Applying artificial intelligence to rare diseases: a literature review highlighting lessons from Fabry disease
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40247315
PubMed Central
PMC12007257
DOI
10.1186/s13023-025-03655-x
PII: 10.1186/s13023-025-03655-x
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial intelligence, Deep learning, Fabry disease, Machine learning, Rare diseases,
- MeSH
- Fabryho nemoc * diagnóza MeSH
- lidé MeSH
- umělá inteligence * MeSH
- vzácné nemoci * diagnóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Use of artificial intelligence (AI) in rare diseases has grown rapidly in recent years. In this review we have outlined the most common machine-learning and deep-learning methods currently being used to classify and analyse large amounts of data, such as standardized images or specific text in electronic health records. To illustrate how these methods have been adapted or developed for use with rare diseases, we have focused on Fabry disease, an X-linked genetic disorder caused by lysosomal α-galactosidase. A deficiency that can result in multiple organ damage. METHODS: We searched PubMed for articles focusing on AI, rare diseases, and Fabry disease published anytime up to 08 January 2025. Further searches, limited to articles published between 01 January 2021 and 31 December 2023, were also performed using double combinations of keywords related to AI and each organ affected in Fabry disease, and AI and rare diseases. RESULTS: In total, 20 articles on AI and Fabry disease were included. In the rare disease field, AI methods may be applied prospectively to large populations to identify specific patients, or retrospectively to large data sets to diagnose a previously overlooked rare disease. Different AI methods may facilitate Fabry disease diagnosis, help monitor progression in affected organs, and potentially contribute to personalized therapy development. The implementation of AI methods in general healthcare and medical imaging centres may help raise awareness of rare diseases and prompt general practitioners to consider these conditions earlier in the diagnostic pathway, while chatbots and telemedicine may accelerate patient referral to rare disease experts. The use of AI technologies in healthcare may generate specific ethical risks, prompting new AI regulatory frameworks aimed at addressing these issues to be established in Europe and the United States. CONCLUSION: AI-based methods will lead to substantial improvements in the diagnosis and management of rare diseases. The need for a human guarantee of AI is a key issue in pursuing innovation while ensuring that human involvement remains at the centre of patient care during this technological revolution.
1st Faculty of Medicine Charles University Prague Czech Republic
Ethik IA PariSanté Campus 10 Rue Oradour Sur Glane 75015 Paris France
Imagine Institute Data Science Platform INSERM UMR 1163 Université de Paris 75015 Paris France
Zobrazit více v PubMed
Faviez C, Chen X, Garcelon N, Neuraz A, Knebelmann B, Salomon R, Lyonnet S, Saunier S, Burgun A. Diagnosis support systems for rare diseases: a scoping review. Orphanet J Rare Dis. 2020;15:94. PubMed PMC
Visibelli A, Roncaglia B, Spiga O, Santucci A. The impact of artificial intelligence in the odyssey of rare diseases. Biomedicines. 2023;1:887. PubMed PMC
Wojtara M, Rana E, Rahman T, Khanna P, Singh H. Artificial intelligence in rare disease diagnosis and treatment. Clin Transl Sci. 2023;16:2106–11. PubMed PMC
van Karnebeek CDM, O’Donnell-Luria A, Baynam G, Baudot A, Groza T, Jans JJM, Lassmann T, Letinturier MCV, Montgomery SB, Robinson PN, et al. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J Rare Dis. 2024;19:357. PubMed PMC
Brasil S, Pascoal C, Francisco R, Dos Reis Ferreira V, Videira PA, Valadão AG. Artificial intelligence (AI) in rare diseases: is the future brighter? Genes (Basel). 2019;10:978. PubMed PMC
Cortial L, Montero V, Tourlet S, Del Bano J, Blin O. Artificial intelligence in drug repurposing for rare diseases: a mini-review. Front Med (Lausanne). 2024;11:1404338. PubMed PMC
He D, Wang R, Xu Z, Wang J, Song P, Wang H, Su J. The use of artificial intelligence in the treatment of rare diseases: a scoping review. Intractable Rare Dis Res. 2024;13:12–22. PubMed PMC
Gangwal A, Lavecchia A. AI-Driven drug discovery for rare diseases. J Chem Inf Model. 2024. 10.1021/acs.jcim.4c01966. PubMed
Banerjee J, Taroni JN, Allaway RJ, Prasad DV, Guinney J, Greene C. Machine learning in rare disease. Nat Methods. 2023;20:803–14. PubMed
Schaefer J, Lehne M, Schepers J, Prasser F, Thun S. The use of machine learning in rare diseases: a scoping review. Orphanet J Rare Dis. 2020;15:145. PubMed PMC
Assié G, Allassonnière S. Artificial intelligence in endocrinology: on track toward great opportunities. J Clin Endocrinol Metab. 2024;109:e1462–7. PubMed
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44. PubMed
GeeksforGeeks. https://www.geeksforgeeks.org/. Accessed 23 April 2024.
