• This record comes from PubMed

Spatial Distribution and Potential Health Risks of Arsenic (As) and Associated Metals (Fe and Mn) in the Coastal Accreted Land of Meghna River Estuary and Their Implication on the Agricultural Aspects

. 2025 ; 2025 () : 8891363. [epub] 20250312

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Arsenic (As),iron (Fe), and manganese (Mn) pollution in the coastal areas of Bangladesh are severe problems.Irrigation by shallow wells in the agricultural lands is the primary source of these metals. Being a part of the Ganges, Brahmaputra, and Meghna (GBM) Delta, the coastal accreted land of the Meghna River estuary has experienced a series of erosion and accretion phenomena and deposited a vast amount of sediments along with potentially toxic elements. This study investigated the spatial distribution, source, fate, and potential environmental and human health risks of As, Fe, and Mn from 25 sites across the coastal accreted land in the lower Meghna River estuary, Bay of Bengal. The mean concentration of As, Fe, and Mn in the surface soil samples ranged from 0.1-5.16, 12,000-23,810, and 50.6-1025.12 mg/kg, respectively, where high concentrations of metals were found in the southern belt of the estuary. A high As concentration (> 2 mg/kg) was observed at stations 3-4, 15, and 17. Igeo values of As, Fe, and Mn were estimated as -1.05, -0.50, and -0.55, respectively. The Igeo values analyzed in the sediments were below zero for all the metals, suggesting no contamination from these metals. The pollution load index (PLI) for As, Fe, and Mn was lower than the contamination level, indicating that contamination levels remain below harmful thresholds but require regular monitoring. Potential ecological risk index (PERI) values (1.32-10.75) showed low ecological risks in the studied area. Moreover, "no risk" to "low level" of carcinogenic risk was identified. According to the threshold values, except in the southern belt (stations 3-4, 15, and 17), most of the accreted agricultural land can be considered adequately safe for food production. This study suggests that plant analyses be incorporated into future research; however, it would be more impactful to emphasize bioavailability studies and their relevance to agricultural safety.

See more in PubMed

Sabet Aghlidi P., Cheraghi M., Lorestani B., Sobhanardakani S., Merrikhpour H. Analysis, Spatial Distribution and Ecological Risk Assessment of Arsenic and Some Heavy Metals of Agricultural Soils, Case Study: South of Iran. Journal of Environmental Health Science and Engineering . 2020;18(2):665–676. doi: 10.1007/s40201-020-00492-x. PubMed DOI PMC

Yottiam A., Chaikeaw P., Srithongouthai S. Arsenic Pollution Assessment in Surface Sediment of the Inner Gulf of Thailand. IOP Conference Series: Earth and Environmental Science . 2019;345(1):p. 012010. doi: 10.1088/1755-1315/345/1/012010. DOI

Gorny J., Billon G., Lesven L., Dumoulin D., Madé B., Noiriel C. Arsenic Behavior in River Sediments Under Redox Gradient: A Review. Science of the Total Environment . 2015;505:423–434. doi: 10.1016/j.scitotenv.2014.10.011. PubMed DOI

Bissen M., Frimmel F. H. Arsenic—A Review. Part I: Occurrence, Toxicity, Speciation, Mobility. Acta Hydrochimica et Hydrobiologica . 2003;31(1):9–18. doi: 10.1002/aheh.200390025. DOI

Posada-Ayala I. H., Murillo-Jiménez J. M., Shumilin E., Marmolejo-Rodríguez A. J., Nava-Sánchez E. H. Arsenic From Gold Mining in Marine and Stream Sediments in Baja California Sur, Mexico. Environmental Earth Sciences . 2016;75(11):p. 996. doi: 10.1007/s12665-016-5550-4. DOI

Wang N., Ye Z., Huang L., Zhang C., Guo Y., Zhang W. Arsenic Occurrence and Cycling in the Aquatic Environment: A Comparison Between Freshwater and Seawater. Water . 2022;15(1):p. 147. doi: 10.3390/w15010147. DOI

Luo W., Lu Y., Wang T., et al. Ecological Risk Assessment of Arsenic and Metals in Sediments of Coastal Areas of Northern Bohai and Yellow Seas, China. Ambio . 2010;39(5-6):367–375. doi: 10.1007/s13280-010-0077-5. PubMed DOI PMC

Ravenscroft P., Brammer H., Richards K. Arsenic Pollution . John Wiley & Sons; 2009.

