Applying artificial intelligence to rare diseases: a literature review highlighting lessons from Fabry disease

. 2025 Apr 17 ; 20 (1) : 186. [epub] 20250417

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40247315
Odkazy

PubMed 40247315
PubMed Central PMC12007257
DOI 10.1186/s13023-025-03655-x
PII: 10.1186/s13023-025-03655-x
Knihovny.cz E-zdroje

BACKGROUND: Use of artificial intelligence (AI) in rare diseases has grown rapidly in recent years. In this review we have outlined the most common machine-learning and deep-learning methods currently being used to classify and analyse large amounts of data, such as standardized images or specific text in electronic health records. To illustrate how these methods have been adapted or developed for use with rare diseases, we have focused on Fabry disease, an X-linked genetic disorder caused by lysosomal α-galactosidase. A deficiency that can result in multiple organ damage. METHODS: We searched PubMed for articles focusing on AI, rare diseases, and Fabry disease published anytime up to 08 January 2025. Further searches, limited to articles published between 01 January 2021 and 31 December 2023, were also performed using double combinations of keywords related to AI and each organ affected in Fabry disease, and AI and rare diseases. RESULTS: In total, 20 articles on AI and Fabry disease were included. In the rare disease field, AI methods may be applied prospectively to large populations to identify specific patients, or retrospectively to large data sets to diagnose a previously overlooked rare disease. Different AI methods may facilitate Fabry disease diagnosis, help monitor progression in affected organs, and potentially contribute to personalized therapy development. The implementation of AI methods in general healthcare and medical imaging centres may help raise awareness of rare diseases and prompt general practitioners to consider these conditions earlier in the diagnostic pathway, while chatbots and telemedicine may accelerate patient referral to rare disease experts. The use of AI technologies in healthcare may generate specific ethical risks, prompting new AI regulatory frameworks aimed at addressing these issues to be established in Europe and the United States. CONCLUSION: AI-based methods will lead to substantial improvements in the diagnosis and management of rare diseases. The need for a human guarantee of AI is a key issue in pursuing innovation while ensuring that human involvement remains at the centre of patient care during this technological revolution.

Zobrazit více v PubMed

Faviez C, Chen X, Garcelon N, Neuraz A, Knebelmann B, Salomon R, Lyonnet S, Saunier S, Burgun A. Diagnosis support systems for rare diseases: a scoping review. Orphanet J Rare Dis. 2020;15:94. PubMed PMC

Visibelli A, Roncaglia B, Spiga O, Santucci A. The impact of artificial intelligence in the odyssey of rare diseases. Biomedicines. 2023;1:887. PubMed PMC

Wojtara M, Rana E, Rahman T, Khanna P, Singh H. Artificial intelligence in rare disease diagnosis and treatment. Clin Transl Sci. 2023;16:2106–11. PubMed PMC

van Karnebeek CDM, O’Donnell-Luria A, Baynam G, Baudot A, Groza T, Jans JJM, Lassmann T, Letinturier MCV, Montgomery SB, Robinson PN, et al. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J Rare Dis. 2024;19:357. PubMed PMC

Brasil S, Pascoal C, Francisco R, Dos Reis Ferreira V, Videira PA, Valadão AG. Artificial intelligence (AI) in rare diseases: is the future brighter? Genes (Basel). 2019;10:978. PubMed PMC

Cortial L, Montero V, Tourlet S, Del Bano J, Blin O. Artificial intelligence in drug repurposing for rare diseases: a mini-review. Front Med (Lausanne). 2024;11:1404338. PubMed PMC

He D, Wang R, Xu Z, Wang J, Song P, Wang H, Su J. The use of artificial intelligence in the treatment of rare diseases: a scoping review. Intractable Rare Dis Res. 2024;13:12–22. PubMed PMC

Gangwal A, Lavecchia A. AI-Driven drug discovery for rare diseases. J Chem Inf Model. 2024. 10.1021/acs.jcim.4c01966. PubMed

