Electrochemical Flow Reactors: Mass Transport, iR Drop, and Membrane-Free Performance with In-Line Analysis
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40201386
PubMed Central
PMC11973871
DOI
10.1021/acselectrochem.4c00167
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Continuous flow reactors are promising for electrochemical conversions, in large part due to the potentially rapid refreshment of reagents over the electrode surface. Microfluidic reactors enable a high degree of control over the fluid flow. Diffusion to and from the electrode and electrode area determine the efficiency of electrochemical conversion. The effective electrode area is limited by the loss in electrode potential due to iR drop, and further electrode length (and hence area) is limited due to ineffective mass transport to and from the electrode. Here, we report on a microfluidic electrochemical device with large (long) area electrodes running in parallel, which both minimizes the iR drop and ensures a constant electrode potential along the whole length of the electrodes. The electrodes are separated by laminar flow in the channels, instead of by a membrane, thereby reducing cell resistance. Herringbone grooves are used to increase mass transport rates by inducing transverse flow. We confirm fluid flow behavior in the devices using computational fluid dynamics (CFD) and verify the results experimentally using in-line and off-line UV/vis absorption and resonance Raman spectroscopy. We anticipate that this approach will aid future development of electrochemical flow reactors, enabling larger area-electrodes and realizing greater efficiencies.
See more in PubMed
Noël T.; Cao Y.; Laudadio G. The fundamentals behind the use of flow reactors in lectrochemistry. Acc. Chem. Res. 2019, 52, 2858–2869. 10.1021/acs.accounts.9b00412. PubMed DOI PMC
Pletcher D.; Green R. A.; Brown R. C. Flow electrolysis ells for the synthetic rganic chemistry laboratory. Chem. Rev. 2018, 118, 4573–4591. 10.1021/acs.chemrev.7b00360. PubMed DOI
Yuan Y.; Lei A. Is electrosynthesis always green and advantageous compared to traditional methods?. Nature Commun. 2020, 11, 2018–2020. 10.1038/s41467-020-14322-z. PubMed DOI PMC
Folgueiras-Amador A. A.; Teuten A. E.; Salam-Perez M.; Pearce J. E.; Denuault G.; Pletcher D.; Parsons P. J.; Harrowven D. C.; Brown R. C. Cathodic radical cyclisation of aryl halides using a strongly-reducing catalytic mediator in Flow. Angew. Chem. Int. Ed. 2022, 61, 1–8. 10.1002/anie.202203694. PubMed DOI PMC
Cantillo D. Synthesis of active pharmaceutical ingredients using electrochemical methods: Keys to improve sustainability. Chem. Commun. 2022, 58, 619–628. 10.1039/D1CC06296D. PubMed DOI
Yan M.; Kawamata Y.; Baran P. S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem. Rev. 2017, 117, 13230–13319. 10.1021/acs.chemrev.7b00397. PubMed DOI PMC
AL-Hadedi A. A.; Sawyer S.; Elliott S. J.; Green R. A.; O’Leary D. J.; Brown R. C.; Brown L. J. A flow electrochemistry-enabled synthesis of 2-substituted N-(methyl-d)piperidines. J. Label. Comp. Radiopharm. 2022, 65, 361–368. 10.1002/jlcr.4006. PubMed DOI PMC
Oomen P. E.; Zhang Y.; Chiechi R. C.; Verpoorte E.; Mathwig K. Electrochemical sensing with single nanoskived gold nanowires bisecting a microchannel. Lab Chip 2018, 18, 2913–2916. 10.1039/C8LC00787J. PubMed DOI
Golden J. P.; Floyd-Smith T. M.; Mott D. R.; Ligler F. S. Target delivery in a microfluidic immunosensor. Biosens. Bioelectron. 2007, 22, 2763–2767. 10.1016/j.bios.2006.12.017. PubMed DOI
Lynn N. S.; Homola J. Biosensor enhancement using grooved micromixers: Part I, numerical studies. Anal. Chem. 2015, 87, 5516–5523. 10.1021/ac504359m. PubMed DOI
Li L.; Hu Z.; Yu J. C. On-Demand Synthesis of H2O2 by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation. Angew. Chem. Int. Ed. 2020, 59, 20538–20544. 10.1002/anie.202008031. PubMed DOI
Zhou Y.; Zhu X.; Yang Y.; Ye D.; Chen R.; Liao Q. Route towards high-performance microfluidic fuel cells: a review. Sustainable Energy and Fuels 2021, 5, 2840–2859. 10.1039/D1SE00447F. DOI
Rocco D.; Folgueiras-Amador A. A.; Brown R. C.; Feroci M. First example of organocatalysis by cathodic N-heterocyclic carbene generation and accumulation using a divided electrochemical flow cell. Beilstein J. Org. Chem. 2022, 18, 979–990. 10.3762/bjoc.18.98. PubMed DOI PMC
Bard A. J. L. R. F.Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Incorporated, 2000; p 856.
