How eriophyid mites shape metal metabolism in leaf galls on Tilia cordata
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO 60077344
Akademie Věd České Republiky
RVO 67985831
Akademie Věd České Republiky
CA 19116 PlantMetals
European Cooperation in Science and Technology
CALIPSO plus under the Grant Agreement 730872
Horizon 2020 Framework Programme
451-03-65/2024-03/200146
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
451-03-66/2024-03/200146
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
KOROLID, CZ.02.1.01/0.0/0.0/15_003/0000336
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40235337
PubMed Central
PMC12059528
DOI
10.1111/nph.70103
Knihovny.cz E-zdroje
- Klíčová slova
- Mn speciation, Tilia cordata galls, biotic stress, eriophyid mites, metal metabolism, micro‐XANES tomography, micro‐XRF tomography, nutritive tissue,
- MeSH
- kovy * metabolismus MeSH
- listy rostlin * metabolismus parazitologie MeSH
- metabolom MeSH
- nádory rostlin * parazitologie MeSH
- regulace genové exprese u rostlin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kovy * MeSH
Metal metabolism in plant-galler interactions is largely unknown. We hypothesise that the mites manipulate metal distribution by sequestration of excessive levels and differential regulation of metalloproteins to support the main functions of gall-nutrition, protection and microenvironment. Using the Tilia cordata-eriophyid mites system, we aimed to reveal the role of metals in galls by investigating their distribution, speciation, gene expression and metabolome profiling. Complementary spectroscopy techniques (μXRF and μXANES tomographies, electron paramagnetic resonance), histochemical, metabolomic and transcriptomic analyses were employed. Mn was the most abundant micronutrient in the galls. Differential cell-specific Mn accumulation (idioblasts vs nutritive tissue) and speciation are essential for its homeostasis. Mn(II)-aquo complex, co-localised with Ca, sequestered in idioblasts, while Mn bound to stronger ligands including enzymes accumulated in the nutritive tissue. Zn, Cu and Fe predominately accumulated in the nutritive tissue to support intensive metabolic processes such as secondary and lipid metabolism, protein N-glycosylation and redox regulation. The slower rate of redox-sensitive spin probes' decay in the galls indicated a lower amount of antioxidants than in the leaf. We reveal essential functions of micronutrients in the galls, supporting the developmental and chemical changes in the host plant, and the nutrition of the galler.
Deutsches Elektronen Synchrotron DESY 22607 Hamburg Germany
Faculty of Physical Chemistry University of Belgrade 11000 Belgrade Serbia
University of South Bohemia Faculty of Science 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Alejandro S, Höller S, Meier B, Peiter E. 2020. Manganese in plants: from acquisition to subcellular allocation. Frontiers in Plant Science 11: 300. PubMed PMC
Anand PP, Ramani N. 2021. Dynamics of limited neoplastic growth on Pongamia pinnata (L.) (Fabaceae) leaf, induced by Aceria pongamiae (Acari: Eriophyidae). BMC Plant Biology 21: 1–18. PubMed PMC
Andresen E, Peiter E, Küpper H. 2018. Trace metal metabolism in plants. Journal of Experimental Botany 69: 909–954. PubMed
Arriola ÍA, Costa EC, de Oliveira DC, Isaias RMDS. 2024. Soil–plant–gall relationships: from gall development to ecological patterns. Biological Reviews 99: 1948–1975. PubMed
Bagatto G, Shorthouse JD. 1991. Accumulation of copper and nickel in plant tissues and an insect gall of lowbush blueberry, Vaccinium angustifolium, near an ore smelter at Sudbury, Ontario, Canada. Canadian Journal of Botany 69: 1483–1490.
Bagatto G, Shorthouse JD. 1994a. Seasonal acquisition of mineral nutrients by a chalcid gall on lowbush blueberry. Entomologia Experimentalis et Applicata 73: 61–66.
Bagatto G, Shorthouse JD. 1994b. Mineral concentrations within cells of galls induced by Hemadas nubilipennis (Hymenoptera: Pteromalidae) on lowbush blueberry: evidence from cryoanalytical scanning electron microscopy. Canadian Journal of Botany 72: 1387–1390.
