Climate history modulates stress responses of common soil bacteria under experimental drought
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
40247716
PubMed Central
PMC12085270
DOI
10.1093/ismejo/wraf075
PII: 8115882
Knihovny.cz E-zdroje
- Klíčová slova
- climate history, drought stress, lipid storage, osmolytes, real-time metabolic measurements,
- MeSH
- Bacteria * klasifikace metabolismus chemie izolace a purifikace genetika MeSH
- fylogeneze MeSH
- fyziologický stres * MeSH
- období sucha * MeSH
- osmotický tlak MeSH
- podnebí * MeSH
- půdní mikrobiologie * MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Publikační typ
- časopisecké články MeSH
Soil drying challenges microbial viability and survival, with bacteria employing various mechanisms to respond to shifts in osmolarity, including dormancy or metabolic upregulation of osmoprotectants. However, the extent to which these responses are shaped by an organism's phylogeny, or the climate history of a given environment is poorly understood. This study examines the responses of phylogenetically similar bacteria from semi-arid and humid tropical forest soils to osmotic and matric stress using synchrotron radiation-based Fourier Transform Infrared spectromicroscopy. This non-destructive approach depicts the biochemical phenotype for whole cells under control and stress conditions. We observed that, under osmotic stress, bacteria upregulated cell-signaling pathways, rapidly turned over lipid-storage compounds, and increased osmolyte production. In contrast, matric stress induced a more muted response, typically elevating the production of carbohydrate stress compounds, such as glycine betaine and trehalose. Whereas phylogenetically similar bacteria showed comparable biochemistry under control conditions, climate history played an important role in regulating responses to stress, whereby a stronger metabolic response was observed from semi-arid relative to tropical forest isolates. We conclude that bacterial stress response to drought can be more diverse than previously observed and regulated by both phylogeny and climate history.
Department of Biology Haverford College Haverford PA 19041 United States
Smithsonian Tropical Research Institute Apartado Postal 0843 03092 Ancon Panamá República de Panamá
Zobrazit více v PubMed
Or D, Smets BF, Wraith JM. et al. Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Adv Water Resour 2007;30:1505–27. 10.1016/j.advwatres.2006.05.025 DOI
Schimel JP. Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev Ecol Evol Syst 2018;49:409–32. 10.1146/annurev-ecolsys-110617-062614 DOI
Malik AA, Bouskill NJ. Drought impacts on microbial trait distribution and feedback to soil carbon cycling. Funct Ecol 2022;36:1442–56. 10.1111/1365-2435.14010 DOI
Nguyen J, Lara-Gutiérrez J, Stocker R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol Rev 2021;45:fuaa068. 10.1093/femsre/fuaa068 PubMed DOI PMC
Warren CR. Response of osmolytes in soil to drying and rewetting. Soil Biol Biochem 2014;70:22–32. 10.1016/j.soilbio.2013.12.008 DOI
Mitchell A, Romano GH, Groisman B. et al. Adaptive prediction of environmental changes by microorganisms. Nature 2009;460:220–4. 10.1038/nature08112 PubMed DOI
Nguyen J, Fernandez V, Pontrelli S. et al. A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations. Nat Commun 2021;12:3662. 10.1038/s41467-021-23439-8 PubMed DOI PMC
Bardgett RD, Caruso T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos Trans R Soc B Biol Sci 2020;375:20190112. 10.1098/rstb.2019.0112 PubMed DOI PMC
Evans SE, Allison S, Hawkes CV. Microbes, memory and moisture: predicting microbial moisture responses and their impact on carbon cycling. Funct Ecol 2022;36:1430–41. 10.1111/1365-2435.14034 DOI
Bouskill NJ, Eveillard D, O'Mullan G. et al. Seasonal and annual reoccurrence in betaproteobacterial ammonia-oxidizing bacterial population structure. Environ Microbiol 2011;13:872–86. 10.1111/j.1462-2920.2010.02362.x PubMed DOI
Tecon R, Or D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev 2017;41:599–623. 10.1093/femsre/fux039 PubMed DOI PMC
Misra G, Rojas ER, Gopinathan A. et al. Mechanical consequences of cell-wall turnover in the elongation of a gram-positive bacterium. Biophys J 2013;104:2342–52. 10.1016/j.bpj.2013.04.047 PubMed DOI PMC