Schuh C. E., Jamieson H. E., Palmer M. J., Martin A. J., Blais J. M. Controls Governing the Spatial Distribution of Sediment Arsenic Concentrations and Solid-Phase Speciation in a Lake Impacted by Legacy Mining Pollution. Science of the Total Environment . 2019;654:563–575. doi: 10.1016/j.scitotenv.2018.11.065. PubMed DOI

Mohebian M., Sobhanardakani S., Taghavi L., Ghoddousi J. Analysis and Potential Ecological Risk Assessment of Heavy Metals in the Surface Soils Collected From Various Land Uses Around Shazand Oil Refinery Complex, Arak, Iran. Arabian Journal of Geosciences . 2021;14(19):2019–2116. doi: 10.1007/s12517-021-08349-9. DOI

Leal M. F. C., Catarino R. I., Pimenta A. M., Souto M. R. S. The Influence of the Biometals Cu, Fe, and Zn and the Toxic Metals Cd and Pb on Human Health and Disease. Trace Elements and Electrolytes . 2023;40(01):1–22. doi: 10.5414/te500038. DOI

O’Neal S. L., Zheng W. Manganese Toxicity Upon Overexposure: A Decade in Review. Current Environmental Health Reports . 2015;2(3):315–328. doi: 10.1007/s40572-015-0056-x. PubMed DOI PMC

Michalke B., Fernsebner K. New Insights Into Manganese Toxicity and Speciation. Journal of Trace Elements in Medicine & Biology . 2014;28(2):106–116. doi: 10.1016/j.jtemb.2013.08.005. PubMed DOI

Khan M. Z. H., Hasan M. R., Khan M., Aktar S., Fatema K. Distribution of Heavy Metals in Surface Sediments of the Bay of Bengal Coast. Journal of Toxicology . 2017;2017(1):1–7. doi: 10.1155/2017/9235764. PubMed DOI PMC

Hossain H. Z. Major, Trace, and REE Geochemistry of the Meghna River Sediments, Bangladesh: Constraints on Weathering and Provenance. Geological Journal . 2019;55(5):3321–3343. doi: 10.1002/gj.3595. DOI

Tareq S. M., Safiullah S., Anawar H. M., Rahman M. M., Ishizuka T. Arsenic Pollution in Groundwater: A Self-Organizing Complex Geochemical Process in the Deltaic Sedimentary Environment, Bangladesh. Science of the Total Environment . 2003;313(1-3):213–226. doi: 10.1016/s0048-9697(03)00266-3. PubMed DOI

Ahmad S. A., Khan M. H., Haque M. Arsenic Contamination in Groundwater in Bangladesh: Implications and Challenges for Healthcare Policy. Risk Management and Healthcare Policy . 2018;11:251–261. doi: 10.2147/rmhp.s153188. PubMed DOI PMC

Carbonell G., Imperial R. Md, Torrijos M., Delgado M., Rodriguez J. A. Effects of Municipal Solid Waste Compost and Mineral Fertilizer Amendments on Soil Properties and Heavy Metals Distribution in Maize Plants (Zea mays L.) Chemosphere . 2011;85(10):1614–1623. doi: 10.1016/j.chemosphere.2011.08.025. PubMed DOI

Rodríguez Martín J. A., Ramos-Miras J. J., Boluda R., Gil C. Spatial Relations of Heavy Metals in Arable and Greenhouse Soils of a Mediterranean Environment Region (Spain) Geoderma . 2013;200-201:180–188. doi: 10.1016/j.geoderma.2013.02.014. DOI

Chugh L. K., Sawhney S. K. Effect of Cadmium on Germination, Amylase and Rate of Respiration of Germination Pea Seed. Environmental Toxicology . 1996;134(6):45–61. PubMed

Cherngkh N. A. Alteration of the Concentration of Certain Elements in Plants by Heavy Metal in the Soil. Soviet Soil Science . 1991;23(6):45–53.

Yim M. W., Tam N. F. Y. Effects of Wastewater-Borne Heavy Metals on Mangrove Plants and Soil Microbial Activities. Marine Pollution Bulletin . 1999;39(1–12):179–186. doi: 10.1016/s0025-326x(99)00067-3. DOI

Das R. S., Rahman M., Sufian N. P., Rahman S. M. A., Siddique M. A. M. Assessment of Soil Salinity in the Accreted and Non-Accreted Land and Its Implication on the Agricultural Aspects of the Noakhali Coastal Region, Bangladesh. Heliyon . 2020;6(9):p. e04926. doi: 10.1016/j.heliyon.2020.e04926. PubMed DOI PMC

Alengebawy A., Abdelkhalek S. T., Qureshi S. R., Wang M. Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics . 2021;9(3):p. 42. doi: 10.3390/toxics9030042. PubMed DOI PMC

Siddique M. A. M., Rahman M., Rahman S. M. A., et al. Assessment of Heavy Metal Contamination in the Surficial Sediments From the Lower Meghna River Estuary, Noakhali Coast, Bangladesh. International Journal of Sediment Research . 2021;36(3):384–391.