Banerjee J, Taroni JN, Allaway RJ, Prasad DV, Guinney J, Greene C. Machine learning in rare disease. Nat Methods. 2023;20:803–14. PubMed

Schaefer J, Lehne M, Schepers J, Prasser F, Thun S. The use of machine learning in rare diseases: a scoping review. Orphanet J Rare Dis. 2020;15:145. PubMed PMC

Assié G, Allassonnière S. Artificial intelligence in endocrinology: on track toward great opportunities. J Clin Endocrinol Metab. 2024;109:e1462–7. PubMed

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44. PubMed

GeeksforGeeks. https://www.geeksforgeeks.org/. Accessed 23 April 2024.

Data Science: Machine Learning. https://pll.harvard.edu/course/data-science-machine-learning. Accessed 23 April 2024.

Hurvitz N, Azmanov H, Kesler A, Ilan Y. Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur J Hum Genet. 2021;29:1485–90. PubMed PMC

Matsuo Y, LeCun Y, Sahani M, Precup D, Silver D, Sugiyama M, Uchibe E, Morimoto J. Deep learning, reinforcement learning, and world models. Neural Netw. 2022;152:267–75. PubMed

Lee J, Liu C, Kim J, Chen Z, Sun Y, Rogers JR, Chung WK, Weng C. Deep learning for rare disease: a scoping review. J Biomed Inform. 2022;135: 104227. PubMed

Roman-Naranjo P, Parra-Perez AM, Lopez-Escamez JA. A systematic review on machine learning approaches in the diagnosis and prognosis of rare genetic diseases. J Biomed Inform. 2023;143: 104429. PubMed

EC: (European Commission). Regulation (EC) No 141/2000 of the European Parliament and of the Council of 16 December 1999 on orphan medicinal products. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000R0141&from=EN. Accessed on 27 February 2024.

FDA: (Food and Drug Administration). Orphan Drug Act Public Law 97-414. Approved 4 January 1983. Last updated August 2013. https://www.fda.gov/industry/designating-orphan-product-drugs-and-biological-products/orphan-drug-act-relevant-excerpts. Accessed 08 February 2009.

Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, Murphy D, Le Cam Y, Rath A. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet. 2020;28:165–73. PubMed PMC

Baxter MF, Hansen M, Gration D, Groza T, Baynam G. Surfacing undiagnosed disease: consideration, counting and coding. Front Pediatr. 2023;11:1283880. PubMed PMC

Haendel M, Vasilevsky N, Unni D, Bologa C, Harris N, Rehm H, Hamosh A, Baynam G, Groza T, McMurry J, et al. How many rare diseases are there? Nat Rev Drug Discov. 2020;19:77–8. PubMed PMC

Schiffmann R, Kopp JB, Austin HA 3rd, Sabnis S, Moore DF, Weibel T, Balow JE, Brady RO. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285:2743–9. PubMed

Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, Caplan L, Linthorst GE, Desnick RJ. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med. 2001;345:9–16. PubMed

Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, Feliciani C, Shankar SP, Ezgu F, Amartino H, et al. Treatment of Fabry’s Disease with the pharmacologic chaperone migalastat. N Engl J Med. 2016;375:545–55. PubMed

Hughes DA, Nicholls K, Shankar SP, Sunder-Plassmann G, Koeller D, Nedd K, Vockley G, Hamazaki T, Lachmann R, Ohashi T, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54:288–96. PubMed PMC

Ortiz A, Germain DP, Desnick RJ, Politei J, Mauer M, Burlina A, Eng C, Hopkin RJ, Laney D, Linhart A, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123:416–27. PubMed

Germain DP, Altarescu G, Barriales-Villa R, Mignani R, Pawlaczyk K, Pieruzzi F, Terryn W, Vujkovac B, Ortiz A. An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Mol Genet Metab. 2022;137:49–61. PubMed

Rare Diseases. European Commission. https://health.ec.europa.eu/european-reference-networks/rare-diseases en. Accessed 23 April 2024.