Data Science: Machine Learning. https://pll.harvard.edu/course/data-science-machine-learning. Accessed 23 April 2024.
Hurvitz N, Azmanov H, Kesler A, Ilan Y. Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur J Hum Genet. 2021;29:1485–90. PubMed PMC
Matsuo Y, LeCun Y, Sahani M, Precup D, Silver D, Sugiyama M, Uchibe E, Morimoto J. Deep learning, reinforcement learning, and world models. Neural Netw. 2022;152:267–75. PubMed
Lee J, Liu C, Kim J, Chen Z, Sun Y, Rogers JR, Chung WK, Weng C. Deep learning for rare disease: a scoping review. J Biomed Inform. 2022;135: 104227. PubMed
Roman-Naranjo P, Parra-Perez AM, Lopez-Escamez JA. A systematic review on machine learning approaches in the diagnosis and prognosis of rare genetic diseases. J Biomed Inform. 2023;143: 104429. PubMed
EC: (European Commission). Regulation (EC) No 141/2000 of the European Parliament and of the Council of 16 December 1999 on orphan medicinal products. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000R0141&from=EN. Accessed on 27 February 2024.
FDA: (Food and Drug Administration). Orphan Drug Act Public Law 97-414. Approved 4 January 1983. Last updated August 2013. https://www.fda.gov/industry/designating-orphan-product-drugs-and-biological-products/orphan-drug-act-relevant-excerpts. Accessed 08 February 2009.
Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, Murphy D, Le Cam Y, Rath A. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet. 2020;28:165–73. PubMed PMC
Baxter MF, Hansen M, Gration D, Groza T, Baynam G. Surfacing undiagnosed disease: consideration, counting and coding. Front Pediatr. 2023;11:1283880. PubMed PMC
Haendel M, Vasilevsky N, Unni D, Bologa C, Harris N, Rehm H, Hamosh A, Baynam G, Groza T, McMurry J, et al. How many rare diseases are there? Nat Rev Drug Discov. 2020;19:77–8. PubMed PMC
Schiffmann R, Kopp JB, Austin HA 3rd, Sabnis S, Moore DF, Weibel T, Balow JE, Brady RO. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA. 2001;285:2743–9. PubMed
Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, Caplan L, Linthorst GE, Desnick RJ. Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med. 2001;345:9–16. PubMed
Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, Feliciani C, Shankar SP, Ezgu F, Amartino H, et al. Treatment of Fabry’s Disease with the pharmacologic chaperone migalastat. N Engl J Med. 2016;375:545–55. PubMed
Hughes DA, Nicholls K, Shankar SP, Sunder-Plassmann G, Koeller D, Nedd K, Vockley G, Hamazaki T, Lachmann R, Ohashi T, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet. 2017;54:288–96. PubMed PMC
Ortiz A, Germain DP, Desnick RJ, Politei J, Mauer M, Burlina A, Eng C, Hopkin RJ, Laney D, Linhart A, et al. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol Genet Metab. 2018;123:416–27. PubMed
Germain DP, Altarescu G, Barriales-Villa R, Mignani R, Pawlaczyk K, Pieruzzi F, Terryn W, Vujkovac B, Ortiz A. An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease. Mol Genet Metab. 2022;137:49–61. PubMed
Rare Diseases. European Commission. https://health.ec.europa.eu/european-reference-networks/rare-diseases en. Accessed 23 April 2024.