Barros J, Dixon RA. 2020. Plant phenylalanine/tyrosine ammonia‐lyases. Trends in Plant Science 25: 66–79. PubMed
Carneiro RGDS, Isaias RMDS. 2015. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects. AoB Plants 7: plv086. PubMed PMC
Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11(2): 113–116.
Chen YE, Yuan S, Schröder WP. 2016. Comparison of methods for extracting thylakoid membranes of Arabidopsis plants. Physiologia Plantarum 156: 3–12. PubMed
Chetverikov PE, Vishyakov AE, Dodueva IT, Osipova MA, Sukhareva SI, Shavarda AL. 2015. Gallogenesis induced by eryophyoid mites (Acariformes: Eriophyoidea). Entomological Review 95: 1137–1143. PubMed
Choudhury R, Beezley J, Davis B, Tomeck J, Gratzl S, Golzarri‐Arroyo L, Wan J, Raftery D, Baumes J, O'Connell TM. 2020. Viime: visualization and integration of metabolomics experiments. Journal of Open Source Software 5: 2410. PubMed PMC
De Lillo E, Pozzebon A, Valenzano D, Duso C. 2018. An intimate relationship between eriophyoid mites and their host plants–a review. Frontiers in Plant Science 9: 1786. PubMed PMC
Demarco D. 2017. Histochemical analysis of plant secretory structures. Histochemistry of Single Molecules: Methods and Protocols 1560: 313–330. PubMed
Fernando DR, Woodrow IE, Baker AJ, Marshall AT. 2012. Plant homeostasis of foliar manganese sinks: specific variation in hyperaccumulators. Planta 236: 1459–1470. PubMed
Ferreira BG, Álvarez R, Bragança GP, Alvarenga DR, Pérez‐Hidalgo N, Isaias RM. 2019. Feeding and other gall facets: patterns and determinants in gall structure. The Botanical Review 85: 78–106.
Ferreira BG, Oliveira DC, Moreira AS, Faria AP, Guedes LM, França MG et al. 2018. Antioxidant metabolism in galls due to the extended phenotypes of the associated organisms. PLoS ONE 13: e0205364. PubMed PMC
Gardner RO. 1975. Vanillin‐hydrochloric acid as a histochemical test for tannin. Stain Technology 50: 315–317. PubMed
Giron D, Huguet E, Stone GN, Body M. 2016. Insect‐induced effects on plants and possible effectors used by galling and leaf‐mining insects to manipulate their host‐plant. Journal of Insect Physiology 84: 70–89. PubMed
Guedes LM, Aguilera N, Ferreira BG, Riquelme S, Sáez‐Carrillo K, Becerra J, Pérez C, Bustos E, Isaias RM. 2019. Spatiotemporal variation in phenolic levels in galls of calophyids on Schinus polygama (Anacardiaceae). Journal of Plant Research 132: 509–520. PubMed
Guedes LM, Sanhueza C, Torres S, Figueroa C, Gavilán E, Pérez CI, Aguilera N. 2023. Gall‐inducing Eriophyes tiliae stimulates the metabolism of Tilia platyphyllos leaves towards oxidative protection. Plant Physiology and Biochemistry 195: 25–36. PubMed
Harris MO, Pitzschke A. 2020. Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytologist 225: 1852–1872. PubMed
He J, Rössner N, Hoang MT, Alejandro S, Peiter E. 2021. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. Plant Physiology 187: 1940–1972. PubMed PMC
Huang MY, Huang WD, Chou HM, Chen CC, Chen PJ, Chang YT, Yang CM. 2015. Structural, biochemical, and physiological characterization of photosynthesis in leaf‐derived cup‐shaped galls on Litsea acuminata . BMC Plant Biology 15: 1–12. PubMed PMC
Ithal N, Recknor J, Nettleton D, Maier T, Baum TJ, Mitchum MG. 2007. Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Molecular Plant–Microbe Interactions 20: 510–525. PubMed
Jiang Y, Ye J, Veromann‐Jürgenson LL, Niinemets Ü. 2021. Gall‐and erineum‐forming Eriophyes mites alter photosynthesis and volatile emissions in an infection severity‐dependent manner in broad‐leaved trees Alnus glutinosa and Tilia cordata . Tree Physiology 41: 1122–1142. PubMed
Kärkönen A, Kuchitsu K. 2015. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112: 22–32. PubMed
Kerpen L, Niccolini L, Licausi F, van Dongen JT, Weits DA. 2019. Hypoxic conditions in crown galls induce plant anaerobic responses that support tumor proliferation. Frontiers in Plant Science 10: 56. PubMed PMC
Koc‐Bilican B. 2024. Linden‐based mucilage biodegradable films: a green perspective on functional and sustainable food packaging. International Journal of Biological Macromolecules 261: 129805. PubMed
Koyama Y, Yao I, Akimoto SI. 2004. Aphid galls accumulate high concentrations of amino acids: a support for the nutrition hypothesis for gall formation. Entomologia Experimentalis et Applicata 113: 35–44.