Safiur Rahman M., Khan M. D. H., Jolly Y. N., Kabir J., Akter S., Salam A. Assessing Risk to Human Health for Heavy Metal Contamination Through Street Dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Science of the Total Environment . 2019;660:1610–1622. doi: 10.1016/j.scitotenv.2018.12.425. PubMed DOI

Rudnick R. L., Gao S. Composition of the Continental Crust . 2nd. Treatise Geochem; 2014.

Müller G. The Heavy Metal Pollution of the Sediments of Neckars and its Tributary: A Stocktaking. Chemiker Zeitung . 1981;105:157–164.

Taylor S. R. Abundance of Chemical Elements in the Continental Crust: A New Table. Geochimica et Cosmochimica Acta . 1964;28(8):1273–1285. doi: 10.1016/0016-7037(64)90129-2. DOI

Hakanson L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Research . 1980;14(8):975–1001. doi: 10.1016/0043-1354(80)90143-8. DOI

Tomilson D. C., Wilson D. J., Harris C. R., Jeffrey D. W. Problem in Assessment of Heavy Metals in Estuaries and the Formation of Pollution Index. Helgoland Wiss Meeresunlter . 1980;33:566–575.

USEPA. Washington, DC: US Environmental Protection Agency; 2004. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) EPA/540/R/99/005.

Alghamdi B. A., El Mannoubi I., Zabin S. A. Heavy Metals’ Contamination in Sediments of Wadi Al-Aqiq Water Reservoir Dam at Al-Baha Region, KSA: Their Identification and Assessment. Human and Ecological Risk Assessment: An International Journal . 2019;25(4):793–818. doi: 10.1080/10807039.2018.1451746. DOI

USEPA. Proceedings of the U.S. Environmental Protection Agency (EPA) International Decontamination Research and Development Conference. EPA/600/R-15/283; 2015; Washington DC. U.S. Environmental Protection Agency;

Islam M. S., Hossain M. B., Matin A., Islam Sarker M. S. Assessment of Heavy Metal Pollution, Distribution, and Source Apportionment in the Sediment From Feni River Estuary, Bangladesh. Chemosphere . 2018;202:25–32. doi: 10.1016/j.chemosphere.2018.03.077. PubMed DOI

Fraterrigo J. M., Turner M. G., Pearson S. M., Dixon P. Effects of Past Land Use on Spatial Heterogeneity of Soil Nutrients in Southern Appalachian Forests. Ecological Monographs . 2005;75(2):215–230. doi: 10.1890/03-0475. DOI

Sultana N., Eti S. A., Hossain M. L., Li J., Salam M. A. Tracing and Source Fingerprinting of Metals From the Southern Coastal Sediments in Bangladesh. Environmental Science & Pollution Research . 2024;31(19):27846–27863. doi: 10.1007/s11356-024-32684-5. PubMed DOI

Kumar V., Sharma A., Pandita S., Bhardwaj R., Thukral A. K., Cerda A. A Review of Ecological Risk Assessment and Associated Health Risks With Heavy Metals in Sediment From India. International Journal of Sediment Research . 2020;35(5):516–526. doi: 10.1016/j.ijsrc.2020.03.012. DOI

Alharbi T., El-Sorogy A. Assessment of Metal Contamination in Coastal Sediments of Al-Khobar Area, Arabian Gulf, Saudi Arabia. Journal of African Earth Sciences . 2017;129:458–468. doi: 10.1016/j.jafrearsci.2017.02.007. DOI

Tavakoly S. B. S., Salleh A., Rezayi M., Saadati N., Narimany L., Tehrani G. M. Distribution and Contamination of Heavy Metal in the Coastal Sediments of Port Klang, Selangor, Malaysia. Water, Air, and Soil Pollution . 2013;224(4):1476–1518. doi: 10.1007/s11270-013-1476-6. DOI

Cheng W. H., Yap C. K. Potential Human Health Risks From Toxic Metals via Mangrove Snail Consumption and Their Ecological Risk Assessments in the Habitat Sediment From Peninsular Malaysia. Chemosphere . 2015;135:156–165. doi: 10.1016/j.chemosphere.2015.04.013. PubMed DOI

Hasna V. M., Aboobacker V. M., Dib S., et al. Elemental Distributions in the Marine Sediments off Doha, Qatar: Role of Urbanisation and Coastal Dynamics. Environmental Earth Sciences . 2024;83(14):p. 434. doi: 10.1007/s12665-024-11738-4. DOI

Montes-Avila I., Espinosa-Serrano E., Castro-Larragoitia J., Lázaro I., Cardona A. Chemical Mobility of Inorganic Elements in Stream Sediments of a Semiarid Zone Impacted by Ancient Mine Residues. Applied Geochemistry . 2019;100:8–21. doi: 10.1016/j.apgeochem.2018.11.002. DOI