Montella A, Tranfa M, Scaravilli A, Barkhof F, Brunetti A, Cole J, Gravina M, Marrone S, Riccio D, Riccio E, et al. Assessing brain involvement in Fabry disease with deep learning and the brain-age paradigm. Hum Brain Mapp. 2024;45: e26599. PubMed PMC

Jefferies JL, Spencer AK, Lau HA, Nelson MW, Giuliano JD, Zabinski JW, Boussios C, Curhan G, Gliklich RE, Warnock DG. A new approach to identifying patients with elevated risk for Fabry disease using a machine learning algorithm. Orphanet J Rare Dis. 2021;16:518. PubMed PMC

Michalski AA, Lis K, Stankiewicz J, Kloska SM, Sycz A, Dudziński M, Muras-Szwedziak K, Nowicki M, Bazan-Socha S, Dabrowski MJ, et al. Supporting the diagnosis of fabry disease using a natural language processing-based approach. J Clin Med. 2023;12:3599. PubMed PMC

Ducatez F, Mauhin W, Boullier A, Pilon C, Pereira T, Aubert R, Benveniste O, Marret S, Lidove O, Bekri S, et al. Parsing fabry disease metabolic plasticity using metabolomics. J Pers Med. 2021;11:898. PubMed PMC

Tebani A, Barbey F, Dormond O, Ducatez F, Marret S, Nowak A, Bekri S. Deep next-generation proteomics and network analysis reveal systemic and tissue-specific patterns in Fabry disease. Transl Res. 2023;258:47–59. PubMed

Tebani A, Mauhin W, Abily-Donval L, Lesueur C, Berger MG, Nadjar Y, Berger J, Benveniste O, Lamari F, Laforêt P, et al. A proteomics-based analysis reveals predictive biological patterns in fabry disease. J Clin Med. 2020;9:1325. PubMed PMC

Kobayashi H, Nakata N, Izuka S, Hongo K, Nishikawa M. Using artificial intelligence and promoter-level transcriptome analysis to identify a biomarker as a possible prognostic predictor of cardiac complications in male patients with Fabry disease. Mol Genet Metab Rep. 2024;41: 101152. PubMed PMC

Gervas-Arruga J, Barba-Romero M, Fernández-Martín JJ, Gómez-Cerezo JF, Segú-Vergés C, Ronzoni G, Cebolla JJ. In silico modeling of Fabry Disease pathophysiology for the identification of early cellular damage biomarker candidates. Int J Mol Sci. 2024;25:10329. PubMed PMC

Marwaha A, Chitayat D, Meyn MS, Mendoza-Londono R, Chad L. The point-of-care use of a facial phenotyping tool in the genetics clinic: enhancing diagnosis and education with machine learning. Am J Med Genet A. 2021;185:1151–8. PubMed

Kruszka P, Tekendo-Ngongang C. Application of facial analysis Technology in Clinical Genetics: considerations for diverse populations. Am J Med Genet C Semin Med Genet. 2023;193: e32059. PubMed

D’Souza A, Ryan E, Sidransky E. Facial features of lysosomal storage disorders. Expert Rev Endocrinol Metab. 2022;17:467–74. PubMed PMC

Goto S, Solanki D, John JE, Yagi R, Homilius M, Ichihara G, Katsumata Y, Gaggin HK, Itabashi Y, MacRae CA, et al. Multinational federated learning approach to train ECG and echocardiogram models for hypertrophic cardiomyopathy detection. Circulation. 2022;146:755–69. PubMed PMC

Augusto JB, Davies RH, Bhuva AN, Knott KD, Seraphim A, Alfarih M, Lau C, Hughes RK, Lopes LR, Shiwani H, et al. Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance. Lancet Digit Health. 2021;3:e20–8. PubMed

