Determination of rice (Oryza sativa L.) drought stress levels based on chlorophyll a fluorescence through independent component analysis
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40270911
PubMed Central
PMC12012420
DOI
10.32615/ps.2025.009
PII: PS63073
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll a fluorescence, dimension reduction, drought, rice,
- MeSH
- analýza hlavních komponent MeSH
- chlorofyl a * metabolismus MeSH
- chlorofyl * metabolismus MeSH
- fluorescence MeSH
- fyziologický stres * MeSH
- období sucha * MeSH
- rýže (rod) * fyziologie metabolismus MeSH
- support vector machine MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a * MeSH
- chlorofyl * MeSH
Sensing rice drought stress is crucial for agriculture, and chlorophyll a fluorescence (ChlF) is often used. However, existing techniques usually rely on defined feature points on the OJIP induction curve, which ignores the rich physiological information in the entire curve. Independent Component Analysis (ICA) can effectively preserve independent features, making it suitable for capturing drought-induced physiological changes. This study applies ICA and Support Vector Machine (SVM) to classify drought levels using the entire OJIP curve. The results show that the 20-dimensional ChlF features obtained by ICA provide superior classification performance, with Accuracy, Precision, Recall, F1-score, and Kappa coefficient improving by 18.15%, 0.18, 0.17, 0.17, and 0.22, respectively, compared to the entire curve. This work provides a rice drought stress levels determination method and highlights the importance of applying dimension reduction methods for ChlF analysis. This work is expected to enhance stress detection using ChlF.
Zobrazit více v PubMed
Awan S.A., Khan I., Rizwan M. et al..: Exogenous abscisic acid and jasmonic acid restrain polyethylene glycol-induced drought by improving the growth and antioxidative enzyme activities in pearl millet. ‒ Physiol. Plantarum 172: 809-819, 2021. 10.1111/ppl.13247 PubMed DOI
Bartold M., Kluczek M.: A machine learning approach for mapping chlorophyll fluorescence at inland wetlands. ‒ Remote Sens.-Basel 15: 2392, 2023. 10.3390/rs15092392 DOI
Chegini S.N., Jafarinia M., Ghotbi-Ravandi A.A.: Unraveling the impacts of progressive drought stress on the photosynthetic light reaction of tomato: assessed by chlorophyll-a fluorescence and gene expression analysis. ‒ Cell. Mol. Biol. 70: 176-184, 2024. 10.14715/cmb/2024.70.11.25 PubMed DOI
Chen D., Zhang J., Zhang Z. et al..: Analyzing the effect of light on lettuce Fv/Fm and growth by machine learning. ‒ Sci. Hortic.-Amsterdam 306: 111444, 2022. 10.1016/j.scienta.2022.111444 DOI
Chen X., Zhou Y., Cong Y. et al..: Ascorbic acid-induced photosynthetic adaptability of processing tomatoes to salt stress probed by fast OJIP fluorescence rise. ‒ Front. Plant Sci. 12: 594400, 2021. 10.3389/fpls.2021.594400 PubMed DOI PMC
Colom M.R., Vazzana C.: Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. ‒ Environ. Exp. Bot. 49: 135-144, 2003. 10.1016/S0098-8472(02)00065-5 DOI
Cornic G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. ‒ Trends Plant Sci. 5: 187- 188, 2000. 10.1016/s1360-1385(00)01625-3 DOI
Guo Y., Tan J.: Recent advances in the application of chlorophyll a fluorescence from photosystem II. – Photochem. Photobiol. 91: 1-14, 2015. 10.1111/php.12362 PubMed DOI
Horaczek T., Dąbrowski P., Kalaji H.M. et al..: JIP-test as a tool for early detection of the macronutrients deficiency in Miscanthus plants. ‒ Photosynthetica 58: 507-517, 2020. 10.32615/ps.2019.177 DOI
