Climate history modulates stress responses of common soil bacteria under experimental drought

. 2025 Jan 02 ; 19 (1) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40247716

Soil drying challenges microbial viability and survival, with bacteria employing various mechanisms to respond to shifts in osmolarity, including dormancy or metabolic upregulation of osmoprotectants. However, the extent to which these responses are shaped by an organism's phylogeny, or the climate history of a given environment is poorly understood. This study examines the responses of phylogenetically similar bacteria from semi-arid and humid tropical forest soils to osmotic and matric stress using synchrotron radiation-based Fourier Transform Infrared spectromicroscopy. This non-destructive approach depicts the biochemical phenotype for whole cells under control and stress conditions. We observed that, under osmotic stress, bacteria upregulated cell-signaling pathways, rapidly turned over lipid-storage compounds, and increased osmolyte production. In contrast, matric stress induced a more muted response, typically elevating the production of carbohydrate stress compounds, such as glycine betaine and trehalose. Whereas phylogenetically similar bacteria showed comparable biochemistry under control conditions, climate history played an important role in regulating responses to stress, whereby a stronger metabolic response was observed from semi-arid relative to tropical forest isolates. We conclude that bacterial stress response to drought can be more diverse than previously observed and regulated by both phylogeny and climate history.

Zobrazit více v PubMed

Or  D, Smets  BF, Wraith  JM. et al.  Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Adv Water Resour  2007;30:1505–27. 10.1016/j.advwatres.2006.05.025 DOI

Schimel  JP. Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst  2018;49:409–32. 10.1146/annurev-ecolsys-110617-062614 DOI

Malik  AA, Bouskill  NJ. Drought impacts on microbial trait distribution and feedback to soil carbon cycling. Funct Ecol  2022;36:1442–56. 10.1111/1365-2435.14010 DOI

Nguyen  J, Lara-Gutiérrez  J, Stocker  R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol Rev  2021;45:fuaa068. 10.1093/femsre/fuaa068 PubMed DOI PMC

Warren  CR. Response of osmolytes in soil to drying and rewetting. Soil Biol Biochem  2014;70:22–32. 10.1016/j.soilbio.2013.12.008 DOI

Mitchell  A, Romano  GH, Groisman  B. et al.  Adaptive prediction of environmental changes by microorganisms. Nature  2009;460:220–4. 10.1038/nature08112 PubMed DOI

Nguyen  J, Fernandez  V, Pontrelli  S. et al.  A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations. Nat Commun  2021;12:3662. 10.1038/s41467-021-23439-8 PubMed DOI PMC

Bardgett  RD, Caruso  T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos Trans R Soc B Biol Sci  2020;375:20190112. 10.1098/rstb.2019.0112 PubMed DOI PMC

Evans  SE, Allison  S, Hawkes  CV. Microbes, memory and moisture: predicting microbial moisture responses and their impact on carbon cycling. Funct Ecol  2022;36:1430–41. 10.1111/1365-2435.14034 DOI

Bouskill  NJ, Eveillard  D, O'Mullan  G. et al.  Seasonal and annual reoccurrence in betaproteobacterial ammonia-oxidizing bacterial population structure. Environ Microbiol  2011;13:872–86. 10.1111/j.1462-2920.2010.02362.x PubMed DOI

Tecon  R, Or  D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev  2017;41:599–623. 10.1093/femsre/fux039 PubMed DOI PMC

Misra  G, Rojas  ER, Gopinathan  A. et al.  Mechanical consequences of cell-wall turnover in the elongation of a gram-positive bacterium. Biophys J  2013;104:2342–52. 10.1016/j.bpj.2013.04.047 PubMed DOI PMC

Rojas  ER, Huang  KC, Theriot  JA. Homeostatic cell growth is accomplished mechanically through membrane tension inhibition of cell-wall synthesis. Cell Syst  2017;5:578–590.e6. 10.1016/j.cels.2017.11.005 PubMed DOI PMC

Manzoni  S, Schimel  JP, Porporato  A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology  2012;93:930–8. 10.1890/11-0026.1 PubMed DOI

Wood  JM. Bacterial responses to osmotic challenges. J Gen Physiol  2015;145:381–8. 10.1085/jgp.201411296 PubMed DOI PMC

Welsh  DT. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev  2000;24:263–90. 10.1111/j.1574-6976.2000.tb00542.x PubMed DOI

Hawkes  CV, Keitt  TH. Resilience vs. historical contingency in microbial responses to environmental change. Ecol Lett  2015;18:612–25. 10.1111/ele.12451 PubMed DOI

Bouskill  NJ, Lim  HC, Borglin  S. et al.  Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J  2013;7:384–94. 10.1038/ismej.2012.113 PubMed DOI PMC