Davies RH, Augusto JB, Bhuva A, Xue H, Treibel TA, Ye Y, Hughes RK, Bai W, Lau C, Shiwani H, et al. Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning. J Cardiovasc Magn Reson. 2022;24:16. PubMed PMC

Sammani A, Jansen M, de Vries NM, de Jonge N, Baas AF, Te Riele A, Asselbergs FW, Oerlemans M. Automatic identification of patients with unexplained left ventricular hypertrophy in electronic health record data to improve targeted treatment and family screening. Front Cardiovasc Med. 2022;9: 768847. PubMed PMC

Satriano A, Afzal Y, Sarim Afzal M, Fatehi Hassanabad A, Wu C, Dykstra S, Flewitt J, Feuchter P, Sandonato R, Heydari B, et al. Neural-network-based diagnosis using 3-dimensional myocardial architecture and deformation: demonstration for the differentiation of hypertrophic cardiomyopathy. Front Cardiovasc Med. 2020;7: 584727. PubMed PMC

Yim J, Yau O, Yeung DF, Tsang TSM. Fabry cardiomyopathy: current practice and future directions. Cells. 2021;10:1532. PubMed PMC

Abbasi MA, Akiki E, El-Am EA, Geske JB, Bos JM, Ackerman MJ, Attia ZI, Friedman PA, Siontis KC, Newman DB. Artificial intelligence electrocardiography for the evaluation of cardiac involvement in Fabry disease. Curr Probl Cardiol. 2025;50: 102877. PubMed

Chen WW, Kuo L, Lin YX, Yu WC, Tseng CC, Lin YJ, Huang CC, Chang SL, Wu JC, Chen CK, et al. A deep learning approach to classify fabry cardiomyopathy from hypertrophic cardiomyopathy using cine imaging on cardiac magnetic resonance. Int J Biomed Imaging. 2024;2024:6114826. PubMed PMC

Smerkous D, Mauer M, Tøndel C, Svarstad E, Gubler MC, Nelson RG, Oliveira JP, Sargolzaeiaval F, Najafian B. Development of an automated estimation of foot process width using deep learning in kidney biopsies from patients with Fabry, minimal change, and diabetic kidney diseases. Kidney Int. 2024;105:165–76. PubMed PMC

Germain DP, Levade T, Hachulla E, Knebelmann B, Lacombe D, Seguin VL, Nguyen K, Noël E, Rabès JP. Challenging the traditional approach for interpreting genetic variants: lessons from Fabry disease. Clin Genet. 2022;101:390–402. PubMed PMC

Germain DP, Oliveira JP, Bichet DG, Yoo HW, Hopkin RJ, Lemay R, Politei J, Wanner C, Wilcox WR, Warnock DG. Use of a rare disease registry for establishing phenotypic classification of previously unassigned GLA variants: a consensus classification system by a multispecialty Fabry disease genotype-phenotype workgroup. J Med Genet. 2020;57:542–51. PubMed PMC

Garnier N, Berghout J, Zygmunt A, Singh D, Huang KA, Kantz W, Blankart CR, Gillner S, Zhao J, Roettger R, et al. Genetic newborn screening and digital technologies: a project protocol based on a dual approach to shorten the rare diseases diagnostic path in Europe. PLoS ONE. 2023;18: e0293503. PubMed PMC

Bastarache L, Hughey JJ, Hebbring S, Marlo J, Zhao W, Ho WT, Van Driest SL, McGregor TL, Mosley JD, Wells QS, et al. Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science. 2018;359:1233–9. PubMed PMC

Garcelon N, Neuraz A, Benoit V, Salomon R, Kracker S, Suarez F, Bahi-Buisson N, Hadj-Rabia S, Fischer A, Munnich A, et al. Finding patients using similarity measures in a rare diseases-oriented clinical data warehouse: Dr. Warehouse and the needle in the needle stack. J Biomed Inform. 2017;73:51–61. PubMed