Montella A, Tranfa M, Scaravilli A, Barkhof F, Brunetti A, Cole J, Gravina M, Marrone S, Riccio D, Riccio E, et al. Assessing brain involvement in Fabry disease with deep learning and the brain-age paradigm. Hum Brain Mapp. 2024;45: e26599. PubMed PMC
Jefferies JL, Spencer AK, Lau HA, Nelson MW, Giuliano JD, Zabinski JW, Boussios C, Curhan G, Gliklich RE, Warnock DG. A new approach to identifying patients with elevated risk for Fabry disease using a machine learning algorithm. Orphanet J Rare Dis. 2021;16:518. PubMed PMC
Michalski AA, Lis K, Stankiewicz J, Kloska SM, Sycz A, Dudziński M, Muras-Szwedziak K, Nowicki M, Bazan-Socha S, Dabrowski MJ, et al. Supporting the diagnosis of fabry disease using a natural language processing-based approach. J Clin Med. 2023;12:3599. PubMed PMC
Ducatez F, Mauhin W, Boullier A, Pilon C, Pereira T, Aubert R, Benveniste O, Marret S, Lidove O, Bekri S, et al. Parsing fabry disease metabolic plasticity using metabolomics. J Pers Med. 2021;11:898. PubMed PMC
Tebani A, Barbey F, Dormond O, Ducatez F, Marret S, Nowak A, Bekri S. Deep next-generation proteomics and network analysis reveal systemic and tissue-specific patterns in Fabry disease. Transl Res. 2023;258:47–59. PubMed
Tebani A, Mauhin W, Abily-Donval L, Lesueur C, Berger MG, Nadjar Y, Berger J, Benveniste O, Lamari F, Laforêt P, et al. A proteomics-based analysis reveals predictive biological patterns in fabry disease. J Clin Med. 2020;9:1325. PubMed PMC
Kobayashi H, Nakata N, Izuka S, Hongo K, Nishikawa M. Using artificial intelligence and promoter-level transcriptome analysis to identify a biomarker as a possible prognostic predictor of cardiac complications in male patients with Fabry disease. Mol Genet Metab Rep. 2024;41: 101152. PubMed PMC
Gervas-Arruga J, Barba-Romero M, Fernández-Martín JJ, Gómez-Cerezo JF, Segú-Vergés C, Ronzoni G, Cebolla JJ. In silico modeling of Fabry Disease pathophysiology for the identification of early cellular damage biomarker candidates. Int J Mol Sci. 2024;25:10329. PubMed PMC
Marwaha A, Chitayat D, Meyn MS, Mendoza-Londono R, Chad L. The point-of-care use of a facial phenotyping tool in the genetics clinic: enhancing diagnosis and education with machine learning. Am J Med Genet A. 2021;185:1151–8. PubMed
Kruszka P, Tekendo-Ngongang C. Application of facial analysis Technology in Clinical Genetics: considerations for diverse populations. Am J Med Genet C Semin Med Genet. 2023;193: e32059. PubMed
D’Souza A, Ryan E, Sidransky E. Facial features of lysosomal storage disorders. Expert Rev Endocrinol Metab. 2022;17:467–74. PubMed PMC
Goto S, Solanki D, John JE, Yagi R, Homilius M, Ichihara G, Katsumata Y, Gaggin HK, Itabashi Y, MacRae CA, et al. Multinational federated learning approach to train ECG and echocardiogram models for hypertrophic cardiomyopathy detection. Circulation. 2022;146:755–69. PubMed PMC
Augusto JB, Davies RH, Bhuva AN, Knott KD, Seraphim A, Alfarih M, Lau C, Hughes RK, Lopes LR, Shiwani H, et al. Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance. Lancet Digit Health. 2021;3:e20–8. PubMed
Davies RH, Augusto JB, Bhuva A, Xue H, Treibel TA, Ye Y, Hughes RK, Bai W, Lau C, Shiwani H, et al. Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning. J Cardiovasc Magn Reson. 2022;24:16. PubMed PMC