Mathis  R, Ackermann  M. Response of single bacterial cells to stress gives rise to complex history dependence at the population level. Proc Natl Acad Sci USA  2016;113:4224–9. 10.1073/pnas.1511509113 PubMed DOI PMC

Isobe  K, Bouskill  NJ, Brodie  EL. et al.  Phylogenetic conservation of soil bacterial responses to simulated global changes. Philos Trans R Soc B Biol Sci  2020;375:20190242. 10.1098/rstb.2019.0242 PubMed DOI PMC

Holman  H-YN, Wozei  E, Lin  Z. et al.  Real-time molecular monitoring of chemical environment in obligate anaerobes during oxygen adaptive response. Proc Natl Acad Sci USA  2009;106:12599–604. 10.1073/pnas.0902070106 PubMed DOI PMC

Holman  H-YN, Miles  R, Hao  Z. et al.  Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy. Anal Chem  2009;81:8564–70. 10.1021/ac9015424 PubMed DOI

Chacon  SS, Cusack  DF, Khurram  A. et al.  Divergent responses of soil microorganisms to throughfall exclusion across tropical forest soils driven by soil fertility and climate history. Soil Biol Biochem  2023;177:108924. 10.1016/j.soilbio.2022.108924 DOI

Sorensen  PO, Beller  HR, Bill  M. et al.  The snowmelt niche differentiates three microbial life strategies that influence soil nitrogen availability during and after winter. Front Microbiol  2020;11:871. 10.3389/fmicb.2020.00871 PubMed DOI PMC

Hubbard  SS, Williams  KH, Agarwal  D. et al.  The East River, Colorado, watershed: a mountainous community testbed for improving predictive understanding of multiscale hydrological–biogeochemical dynamics. Vadose Zone J  2018;17:1–25. 10.2136/vzj2018.03.0061 DOI

Paton  S. Yearly Reports: Meteorological and Hydrological Summary for Barro Colorado Island. Panama: Smithsonian Tropical Research Institute. 10.25573/data.11799111.v6 DOI

Bouskill  NJ, Newcomer  M, Carroll  RWH. et al.  A tale of two catchments: causality analysis and isotope systematics reveal mountainous watershed traits that regulate the retention and release of nitrogen. J Geophys Res Biogeosci  2024;129:e2023JG007532. 10.1029/2023JG007532 DOI

Kohler  A, Sulé-Suso  J, Sockalingum  GD. et al.  Estimating and correcting Mie scattering in synchrotron-based microscopic Fourier transform infrared spectra by extended multiplicative signal correction. Appl Spectrosc  2008;62:259–66. 10.1366/000370208783759669 PubMed DOI

Holman  H-YN, Bechtel  HA, Hao  Z. et al.  Synchrotron IR spectromicroscopy: chemistry of living cells. Anal Chem  2010;82:8757–65. 10.1021/ac100991d PubMed DOI

Carr  GL, Reffner  JA, Williams  GP. Performance of an infrared microspectrometer at the NSLS. Rev Sci Instrum  1995;66:1490–2. 10.1063/1.1145951 DOI

Zhang  S, Fan  W, Panoiu  NC. et al.  Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett  2005;95:137404. 10.1103/PhysRevLett.95.137404 PubMed DOI

Rieppo  L, Rieppo  J, Jurvelin  JS. et al.  Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage. PLoS One  2012;7:e32344. 10.1371/journal.pone.0032344 PubMed DOI PMC

Rojas  ER, Huang  KC. Regulation of microbial growth by turgor pressure. Curr Opin Microbiol  2018;42:62–70. 10.1016/j.mib.2017.10.015 PubMed DOI

Miura  M, Hill  PW, Jones  DL. Impact of a single freeze-thaw and dry-wet event on soil solutes and microbial metabolites. Appl Soil Ecol  2020;153:103636. 10.1016/j.apsoil.2020.103636 DOI

Mukherjee  S, Bassler  BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol  2019;17:371–82. 10.1038/s41579-019-0186-5 PubMed DOI PMC

Gottesman  S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J Biol Chem  2019;294:11685–700. 10.1074/jbc.REV119.005593 PubMed DOI PMC

Barnard  AML, Bowden  SD, Burr  T. et al.  Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans Biol Sci  2007;362:1165–83. 10.1098/rstb.2007.2042 PubMed DOI PMC

Kim  MK, Ingremeau  F, Zhao  A. et al.  Local and global consequences of flow on bacterial quorum sensing. Nat Microbiol  2016;1:15005. 10.1038/nmicrobiol.2015.5 PubMed DOI PMC

Mason-Jones  K, Robinson  SL, Veen  GF(C. et al.  Microbial storage and its implications for soil ecology. ISME J  2022;16:617–29. 10.1038/s41396-021-01110-w PubMed DOI PMC