Yang J, Liu C, Deng W, Wu D, Weng C, Zhou Y, Wang K. Enhancing phenotype recognition in clinical notes using large language models: PhenoBCBERT and PhenoGPT. Patterns (N Y). 2024;5: 100887. PubMed PMC

Shyr C, Hu Y, Bastarache L, Cheng A, Hamid R, Harris P, Xu H. Identifying and extracting rare diseases and their phenotypes with large language models. J Healthc Inform Res. 2024. 10.1007/s41666-023-00155-0. PubMed PMC

De La Vega FM, Chowdhury S, Moore B, Frise E, McCarthy J, Hernandez EJ, Wong T, James K, Guidugli L, Agrawal PB, et al. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med. 2021;13:153. PubMed PMC

Qi H, Zhang H, Zhao Y, Chen C, Long JJ, Chung WK, Guan Y, Shen Y. MVP predicts the pathogenicity of missense variants by deep learning. Nat Commun. 2021;12:510. PubMed PMC

Hennocq Q, Bongibault T, Marlin S, Amiel J, Attie-Bitach T, Baujat G, Boutaud L, Carpentier G, Corre P, Denoyelle F, et al. AI-based diagnosis in mandibulofacial dysostosis with microcephaly using external ear shapes. Front Pediatr. 2023;11:1171277. PubMed PMC

Hennocq Q, Willems M, Amiel J, Arpin S, Attie-Bitach T, Bongibault T, Bouygues T, Cormier-Daire V, Corre P, Dieterich K, et al. Next generation phenotyping for diagnosis and phenotype-genotype correlations in Kabuki syndrome. Sci Rep. 2024;14:2330. PubMed PMC

Vitale G, Ditaranto R, Graziani F, Tanini I, Camporeale A, Lillo R, Rubino M, Panaioli E, Di Nicola F, Ferrara V, et al. Standard ECG for differential diagnosis between Anderson-Fabry disease and hypertrophic cardiomyopathy. Heart. 2022;108:54–60. PubMed

El Sayed M, Postema PG, Datema M, van Dussen L, Kors JA, Ter Haar CC, Bleijendaal H, Galenkamp H, van den Born BH, Hollak CEM, et al. ECG changes during adult life in fabry disease: results from a large longitudinal cohort study. Diagnostics (Basel). 2023;13:354. PubMed PMC

Rauschecker AM, Rudie JD, Xie L, Wang J, Duong MT, Botzolakis EJ, Kovalovich AM, Egan J, Cook TC, Bryan RN, et al. Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology. 2020;295:626–37. PubMed PMC

Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103:167–75. PubMed PMC

Müller PL, Odainic A, Treis T, Herrmann P, Tufail A, Holz FG, Pfau M. Inferred retinal sensitivity in recessive Stargardt disease using machine learning. Sci Rep. 2021;11:1466. PubMed PMC

Hong J, Yoon S, Shim KW, Park YR. Screening of moyamoya disease from retinal photographs: development and validation of deep learning algorithms. Stroke. 2024;55:715–24. PubMed PMC

Korot E, Pontikos N, Liu X, Wagner SK, Faes L, Huemer J, Balaskas K, Denniston AK, Khawaja A, Keane PA. Predicting sex from retinal fundus photographs using automated deep learning. Sci Rep. 2021;11:10286. PubMed PMC

You E, Lin V, Mijovic T, Eskander A, Crowson MG. Artificial intelligence applications in otology: a state of the art review. Otolaryngol Head Neck Surg. 2020;163:1123–33. PubMed

Wasmann JW, Pragt L, Eikelboom R, Swanepoel W. Digital approaches to automated and machine learning assessments of hearing: scoping review. J Med Internet Res. 2022;24: e32581. PubMed PMC