Küpper H, Benedikty Z, Morina F, Andresen E, Mishra A, Trtílek M. 2019. Analysis of OJIP chlorophyll fluorescence kinetics and QA reoxidation kinetics by direct fast imaging. Plant Physiology 179: 369–381. PubMed PMC
Kuvelja A, Morina F, Mijovilovich A, Bokhari SNH, Konik P, Koloniuk I, Küpper H. 2024. Zinc priming enhances Capsicum annuum immunity against infection by Botrytis cinerea–From the whole plant to the molecular level. Plant Science 343: 112060. PubMed
Larew H. 1981. A comparative anatomical study of galls caused by the major cecidogenetic groups, with special emphasis on the nutritive tissue .
Little D, Gouhier‐Darimont C, Bruessow F, Reymond P. 2007. Oviposition by pierid butterflies triggers defense responses in Arabidopsis. Plant Physiology 143: 784–800. PubMed PMC
Mani MS. 2013. Ecology of plant galls. Dordrecht, the Netherlands: Springer.
Medina C, Da Rocha M, Magliano M, Ratpopoulo A, Revel B, Marteu N, Magnone V, Lebrigand K, Cabrera J, Barcala M et al. 2017. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root‐knot nematode Meloidogyne incognita . New Phytologist 216: 882–896. PubMed
Mijovilovich A, Mishra A, Brückner D, Spiers K, Andresen E, Garrevoet J, Falkenberg G, Küpper H. 2019. MicroX‐ray absorption near edge structure tomography reveals cell‐specific changes of Zn ligands in leaves of turnip yellow mosaic virus infected plants. Spectrochimica Acta Part B: Atomic Spectroscopy 157: 53–62.
Mijovilovich A, Morina F, Bokhari SN, Wolff T, Küpper H. 2020. Analysis of trace metal distribution in plants with lab‐based microscopic X‐ray fluorescence imaging. Plant Methods 16: 1–21. PubMed PMC
Milutinović M, Nakarada Đ, Božunović J, Todorović M, Gašić U, Živković S, Skorić M, Ivković Đ, Savić J, Devrnja N et al. 2023. Solanum dulcamara L. berries: a convenient model system to study redox processes in relation to fruit ripening. Antioxidants 12: 346. PubMed PMC
Mishra S, Wellenreuther G, Mattusch J, Stärk HJ, Küpper H. 2013. Speciation and distribution of arsenic in the non‐hyperaccumulator macrophyte Ceratophyllum demersum L. Plant Physiology 163: 1396–1408. PubMed PMC
Morina F, Jovanovic L, Mojovic M, Vidovic M, Pankovic D, Veljovic Jovanovic S. 2010. Zinc‐induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiologia Plantarum 140: 209–224. PubMed
Morina F, Küpper H. 2022. Trace metals at the frontline of pathogen defence responses in non‐hyperaccumulating plants. Journal of Experimental Botany 73: 6516–6524. PubMed
Morina F, Mijovilovich A, Koloniuk I, Pěnčík A, Grúz J, Novák O, Küpper H. 2021. Interactions between zinc and Phomopsis longicolla infection in roots of Glycine max . Journal of Experimental Botany 72: 3320–3336. PubMed
Nabity PD, Haus MJ, Berenbaum MR, DeLucia EH. 2013. Leaf‐galling phylloxera on grapes reprograms host metabolism and morphology. Proceedings of the National Academy of Sciences, USA 110: 16663–16668. PubMed PMC
Nagashima Y, von Schaewen A, Koiwa H. 2018. Function of N‐glycosylation in plants. Plant Science 274: 70–79. PubMed
Noctor G, Reichheld JP, Foyer CH. 2018. ROS‐related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology 80: 3–12. PubMed
Nyman T, Julkunen‐Tiitto R. 2000. Manipulation of the phenolic chemistry of willows by gall‐inducing sawflies. Proceedings of the National Academy of Sciences, USA 97: 13184–13187. PubMed PMC