Arshad  A, Ashraf  B, Ali  I. et al.  Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment. Front Biol  2017;12:210–8. 10.1007/s11515-017-1446-2 DOI

Aragosa  A, Saccomanno  B, Specchia  V. et al.  A novel Sphingomonas sp. isolated from argan soil for the polyhydroxybutyrate production from Argan seeds waste. Polymers  2023;15:512. 10.3390/polym15030512 PubMed DOI PMC

Lin  Y-Y, Chen  PT. Development of polyhydroxybutyrate biosynthesis in Bacillus subtilis with combination of PHB-associated genes derived from Ralstonia eutropha and bacillus megaterium. J Taiwan Inst Chem Eng  2017;79:110–5. 10.1016/j.jtice.2017.02.030 DOI

Klotz  A, Forchhammer  K. Glycogen, a major player for bacterial survival and awakening from dormancy. Future Microbiol  2017;12:101–4. 10.2217/fmb-2016-0218 PubMed DOI

Müller-Santos  M, Koskimäki  JJ, Alves  LPS. et al.  The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev  2021;45:fuaa058. 10.1093/femsre/fuaa058 PubMed DOI

Sedlacek  P, Slaninova  E, Koller  M. et al.  PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol  2019;49:129–36. 10.1016/j.nbt.2018.10.005 PubMed DOI

Bouskill  NJ, Wood  TE, Baran  R. et al.  Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front Microbiol  2016;7:525. 10.3389/fmicb.2016.00525 PubMed DOI PMC

Malik  AA, Swenson  T, Weihe  C. et al.  Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME J  2020;14:2236–47. 10.1038/s41396-020-0683-6 PubMed DOI PMC

Elbein  AD, Pan  YT, Pastuszak  I. et al.  New insights on trehalose: a multifunctional molecule. Glycobiology  2003;13:17R–27. 10.1093/glycob/cwg047 PubMed DOI

Kandror  O, DeLeon  A, Goldberg  AL. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA  2002;99:9727–32. 10.1073/pnas.142314099 PubMed DOI PMC

Warren  CR, Manzoni  S. When dry soil is re-wet, trehalose is respired instead of supporting microbial growth. Soil Biol Biochem  2023;184:109121. 10.1016/j.soilbio.2023.109121 DOI

Oren  A. Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev  1999;63:334–48. 10.1128/MMBR.63.2.334-348.1999 PubMed DOI PMC

Wargo  MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol  2013;79:2112–20. 10.1128/AEM.03565-12 PubMed DOI PMC

Chase  AB, Weihe  C, Martiny  JBH. Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient. Proc Natl Acad Sci USA  2021;118:e2101254118. 10.1073/pnas.2101254118 PubMed DOI PMC

Martiny  JBH, Martiny  AC, Brodie  E. et al.  Investigating the eco-evolutionary response of microbiomes to environmental change. Ecol Lett  2023;26:S81–S90. 10.1111/ele.14209 PubMed DOI

Evans  SE, Wallenstein  MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett  2014;17:155–64. 10.1111/ele.12206 PubMed DOI

Dixon  K, Zhu  X, Chen  L. et al.  Dispersion-engineered deep sub-wavelength plasmonic metasurfaces for broadband Seira applications. Adv Opt Mater  2024;12:2300979. 10.1002/adom.202300979 DOI

Jeoh  T, Nill  JD, Zhao  W. et al.  Spatiotemporal dynamics of cellulose during enzymatic hydrolysis studied by infrared spectromicroscopy. Green Chem  2024;26:396–411. 10.1039/D3GC03279E DOI

Loutherback  K, Birarda  G, Chen  L. et al.  Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems. Protein Pept Lett  2016;23:273–82. 10.2174/0929866523666160106154035 PubMed DOI PMC

Ugolini  GS, Wang  M, Secchi  E. et al.  Microfluidic approaches in microbial ecology. Lab Chip  2024;24:1394–418. 10.1039/D3LC00784G PubMed DOI PMC

Tecon  R, Ebrahimi  A, Kleyer  H. et al.  Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc Natl Acad Sci USA  2018;115:9791–6. 10.1073/pnas.1808274115 PubMed DOI PMC

Scheuerl  T, Hopkins  M, Nowell  RW. et al.  Bacterial adaptation is constrained in complex communities. Nat Commun  2020;11:754. 10.1038/s41467-020-14570-z PubMed DOI PMC

Rodríguez-Verdugo  A, Ackermann  M. Rapid evolution destabilizes species interactions in a fluctuating environment. ISME J  2021;15:450–60. 10.1038/s41396-020-00787-9 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...