Doborjeh M, Liu X, Doborjeh Z, Shen Y, Searchfield G, Sanders P, Wang GY, Sumich A, Yan WQ. Prediction of tinnitus treatment outcomes based on EEG sensors and TFI score using deep learning. Sensors (Basel). 2023;23:902. PubMed PMC

UdriȘtoiu AL, Stanca AE, Ghenea AE, Vasile CM, Popescu M, UdriȘtoiu ȘC, Iacob AV, Castravete S, Gruionu LG, Gruionu G. Skin diseases classification using deep leaning methods. Curr Health Sci J. 2020;46:136–40. PubMed PMC

Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med. 2022;28:1773–84. PubMed

The Project. Screen4Care. https://screen4care.eu/. Accessed 23 April 2024.

Germain DP, Fouilhoux A, Decramer S, Tardieu M, Pillet P, Fila M, Rivera S, Deschênes G, Lacombe D. Consensus recommendations for diagnosis, management and treatment of Fabry disease in paediatric patients. Clin Genet. 2019;96:107–17. PubMed PMC

Gragnaniello V, Burlina AP, Polo G, Giuliani A, Salviati L, Duro G, Cazzorla C, Rubert L, Maines E, Germain DP, et al. Newborn screening for fabry disease in northeastern italy: results of five years of experience. Biomolecules. 2021;11:951. PubMed PMC

Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008;83:610–5. PubMed PMC

Gargano MA, Matentzoglu N, Coleman B, Addo-Lartey EB, Anagnostopoulos AV, Anderton J, Avillach P, Bagley AM, Bakštein E, Balhoff JP, et al. The human phenotype ontology in 2024: phenotypes around the world. Nucleic Acids Res. 2024;52:D1333-d1346. PubMed PMC

The value of SNOMED CT. https://www.snomed.org/value-of-snomedct. Accessed 23 April 2024.

Vincent M, Douillet M, Lerner I, Neuraz A, Burgun A, Garcelon N. Using deep learning to improve phenotyping from clinical reports. Stud Health Technol Inform. 2022;290:282–6. PubMed

Udupa P, Ghosh DK. Implementation of exome sequencing to identify rare genetic diseases. Methods Mol Biol. 2024;2719:79–98. PubMed

Turro E, Astle WJ, Megy K, Gräf S, Greene D, Shamardina O, Allen HL, Sanchis-Juan A, Frontini M, Thys C, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 2020;583:96–102. PubMed PMC

Lin Q, Tam PK, Tang CS. Artificial intelligence-based approaches for the detection and prioritization of genomic mutations in congenital surgical diseases. Front Pediatr. 2023;11:1203289. PubMed PMC

Hart TC, Hart PS. Genetic studies of craniofacial anomalies: clinical implications and applications. Orthod Craniofac Res. 2009;12:212–20. PubMed PMC

Qiang J, Wu D, Du H, Zhu H, Chen S, Pan H. Review on facial-recognition-based applications in disease diagnosis. Bioengineering (Basel). 2022;9:273. PubMed PMC

Cox-Brinkman J, Vedder A, Hollak C, Richfield L, Mehta A, Orteu K, Wijburg F, Hammond P. Three-dimensional face shape in Fabry disease. Eur J Hum Genet. 2007;15:535–42. PubMed

Germain DP, Elliott PM, Falissard B, Fomin VV, Hilz MJ, Jovanovic A, Kantola I, Linhart A, Mignani R, Namdar M, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: a systematic literature review by a European panel of experts. Mol Genet Metab Rep. 2019;19: 100454. PubMed PMC

Namdar M, Richardot P, Johner N, Shah D, Nordbeck P, Olivotto I, Macfarlane P. Recognition of pre-hypertrophic cardiac involvement in Fabry Disease based on automated electrocardiographic measures. Int J Cardiol. 2021;338:121–6. PubMed

Germain DP, Avan P, Chassaing A, Bonfils P. Patients affected with Fabry disease have an increased incidence of progressive hearing loss and sudden deafness: an investigation of twenty-two hemizygous male patients. BMC Med Genet. 2002;3:10. PubMed PMC

Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30. PubMed PMC

Garbade SF, Zielonka M, Komatsuzaki S, Kölker S, Hoffmann GF, Hinderhofer K, Mountford WK, Mengel E, Sláma T, Mechler K, et al. Quantitative retrospective natural history modeling for orphan drug development. J Inherit Metab Dis. 2021;44:99–109. PubMed

OMIM. https://www.omim.org/ Accessed 19 January 2025..