Sammani A, Jansen M, de Vries NM, de Jonge N, Baas AF, Te Riele A, Asselbergs FW, Oerlemans M. Automatic identification of patients with unexplained left ventricular hypertrophy in electronic health record data to improve targeted treatment and family screening. Front Cardiovasc Med. 2022;9: 768847. PubMed PMC
Satriano A, Afzal Y, Sarim Afzal M, Fatehi Hassanabad A, Wu C, Dykstra S, Flewitt J, Feuchter P, Sandonato R, Heydari B, et al. Neural-network-based diagnosis using 3-dimensional myocardial architecture and deformation: demonstration for the differentiation of hypertrophic cardiomyopathy. Front Cardiovasc Med. 2020;7: 584727. PubMed PMC
Yim J, Yau O, Yeung DF, Tsang TSM. Fabry cardiomyopathy: current practice and future directions. Cells. 2021;10:1532. PubMed PMC
Abbasi MA, Akiki E, El-Am EA, Geske JB, Bos JM, Ackerman MJ, Attia ZI, Friedman PA, Siontis KC, Newman DB. Artificial intelligence electrocardiography for the evaluation of cardiac involvement in Fabry disease. Curr Probl Cardiol. 2025;50: 102877. PubMed
Chen WW, Kuo L, Lin YX, Yu WC, Tseng CC, Lin YJ, Huang CC, Chang SL, Wu JC, Chen CK, et al. A deep learning approach to classify fabry cardiomyopathy from hypertrophic cardiomyopathy using cine imaging on cardiac magnetic resonance. Int J Biomed Imaging. 2024;2024:6114826. PubMed PMC
Smerkous D, Mauer M, Tøndel C, Svarstad E, Gubler MC, Nelson RG, Oliveira JP, Sargolzaeiaval F, Najafian B. Development of an automated estimation of foot process width using deep learning in kidney biopsies from patients with Fabry, minimal change, and diabetic kidney diseases. Kidney Int. 2024;105:165–76. PubMed PMC
Germain DP, Levade T, Hachulla E, Knebelmann B, Lacombe D, Seguin VL, Nguyen K, Noël E, Rabès JP. Challenging the traditional approach for interpreting genetic variants: lessons from Fabry disease. Clin Genet. 2022;101:390–402. PubMed PMC
Germain DP, Oliveira JP, Bichet DG, Yoo HW, Hopkin RJ, Lemay R, Politei J, Wanner C, Wilcox WR, Warnock DG. Use of a rare disease registry for establishing phenotypic classification of previously unassigned GLA variants: a consensus classification system by a multispecialty Fabry disease genotype-phenotype workgroup. J Med Genet. 2020;57:542–51. PubMed PMC
Garnier N, Berghout J, Zygmunt A, Singh D, Huang KA, Kantz W, Blankart CR, Gillner S, Zhao J, Roettger R, et al. Genetic newborn screening and digital technologies: a project protocol based on a dual approach to shorten the rare diseases diagnostic path in Europe. PLoS ONE. 2023;18: e0293503. PubMed PMC
Bastarache L, Hughey JJ, Hebbring S, Marlo J, Zhao W, Ho WT, Van Driest SL, McGregor TL, Mosley JD, Wells QS, et al. Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science. 2018;359:1233–9. PubMed PMC
Garcelon N, Neuraz A, Benoit V, Salomon R, Kracker S, Suarez F, Bahi-Buisson N, Hadj-Rabia S, Fischer A, Munnich A, et al. Finding patients using similarity measures in a rare diseases-oriented clinical data warehouse: Dr. Warehouse and the needle in the needle stack. J Biomed Inform. 2017;73:51–61. PubMed
Yang J, Liu C, Deng W, Wu D, Weng C, Zhou Y, Wang K. Enhancing phenotype recognition in clinical notes using large language models: PhenoBCBERT and PhenoGPT. Patterns (N Y). 2024;5: 100887. PubMed PMC
Shyr C, Hu Y, Bastarache L, Cheng A, Hamid R, Harris P, Xu H. Identifying and extracting rare diseases and their phenotypes with large language models. J Healthc Inform Res. 2024. 10.1007/s41666-023-00155-0. PubMed PMC