Rojas ER, Huang KC, Theriot JA. Homeostatic cell growth is accomplished mechanically through membrane tension inhibition of cell-wall synthesis. Cell Syst 2017;5:578–590.e6. 10.1016/j.cels.2017.11.005 PubMed DOI PMC
Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 2012;93:930–8. 10.1890/11-0026.1 PubMed DOI
Wood JM. Bacterial responses to osmotic challenges. J Gen Physiol 2015;145:381–8. 10.1085/jgp.201411296 PubMed DOI PMC
Welsh DT. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 2000;24:263–90. 10.1111/j.1574-6976.2000.tb00542.x PubMed DOI
Hawkes CV, Keitt TH. Resilience vs. historical contingency in microbial responses to environmental change. Ecol Lett 2015;18:612–25. 10.1111/ele.12451 PubMed DOI
Bouskill NJ, Lim HC, Borglin S. et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 2013;7:384–94. 10.1038/ismej.2012.113 PubMed DOI PMC
Mathis R, Ackermann M. Response of single bacterial cells to stress gives rise to complex history dependence at the population level. Proc Natl Acad Sci USA 2016;113:4224–9. 10.1073/pnas.1511509113 PubMed DOI PMC
Isobe K, Bouskill NJ, Brodie EL. et al. Phylogenetic conservation of soil bacterial responses to simulated global changes. Philos Trans R Soc B Biol Sci 2020;375:20190242. 10.1098/rstb.2019.0242 PubMed DOI PMC
Holman H-YN, Wozei E, Lin Z. et al. Real-time molecular monitoring of chemical environment in obligate anaerobes during oxygen adaptive response. Proc Natl Acad Sci USA 2009;106:12599–604. 10.1073/pnas.0902070106 PubMed DOI PMC
Holman H-YN, Miles R, Hao Z. et al. Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy. Anal Chem 2009;81:8564–70. 10.1021/ac9015424 PubMed DOI
Chacon SS, Cusack DF, Khurram A. et al. Divergent responses of soil microorganisms to throughfall exclusion across tropical forest soils driven by soil fertility and climate history. Soil Biol Biochem 2023;177:108924. 10.1016/j.soilbio.2022.108924 DOI
Sorensen PO, Beller HR, Bill M. et al. The snowmelt niche differentiates three microbial life strategies that influence soil nitrogen availability during and after winter. Front Microbiol 2020;11:871. 10.3389/fmicb.2020.00871 PubMed DOI PMC
Hubbard SS, Williams KH, Agarwal D. et al. The East River, Colorado, watershed: a mountainous community testbed for improving predictive understanding of multiscale hydrological–biogeochemical dynamics. Vadose Zone J 2018;17:1–25. 10.2136/vzj2018.03.0061 DOI
Paton S. Yearly Reports: Meteorological and Hydrological Summary for Barro Colorado Island. Panama: Smithsonian Tropical Research Institute. 10.25573/data.11799111.v6 DOI
Bouskill NJ, Newcomer M, Carroll RWH. et al. A tale of two catchments: causality analysis and isotope systematics reveal mountainous watershed traits that regulate the retention and release of nitrogen. J Geophys Res Biogeosci 2024;129:e2023JG007532. 10.1029/2023JG007532 DOI
Kohler A, Sulé-Suso J, Sockalingum GD. et al. Estimating and correcting Mie scattering in synchrotron-based microscopic Fourier transform infrared spectra by extended multiplicative signal correction. Appl Spectrosc 2008;62:259–66. 10.1366/000370208783759669 PubMed DOI
Holman H-YN, Bechtel HA, Hao Z. et al. Synchrotron IR spectromicroscopy: chemistry of living cells. Anal Chem 2010;82:8757–65. 10.1021/ac100991d PubMed DOI
Carr GL, Reffner JA, Williams GP. Performance of an infrared microspectrometer at the NSLS. Rev Sci Instrum 1995;66:1490–2. 10.1063/1.1145951 DOI
Zhang S, Fan W, Panoiu NC. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 2005;95:137404. 10.1103/PhysRevLett.95.137404 PubMed DOI
Rieppo L, Rieppo J, Jurvelin JS. et al. Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage. PLoS One 2012;7:e32344. 10.1371/journal.pone.0032344 PubMed DOI PMC
Rojas ER, Huang KC. Regulation of microbial growth by turgor pressure. Curr Opin Microbiol 2018;42:62–70. 10.1016/j.mib.2017.10.015 PubMed DOI
Miura M, Hill PW, Jones DL. Impact of a single freeze-thaw and dry-wet event on soil solutes and microbial metabolites. Appl Soil Ecol 2020;153:103636. 10.1016/j.apsoil.2020.103636 DOI
Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 2019;17:371–82. 10.1038/s41579-019-0186-5 PubMed DOI PMC
Gottesman S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J Biol Chem 2019;294:11685–700. 10.1074/jbc.REV119.005593 PubMed DOI PMC