Orphanet. https://www.orpha.net/fr Accessed 26 April 2024.

Genereviews®-NCBI bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK1116/ Accessed 26 April 2024.

Duong D, Johny AR, Ledgister Hanchard S, Fortney C, Flaharty K, Hellmann F, Hu P, Javanmardi B, Moosa S, Patel T, et al. Comparison of clinical geneticist and computer visual attention in assessing genetic conditions. PLoS Genet. 2024;20: e1011168. PubMed PMC

Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov. 2024;19:33–42. PubMed

Sharma A, Badea M, Tiwari S, Marty JL. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules. 2021;26:748. PubMed PMC

Poleur M, Markati T, Servais L. The use of digital outcome measures in clinical trials in rare neurological diseases: a systematic literature review. Orphanet J Rare Dis. 2023;18:224. PubMed PMC

Hsieh TC, Bar-Haim A, Moosa S, Ehmke N, Gripp KW, Pantel JT, Danyel M, Mensah MA, Horn D, Rosnev S, et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nat Genet. 2022;54:349–57. PubMed PMC

Hasani N, Farhadi F, Morris MA, Nikpanah M, Rhamim A, Xu Y, Pariser A, Collins MT, Summers RM, Jones E, et al. Artificial Intelligence in medical imaging and its impact on the rare disease community: threats. Chall Oppor PET Clin. 2022;17:13–29. PubMed PMC

Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20:310. PubMed PMC

Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, et al. Economics of artificial intelligence in healthcare: diagnosis vs treatment. Healthcare (Basel). 2022;10:2493. PubMed PMC

Diabeloop. https://www.diabeloop.fr/ Accessed 30 April 2024.

Resilience care https://www.resilience.care/ Accessed 30 April 2024.

Garcelon N, Neuraz A, Salomon R, Faour H, Benoit V, Delapalme A, Munnich A, Burgun A, Rance B. A clinician friendly data warehouse oriented toward narrative reports: Dr Warehouse. J Biomed Inform. 2018;80:52–63. PubMed

Garcelon N, Burgun A, Salomon R, Neuraz A. Electronic health records for the diagnosis of rare diseases. Kidney Int. 2020;97:676–86. PubMed

Li LT, Haley LC, Boyd AK, Bernstam EV. Technical/Algorithm, Stakeholder, and Society (TASS) barriers to the application of artificial intelligence in medicine: a systematic review. J Biomed Inform. 2023;147: 104531. PubMed

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56. PubMed

Gruson D. Positive ethical regulation of digital technology in care plan. Soins. 2020;65:41–5. PubMed

Gruson D. Ethics and artificial intelligence in healthcare, towards positive regulation. Soins. 2019;64:54–7. PubMed

La Garantie Humaine [human guarantee of artificial intelligence]. https://www.ethik-ia.fr/about-pages/la-garantie-humaine. Accessed 23 April 2024.

Article 17. https://www.legifrance.gouv.fr/jorf/article_jo/JORFARTI000043884399. Accessed 23 April 2024.

The White House. https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/. Accessed on 23 April 2024.

World Health Organization. WHO releases AI ethics and governance guidance for large multi-modal models. https://www.who.int/news/item/18-01-2024-who-releases-ai-ethics-and-governance-guidance-for-large-multi-modal-models. Accessed on 23 April 2024.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...