De La Vega FM, Chowdhury S, Moore B, Frise E, McCarthy J, Hernandez EJ, Wong T, James K, Guidugli L, Agrawal PB, et al. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med. 2021;13:153. PubMed PMC
Qi H, Zhang H, Zhao Y, Chen C, Long JJ, Chung WK, Guan Y, Shen Y. MVP predicts the pathogenicity of missense variants by deep learning. Nat Commun. 2021;12:510. PubMed PMC
Hennocq Q, Bongibault T, Marlin S, Amiel J, Attie-Bitach T, Baujat G, Boutaud L, Carpentier G, Corre P, Denoyelle F, et al. AI-based diagnosis in mandibulofacial dysostosis with microcephaly using external ear shapes. Front Pediatr. 2023;11:1171277. PubMed PMC
Hennocq Q, Willems M, Amiel J, Arpin S, Attie-Bitach T, Bongibault T, Bouygues T, Cormier-Daire V, Corre P, Dieterich K, et al. Next generation phenotyping for diagnosis and phenotype-genotype correlations in Kabuki syndrome. Sci Rep. 2024;14:2330. PubMed PMC
Vitale G, Ditaranto R, Graziani F, Tanini I, Camporeale A, Lillo R, Rubino M, Panaioli E, Di Nicola F, Ferrara V, et al. Standard ECG for differential diagnosis between Anderson-Fabry disease and hypertrophic cardiomyopathy. Heart. 2022;108:54–60. PubMed
El Sayed M, Postema PG, Datema M, van Dussen L, Kors JA, Ter Haar CC, Bleijendaal H, Galenkamp H, van den Born BH, Hollak CEM, et al. ECG changes during adult life in fabry disease: results from a large longitudinal cohort study. Diagnostics (Basel). 2023;13:354. PubMed PMC
Rauschecker AM, Rudie JD, Xie L, Wang J, Duong MT, Botzolakis EJ, Kovalovich AM, Egan J, Cook TC, Bryan RN, et al. Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology. 2020;295:626–37. PubMed PMC
Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103:167–75. PubMed PMC
Müller PL, Odainic A, Treis T, Herrmann P, Tufail A, Holz FG, Pfau M. Inferred retinal sensitivity in recessive Stargardt disease using machine learning. Sci Rep. 2021;11:1466. PubMed PMC
Hong J, Yoon S, Shim KW, Park YR. Screening of moyamoya disease from retinal photographs: development and validation of deep learning algorithms. Stroke. 2024;55:715–24. PubMed PMC
Korot E, Pontikos N, Liu X, Wagner SK, Faes L, Huemer J, Balaskas K, Denniston AK, Khawaja A, Keane PA. Predicting sex from retinal fundus photographs using automated deep learning. Sci Rep. 2021;11:10286. PubMed PMC
You E, Lin V, Mijovic T, Eskander A, Crowson MG. Artificial intelligence applications in otology: a state of the art review. Otolaryngol Head Neck Surg. 2020;163:1123–33. PubMed
Wasmann JW, Pragt L, Eikelboom R, Swanepoel W. Digital approaches to automated and machine learning assessments of hearing: scoping review. J Med Internet Res. 2022;24: e32581. PubMed PMC
Doborjeh M, Liu X, Doborjeh Z, Shen Y, Searchfield G, Sanders P, Wang GY, Sumich A, Yan WQ. Prediction of tinnitus treatment outcomes based on EEG sensors and TFI score using deep learning. Sensors (Basel). 2023;23:902. PubMed PMC
UdriȘtoiu AL, Stanca AE, Ghenea AE, Vasile CM, Popescu M, UdriȘtoiu ȘC, Iacob AV, Castravete S, Gruionu LG, Gruionu G. Skin diseases classification using deep leaning methods. Curr Health Sci J. 2020;46:136–40. PubMed PMC
Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med. 2022;28:1773–84. PubMed
The Project. Screen4Care. https://screen4care.eu/. Accessed 23 April 2024.