Barnard AML, Bowden SD, Burr T. et al. Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans Biol Sci 2007;362:1165–83. 10.1098/rstb.2007.2042 PubMed DOI PMC
Kim MK, Ingremeau F, Zhao A. et al. Local and global consequences of flow on bacterial quorum sensing. Nat Microbiol 2016;1:15005. 10.1038/nmicrobiol.2015.5 PubMed DOI PMC
Mason-Jones K, Robinson SL, Veen GF(C. et al. Microbial storage and its implications for soil ecology. ISME J 2022;16:617–29. 10.1038/s41396-021-01110-w PubMed DOI PMC
Arshad A, Ashraf B, Ali I. et al. Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment. Front Biol 2017;12:210–8. 10.1007/s11515-017-1446-2 DOI
Aragosa A, Saccomanno B, Specchia V. et al. A novel Sphingomonas sp. isolated from argan soil for the polyhydroxybutyrate production from Argan seeds waste. Polymers 2023;15:512. 10.3390/polym15030512 PubMed DOI PMC
Lin Y-Y, Chen PT. Development of polyhydroxybutyrate biosynthesis in Bacillus subtilis with combination of PHB-associated genes derived from Ralstonia eutropha and bacillus megaterium. J Taiwan Inst Chem Eng 2017;79:110–5. 10.1016/j.jtice.2017.02.030 DOI
Klotz A, Forchhammer K. Glycogen, a major player for bacterial survival and awakening from dormancy. Future Microbiol 2017;12:101–4. 10.2217/fmb-2016-0218 PubMed DOI
Müller-Santos M, Koskimäki JJ, Alves LPS. et al. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev 2021;45:fuaa058. 10.1093/femsre/fuaa058 PubMed DOI
Sedlacek P, Slaninova E, Koller M. et al. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol 2019;49:129–36. 10.1016/j.nbt.2018.10.005 PubMed DOI
Bouskill NJ, Wood TE, Baran R. et al. Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front Microbiol 2016;7:525. 10.3389/fmicb.2016.00525 PubMed DOI PMC
Malik AA, Swenson T, Weihe C. et al. Drought and plant litter chemistry alter microbial gene expression and metabolite production. ISME J 2020;14:2236–47. 10.1038/s41396-020-0683-6 PubMed DOI PMC
Elbein AD, Pan YT, Pastuszak I. et al. New insights on trehalose: a multifunctional molecule. Glycobiology 2003;13:17R–27. 10.1093/glycob/cwg047 PubMed DOI
Kandror O, DeLeon A, Goldberg AL. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 2002;99:9727–32. 10.1073/pnas.142314099 PubMed DOI PMC
Warren CR, Manzoni S. When dry soil is re-wet, trehalose is respired instead of supporting microbial growth. Soil Biol Biochem 2023;184:109121. 10.1016/j.soilbio.2023.109121 DOI
Oren A. Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 1999;63:334–48. 10.1128/MMBR.63.2.334-348.1999 PubMed DOI PMC
Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013;79:2112–20. 10.1128/AEM.03565-12 PubMed DOI PMC
Chase AB, Weihe C, Martiny JBH. Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient. Proc Natl Acad Sci USA 2021;118:e2101254118. 10.1073/pnas.2101254118 PubMed DOI PMC
Martiny JBH, Martiny AC, Brodie E. et al. Investigating the eco-evolutionary response of microbiomes to environmental change. Ecol Lett 2023;26:S81–S90. 10.1111/ele.14209 PubMed DOI
Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett 2014;17:155–64. 10.1111/ele.12206 PubMed DOI
Dixon K, Zhu X, Chen L. et al. Dispersion-engineered deep sub-wavelength plasmonic metasurfaces for broadband Seira applications. Adv Opt Mater 2024;12:2300979. 10.1002/adom.202300979 DOI
Jeoh T, Nill JD, Zhao W. et al. Spatiotemporal dynamics of cellulose during enzymatic hydrolysis studied by infrared spectromicroscopy. Green Chem 2024;26:396–411. 10.1039/D3GC03279E DOI
Loutherback K, Birarda G, Chen L. et al. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems. Protein Pept Lett 2016;23:273–82. 10.2174/0929866523666160106154035 PubMed DOI PMC
Ugolini GS, Wang M, Secchi E. et al. Microfluidic approaches in microbial ecology. Lab Chip 2024;24:1394–418. 10.1039/D3LC00784G PubMed DOI PMC
Tecon R, Ebrahimi A, Kleyer H. et al. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc Natl Acad Sci USA 2018;115:9791–6. 10.1073/pnas.1808274115 PubMed DOI PMC
Scheuerl T, Hopkins M, Nowell RW. et al. Bacterial adaptation is constrained in complex communities. Nat Commun 2020;11:754. 10.1038/s41467-020-14570-z PubMed DOI PMC
Rodríguez-Verdugo A, Ackermann M. Rapid evolution destabilizes species interactions in a fluctuating environment. ISME J 2021;15:450–60. 10.1038/s41396-020-00787-9 PubMed DOI PMC