Krause A.G., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics. ‒ Annu. Rev. Plant Biol. 42: 313-349, 1991. 10.1146/annurev.arplant.42.1.313 DOI
Lima-Moro A., Bertoli S.C., Braga-Reis I. et al..: Photosynthetic activity and OJIP fluorescence with the application of a nutritional solution. ‒ Acta Physiol. Plant. 44: 67, 2022. 10.1007/s11738-022-03402-w DOI
López-Pacheco I.Y., Silva-Núñez A., Salinas-Salazar C. et al..: Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. ‒Sci. Total Environ. 690: 1068-1088, 2019. 10.1016/j.scitotenv.2019.07.052 PubMed DOI
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. ‒J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI
Mohidem N.A., Hashim N., Shamsudin R., Man H.C.: Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. ‒Agriculture 12: 741, 2022. 10.3390/agriculture12060741 DOI
Peršić V., Ament A., Antunović Dunić J. et al..: PEG-induced physiological drought for screening winter wheat genotypes sensitivity – integrated biochemical and chlorophyll a fluorescence analysis. – Front. Plant Sci. 13: 987702, 2022. 10.3389/fpls.2022.987702 PubMed DOI PMC
Rachoski M., Gazquez A., Calzadilla P. et al..: Chlorophyll fluorescence and lipid peroxidation changes in rice somaclonal lines subjected to salt stress. ‒Acta. Physiol. Plant. 37: 117, 2015. 10.1007/s11738-015-1865-0 DOI
Rastogi A., Kovar M., He X. et al..: JIP-test as a tool to identify salinity tolerance in sweet sorghum genotypes. ‒Photosynthetica 58: 518-528, 2020. 10.32615/ps.2019.169 DOI
Shomali A., Aliniaeifard S., Bakhtiarizadeh M.R. et al..: Artificial neural network (ANN)-based algorithms for high light stress phenotyping of tomato genotypes using chlorophyll fluorescence features. ‒Plant Physiol. Biochem. 201: 107893, 2023. 10.1016/j.plaphy.2023.107893 PubMed DOI
Španić V., Šunić K., Duvnjak J. et al..: Chlorophyll a fluorescence during flag leaf senescence of field-grown winter wheat plants under drought conditions. ‒ Ann. Appl. Biol. 183: 80-92, 2023. 10.1111/aab.12836 DOI
Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. ‒ J. Photoch. Photobio. B 104: 236-257, 2011. 10.1016/j.jphotobiol.2010.12.010 PubMed DOI
van Dijk M., Morley T., Rau M.L., Saghai Y.: A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. ‒Nat. Food 2: 494-501, 2021. 10.1038/s43016-021-00322-9 PubMed DOI
Xia Q., Fu L.J., Tang H. et al..: Sensing and classification of rice (Oryza sativa L.) drought stress levels based on chlorophyll fluorescence. ‒Photosynthetica 60: 102-109, 2022. 10.32615/ps.2022.005 PubMed DOI PMC
Xia Q., Tang H., Fu L. et al..: Determination of Fv/Fm from chlorophyll a fluorescence without dark adaptation by an LSSVM model. ‒Plant Phenomics 5: 0034, 2023a. 10.34133/plantphenomics.0034 PubMed DOI PMC
Xia Q., Tang H., Fu L. et al..: A drought stress-sensing technique based on wavelet entropy of chlorophyll fluorescence excited with pseudo-random binary sequence. ‒ Comput. Electron. Agr. 210: 107933, 2023b. 10.1016/j.compag.2023.107933 DOI
Xu H.-J., Wang X.-P., Zhao C.-Y.: Drought sensitivity of vegetation photosynthesis along the aridity gradient in northern China. ‒ Int. J. Appl. Earth. Obs. Geoinf. 102: 102418, 2021. 10.1016/j.jag.2021.102418 DOI
Zagorchev L., Atanasova A., Albanova I. et al..: Functional characterization of the photosynthetic machinery in Smicronix galls on the parasitic plant Cuscuta campestris by JIP-test. ‒ Cells 10: 1399, 2021. 10.3390/cells10061399 PubMed DOI PMC
Zargar S.M., Gupta N., Nazir M. et al..: Impact of drought on photosynthesis: Molecular perspective. ‒ Plant Gene 11: 154-159, 2017. 10.1016/j.plgene.2017.04.003 DOI