Oliveira DC, Isaias RDS, Fernandes GW, Ferreira BG, Carneiro RGS, Fuzaro L. 2016. Manipulation of host plant cells and tissues by gall‐inducing insects and adaptive strategies used by different feeding guilds. Journal of Insect Physiology 84: 103–113. PubMed
Pauly M, Keegstra K. 2016. Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan. Annual Review of Plant Biology 67: 235–259. PubMed
Petanović R, Kielkiewicz M. 2010a. Plant–eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite‐injured plants. Part I. Experimental and Applied Acarology 51: 61–80. PubMed
Petanović R, Kielkiewicz M. 2010b. Plant–eriophyoid mite interactions: specific and unspecific morphological alterations. Part II. Eriophyoid Mites: Progress and Prognoses 51: 81–91. PubMed
Price PW, Fernandes GW, Waring GL. 1987. Adaptive nature of insect galls. Environmental Entomology 16: 15–24.
Raman A. 2011. Morphogenesis of insect‐induced plant galls: facts and questions. Flora‐Morphology, Distribution, Functional Ecology of Plants 206: 517–533.
Ravel B, Newville M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X‐ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation 12: 537–541. PubMed
Robblee JH, Cinco RM, Yachandra VK. 2001. X‐ray spectroscopy‐based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochimica et Biophysica Acta (BBA)‐Bioenergetics 1503: 7–23. PubMed PMC
Rohfritsch O. 1992. Patterns in gall development. In: Shorthouse JD, Rohfritsch O, eds. Biology of insect‐induced galls. Oxford, UK: Oxford University, 60–86.
Stone GN, Schönrogge K. 2003. The adaptive significance of insect gall morphology. Trends in Ecology & Evolution 18: 512–522.
Takeda S, Yoza M, Amano T, Ohshima I, Hirano T, Sato MH, Sakamoto T, Kimura S. 2019. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. PLoS ONE 14: e0223686. PubMed PMC
Tooker JF, Rohr JR, Abrahamson WG, De Moraes CM. 2008. Gall insects can avoid and alter indirect plant defenses. New Phytologist 178: 657–671. PubMed
Trujillo M, Ichimura K, Casais C, Shirasu K. 2008. Negative regulation of PAMP‐triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Current Biology 18: 1396–1401. PubMed
Vojvodić S, Luković JD, Zechmann B, Jevtović M, Pristov JB, Stanić M, Lizzul AM, Pittman JK, Spasojević I. 2020. The effects of ionizing radiation on the structure and antioxidative and metal‐binding capacity of the cell wall of microalga Chlorella sorokiniana . Chemosphere 260: 127553. PubMed
Westphal E, Manson DCM. 1996. 1.4. 6 Feeding effects on host plants: Gall formation and other distortions. In: Lindquist EE, Sabelis MW, Bruin J, eds. World crop pests, vol. 6. Amsterdam, the Netherlands: Elsevier, 231–242.
Winter G, Todd CD, Trovato M, Forlani G, Funck D. 2015. Physiological implications of arginine metabolism in plants. Frontiers in Plant Science 6: 534. PubMed PMC
Yang Y, Benning C. 2018. Functions of triacylglycerols during plant development and stress. Current Opinion in Biotechnology 49: 191–198. PubMed
Zhu W, Richards NG. 2017. Biological functions controlled by manganese redox changes in mononuclear Mn‐dependent enzymes. Essays in Biochemistry 61: 259–270. PubMed
Zorić AS, Morina F, Toševski I, Tosti T, Jović J, Krstić O, Veljović‐Jovanović S. 2019. Resource allocation in response to herbivory and gall formation in Linaria vulgaris . Plant Physiology and Biochemistry 135: 224–232. PubMed