Kodat M., Tepe Y. A Holistic Approach to the Assessment of Heavy Metal Levels and Associated Risks in the Coastal Sediment of Giresun, Southeast Black Sea. Heliyon . 2023;9(6):p. e16424. doi: 10.1016/j.heliyon.2023.e16424. PubMed DOI PMC

Rumisha C., Elskens M., Leermakers M., Kochzius M. Trace Metal Pollution and Its Influence on the Community Structure of Soft-Bottom Mollusks in Intertidal Areas of the Dar Es Salaam Coast, Tanzania. Marine Pollution Bulletin . 2012;64:521–553. PubMed

Pradit S., Noppradit P., Sornplang K., et al. Microplastics and Heavy Metals in the Sediment of Songkhla Lagoon: Distribution and Risk Assessment. Frontiers in Marine Science . 2024;10:p. 1292361. doi: 10.3389/fmars.2023.1292361. DOI

Onjefu S. A., Kgabi N. A., Taole S. H. Heavy Metal Seasonal Distribution Inshore Sediment Samples Along the Coastline of Erongo Region, Western Namibia. European Journal of Scientific Research . 2016;139(1):49–63.

Ahmadov M., Humbatov F., Mammadzada S., Balayev V., Ibadov N., Ibrahimov Q. Assessment of Heavy Metal Pollution in Coastal Sediments of the Western Caspian Sea. Environmental Monitoring and Assessment . 2020;192(8):500–518. doi: 10.1007/s10661-020-08401-3. PubMed DOI

Sanz-Prada L., García-Ordiales E., Roqueñí N., Grande Gil J. A., Loredo J. Geochemical Distribution of Selected Heavy Metals in the Asturian Coastline Sediments (North of Spain) Marine Pollution Bulletin . 2020;156:p. 111263. doi: 10.1016/j.marpolbul.2020.111263. PubMed DOI

Barats A., Renac C., Orani A. M., et al. Tracing Source and Mobility of Arsenic and Trace Elements in a Hydro System Impacted by Past Mining Activities (Morelos State, Mexico) Science of the Total Environment . 2020;712:p. 135565. doi: 10.1016/j.scitotenv.2019.135565. PubMed DOI

Turekian K. K., Wedepohl K. H. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin . 1961;72(2):175–192. doi: 10.1130/0016-7606(1961)72[175:doteis]2.0.co;2. DOI

Sutherland R. A., Tolosa C. A. Multi-Element Analysis of Road Deposited Sediment in an Urban Drainage Basin, Honolulu, Hawaii. Environmental Pollution . 2000;110(3):483–495. doi: 10.1016/s0269-7491(99)00311-5. PubMed DOI

Lim H. S., Lee J. S., Chon H. T., Sager M. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of the Abandoned Songcheon Au–Ag Mine in Korea. Journal of Geochemical Exploration . 2008;96(2-3):223–230. doi: 10.1016/j.gexplo.2007.04.008. DOI

Huang Y., Han R., et al. Health Risks of Industrial Wastewater Heavy Metals Based on Improved Grey Water Footprint Model. Journal of Cleaner Production . 2022;377:p. 134472.

Wu S., Peng S., Zhang X., et al. Levels and Health Risk Assessments of Heavy Metals in Urban Soils in Dongguan, China. Journal of Geochemical Exploration . 2015;148:71–78. doi: 10.1016/j.gexplo.2014.08.009. DOI

Suresh G., Ramasamy V., Meenakshisundaram V., Venkatachalapathy R., Ponnusamy V. Influence of Mineralogical and Heavy Metal Composition on Natural Radionuclide Concentrations in the River Sediments. Applied Radiation and Isotopes . 2011;69(10):1466–1474. doi: 10.1016/j.apradiso.2011.05.020. PubMed DOI

Kükrer S., Seker S., Abacı Z. T., Kutlu B. Ecological Risk Assessment of Heavy Metals in Surface Sediments of Northern Littoral Zone of Lake Çıldır, Ardahan, Turkey. Environmental Monitoring and Assessment . 2014;186(6):3847–3857. doi: 10.1007/s10661-014-3662-4. PubMed DOI

Rashid A., Schutte B. J., Ulery A., et al. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy . 2023;13(6):p. 1521. doi: 10.3390/agronomy13061521. DOI

Reimann C., de Caritat P. Establishing Geochemical Background Variation and Threshold Values for 59 Elements in Australian Surface Soil. Science of the Total Environment . 2017;578:633–648. doi: 10.1016/j.scitotenv.2016.11.010. PubMed DOI

Punshon T., Jackson B. P., Meharg A. A., Warczack T., Scheckel K., Guerinot M. L. Understanding Arsenic Dynamics in Agronomic Systems to Predict and Prevent Uptake by Crop Plants. Science of the Total Environment . 2017;581-582:209–220. doi: 10.1016/j.scitotenv.2016.12.111. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...