Laudadio G.; Bartolomeu A. D. A.; Verwijlen L. M.; Cao Y.; De Oliveira K. T.; Noël T. Sulfonyl fluoride synthesis through electrochemical oxidative coupling of thiols and potassium fuoride. J. Am. Chem. Soc. 2019, 141, 11832–11836. 10.1021/jacs.9b06126. PubMed DOI PMC
Gütz C.; Stenglein A.; Waldvogel S. R. Highly modular flow cell for electroorganic synthesis. Org. Process Res. Dev. 2017, 21, 771–778. 10.1021/acs.oprd.7b00123. DOI
Horii D.; Fuchigami T.; Atobe M. A new approach to anodic substitution reaction using parallel laminar Flow in a Micro-Flow Reactor. J. Am. Chem. Soc. 2007, 129, 11692–11693. 10.1021/ja075180s. PubMed DOI
Nasharudin M. N.; Kamarudin S. K.; Hasran U. A.; Masdar M. S. Mass transfer and performance of membrane-less micro fuel cell: A review. Inter. J. Hydrogen Energy 2014, 39, 1039–1055. 10.1016/j.ijhydene.2013.09.135. DOI
López-Montesinos P. O.; Yossakda N.; Schmidt A.; Brushett F. R.; Pelton W. E.; Kenis P. J. Design, fabrication, and characterization of a planar, silicon-based, monolithically integrated micro laminar flow fuel cell with a bridge-shaped microchannel cross-section. J. Power Sources 2011, 196, 4638–4645. 10.1016/j.jpowsour.2011.01.037. DOI
Marschewski J.; Ruch P.; Ebejer N.; Huerta Kanan O.; Lhermitte G.; Cabrol Q.; Michel B.; Poulikakos D. On the mass transfer performance enhancement of membraneless redox flow cells with mixing promoters. Inter. J. Heat and Mass Transfer 2017, 106, 884–894. 10.1016/j.ijheatmasstransfer.2016.10.030. DOI
Klement W. J.; Steen J. D.; Browne W. R. Selective analysis of redox processes at the electrode interface with time-resolved Raman spectroscopy. Langmuir 2023, 39, 10383–10394. 10.1021/acs.langmuir.3c00633. PubMed DOI PMC
Sloan-Dennison S.; Shand N. C.; Graham D.; Faulds K. Resonance Raman detection of antioxidants using an iron oxide nanoparticle catalysed decolourisation assay. Analyst 2017, 142, 4715–4720. 10.1039/C7AN01151B. PubMed DOI
Klement W. J.; Savino E.; Browne W. R.; Verpoorte E. In-line Raman imaging of mixing by herringbone grooves in microfluidic channels. Lab Chip 2024, 24, 3498–3507. 10.1039/D4LC00115J. PubMed DOI PMC
Kirtland J. D.; McGraw G. J.; Stroock A. D. Mass transfer to reactive boundaries from steady three-dimensional flows in microchannels. Phys. Fluids 2006, 18, 073602.10.1063/1.2222389. DOI
Lynn N. S.; Homola J. Biosensor enhancement using grooved micromixers: Part I, numerical studies. Anal. Chem. 2015, 87, 5516–5523. 10.1021/ac504359m. PubMed DOI
Lynn N. S.; Bocková M.; Adam P.; Homola J. Biosensor enhancement using grooved micromixers: Part II, experimental studies. Anal. Chem. 2015, 87, 5524–5530. 10.1021/ac504360d. PubMed DOI
Yang J. T.; Huang K. J.; Lin Y. C. Geometric effects on fluid mixing in passive grooved micromixers. Lab Chip 2005, 5, 1140–1147. 10.1039/b500972c. PubMed DOI
Lynn N. S.; Dandy D. S. Geometrical optimization of helical flow in grooved micromixers. Lab Chip 2007, 7, 580–587. 10.1039/b700811b. PubMed DOI PMC
Herman A.; Mathias J. L.; Neumann R. Electrochemical formation and activation of hydrogen peroxide from water on fluorinated tin oxide for Baeyer-Villiger oxidation reactions. ACS Catal. 2022, 12, 4149–4155. 10.1021/acscatal.1c06013. DOI