Germain DP, Fouilhoux A, Decramer S, Tardieu M, Pillet P, Fila M, Rivera S, Deschênes G, Lacombe D. Consensus recommendations for diagnosis, management and treatment of Fabry disease in paediatric patients. Clin Genet. 2019;96:107–17. PubMed PMC
Gragnaniello V, Burlina AP, Polo G, Giuliani A, Salviati L, Duro G, Cazzorla C, Rubert L, Maines E, Germain DP, et al. Newborn screening for fabry disease in northeastern italy: results of five years of experience. Biomolecules. 2021;11:951. PubMed PMC
Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008;83:610–5. PubMed PMC
Gargano MA, Matentzoglu N, Coleman B, Addo-Lartey EB, Anagnostopoulos AV, Anderton J, Avillach P, Bagley AM, Bakštein E, Balhoff JP, et al. The human phenotype ontology in 2024: phenotypes around the world. Nucleic Acids Res. 2024;52:D1333-d1346. PubMed PMC
The value of SNOMED CT. https://www.snomed.org/value-of-snomedct. Accessed 23 April 2024.
Vincent M, Douillet M, Lerner I, Neuraz A, Burgun A, Garcelon N. Using deep learning to improve phenotyping from clinical reports. Stud Health Technol Inform. 2022;290:282–6. PubMed
Udupa P, Ghosh DK. Implementation of exome sequencing to identify rare genetic diseases. Methods Mol Biol. 2024;2719:79–98. PubMed
Turro E, Astle WJ, Megy K, Gräf S, Greene D, Shamardina O, Allen HL, Sanchis-Juan A, Frontini M, Thys C, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 2020;583:96–102. PubMed PMC
Lin Q, Tam PK, Tang CS. Artificial intelligence-based approaches for the detection and prioritization of genomic mutations in congenital surgical diseases. Front Pediatr. 2023;11:1203289. PubMed PMC
Hart TC, Hart PS. Genetic studies of craniofacial anomalies: clinical implications and applications. Orthod Craniofac Res. 2009;12:212–20. PubMed PMC
Qiang J, Wu D, Du H, Zhu H, Chen S, Pan H. Review on facial-recognition-based applications in disease diagnosis. Bioengineering (Basel). 2022;9:273. PubMed PMC
Cox-Brinkman J, Vedder A, Hollak C, Richfield L, Mehta A, Orteu K, Wijburg F, Hammond P. Three-dimensional face shape in Fabry disease. Eur J Hum Genet. 2007;15:535–42. PubMed
Germain DP, Elliott PM, Falissard B, Fomin VV, Hilz MJ, Jovanovic A, Kantola I, Linhart A, Mignani R, Namdar M, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: a systematic literature review by a European panel of experts. Mol Genet Metab Rep. 2019;19: 100454. PubMed PMC
Namdar M, Richardot P, Johner N, Shah D, Nordbeck P, Olivotto I, Macfarlane P. Recognition of pre-hypertrophic cardiac involvement in Fabry Disease based on automated electrocardiographic measures. Int J Cardiol. 2021;338:121–6. PubMed
Germain DP, Avan P, Chassaing A, Bonfils P. Patients affected with Fabry disease have an increased incidence of progressive hearing loss and sudden deafness: an investigation of twenty-two hemizygous male patients. BMC Med Genet. 2002;3:10. PubMed PMC
Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30. PubMed PMC
Garbade SF, Zielonka M, Komatsuzaki S, Kölker S, Hoffmann GF, Hinderhofer K, Mountford WK, Mengel E, Sláma T, Mechler K, et al. Quantitative retrospective natural history modeling for orphan drug development. J Inherit Metab Dis. 2021;44:99–109. PubMed
OMIM. https://www.omim.org/ Accessed 19 January 2025..
