 10.1016/j.cub.2023.08.089 PubMed DOI

Zeller, K. A. , Ditmer, M. A. , Squires, J. R. , Rice, W. L. , Wilder, J. , DeLong, D. , Egan, A. , Pennington, N. , Wang, C. A. , Plucinski, J. , & Barber, J. R. (2024). Experimental recreationist noise alters behavior and space use of wildlife. Current Biology, 34(13), 2997–3004.e3. 10.1016/j.cub.2024.05.030 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...