Orphanet. https://www.orpha.net/fr Accessed 26 April 2024.
Genereviews®-NCBI bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK1116/ Accessed 26 April 2024.
Duong D, Johny AR, Ledgister Hanchard S, Fortney C, Flaharty K, Hellmann F, Hu P, Javanmardi B, Moosa S, Patel T, et al. Comparison of clinical geneticist and computer visual attention in assessing genetic conditions. PLoS Genet. 2024;20: e1011168. PubMed PMC
Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov. 2024;19:33–42. PubMed
Sharma A, Badea M, Tiwari S, Marty JL. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules. 2021;26:748. PubMed PMC
Poleur M, Markati T, Servais L. The use of digital outcome measures in clinical trials in rare neurological diseases: a systematic literature review. Orphanet J Rare Dis. 2023;18:224. PubMed PMC
Hsieh TC, Bar-Haim A, Moosa S, Ehmke N, Gripp KW, Pantel JT, Danyel M, Mensah MA, Horn D, Rosnev S, et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nat Genet. 2022;54:349–57. PubMed PMC
Hasani N, Farhadi F, Morris MA, Nikpanah M, Rhamim A, Xu Y, Pariser A, Collins MT, Summers RM, Jones E, et al. Artificial Intelligence in medical imaging and its impact on the rare disease community: threats. Chall Oppor PET Clin. 2022;17:13–29. PubMed PMC
Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20:310. PubMed PMC
Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, et al. Economics of artificial intelligence in healthcare: diagnosis vs treatment. Healthcare (Basel). 2022;10:2493. PubMed PMC
Diabeloop. https://www.diabeloop.fr/ Accessed 30 April 2024.
Resilience care https://www.resilience.care/ Accessed 30 April 2024.
Garcelon N, Neuraz A, Salomon R, Faour H, Benoit V, Delapalme A, Munnich A, Burgun A, Rance B. A clinician friendly data warehouse oriented toward narrative reports: Dr Warehouse. J Biomed Inform. 2018;80:52–63. PubMed
Garcelon N, Burgun A, Salomon R, Neuraz A. Electronic health records for the diagnosis of rare diseases. Kidney Int. 2020;97:676–86. PubMed
Li LT, Haley LC, Boyd AK, Bernstam EV. Technical/Algorithm, Stakeholder, and Society (TASS) barriers to the application of artificial intelligence in medicine: a systematic review. J Biomed Inform. 2023;147: 104531. PubMed
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56. PubMed
Gruson D. Positive ethical regulation of digital technology in care plan. Soins. 2020;65:41–5. PubMed
Gruson D. Ethics and artificial intelligence in healthcare, towards positive regulation. Soins. 2019;64:54–7. PubMed
La Garantie Humaine [human guarantee of artificial intelligence]. https://www.ethik-ia.fr/about-pages/la-garantie-humaine. Accessed 23 April 2024.
Article 17. https://www.legifrance.gouv.fr/jorf/article_jo/JORFARTI000043884399. Accessed 23 April 2024.
The White House. https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/. Accessed on 23 April 2024.
World Health Organization. WHO releases AI ethics and governance guidance for large multi-modal models. https://www.who.int/news/item/18-01-2024-who-releases-ai-ethics-and-governance-guidance-for-large-multi-modal-models. Accessed on 23 April 2024.