Sensing and classification of rice (Oryza sativa L.) drought stress levels based on chlorophyll fluorescence

. 2022 ; 60 (1) : 102-109. [epub] 20220228

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649002

Sensing and classification of drought stress levels are very important to agricultural production. In this work, rice drought stress levels were classified based on the commonly used chlorophyll a fluorescence (ChlF) parameter (Fv/Fm), feature data (induction features), and the whole OJIP induction (induction curve) by using a Support Vector Machine (SVM). The classification accuracies were compared with those obtained by the K-Nearest Neighbors (KNN) and the Ensemble model (Ensemble) correspondingly. The results show that the SVM can be used to classify drought stress levels of rice more accurately compared to the KNN and the Ensemble and the classification accuracy (86.7%) for the induction curve as input is higher than the accuracy (43.9%) with Fv/Fm as input and the accuracy (72.7%) with induction features as input. The results imply that the induction curve carries important information on plant physiology. This work provides a method of determining rice drought stress levels based on ChlF.

Zobrazit více v PubMed

Alam S., Kwon G.-R: Alzheimer disease classification using KPCA, LDA, and multi-kernel learning SVM. – Int. J. Imag. Syst. Tech. 27: 133-143, 2017. https://onlinelibrary.wiley.com/doi/10.1002/ima.22217 DOI

Banks J.M.: Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. – Environ. Exp. Bot. 155: 118-127, 2018. https://www.sciencedirect.com/science/article/abs/pii/S0098847218305768?via%3Dihub

Bano H., Athar H.U.R., Zafar Z.U. et al.: Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. – Physiol. Plantarum 172: 1244-1254, 2021. https://onlinelibrary.wiley.com/doi/10.1111/ppl.13327 PubMed DOI

Brestic M., Zivcak M., Kunderlikova K. et al.: Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. – Photosynth. Res. 125: 151-166, 2015. https://link.springer.com/article/10.1007%2Fs11120-015-0093-1 PubMed

Cai S., Jiang G., Ye N. et al.: A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. – PLoS ONE 10: e0116646, 2015. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116646 PubMed PMC

Carrijo D.R., Akbar N., Reis A.F.B. et al.: Impacts of variable soil drying in alternate wetting and drying rice systems on yields, grain arsenic concentration and soil moisture dynamics. – Field Crop. Res. 222: 101-110, 2018. https://www.sciencedirect.com/science/article/pii/S0378429017319287?via%3Dihub

Faraloni C., Cutino I., Petruccelli R. et al.: Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. – Environ. Exp. Bot. 73: 49-56, 2011. https://www.sciencedirect.com/science/article/abs/pii/S0098847210002091?via%3Dihub

Faseela P., Sinisha A.K., Brestič M., Puthur J.T.: Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. – Photosynthetica 58: 293-300, 2020. https://ps.ueb.cas.cz/artkey/phs-202002-0011_special-issue-in-honour-of-prof-reto-j-strasser-8211-chlorophyll-a-fluorescence-parameters-as-indicators-o.php

Feng S., Fu L., Xia Q. et al.: Modelling and simulation of photosystem II chlorophyll fluorescence transition from dark-adapted state to light-adapted state. – IET Syst. Biol. 12: 289-293, 2018. http://mr.crossref.org/iPage?doi=10.1049%2Fiet-syb.2018.5003 PubMed PMC

Fu L., Xia Q., Tan J. et al.: Modelling and simulation of chlorophyll fluorescence from PSII of a plant leaf as affected by both illumination light intensities and temperatures. – IET Syst. Biol. 13: 327-332, 2019. https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-syb.2019.0039 PubMed DOI PMC

Guerrero J.M., Pajares G., Montalvo M. et al.: Support vector machines for crop/weeds identification in maize fields. – Expert Syst. Appl. 39: 11149-11155, 2012. https://www.sciencedirect.com/science/article/abs/pii/S0957417412005635?via%3Dihub

Guo Y., Tan J.: Recent advances in the application of chlorophyll a fluorescence from photosystem II. – Photochem. Photobiol. 91: 1-14, 2015. https://onlinelibrary.wiley.com/doi/10.1111/php.12362 PubMed DOI

Haboudane D., Miller J.R., Pattey E. et al.: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. – Remote Sens. Environ. 90: 337-352, 2004. https://www.sciencedirect.com/science/article/abs/pii/S0034425704000264?via%3Dihub

Ignat T., Schmilovitch Z., Feföldi J. et al.: Nonlinear methods for estimation of maturity stage, total chlorophyll, and carotenoid content in intact bell peppers. – Biosyst. Eng. 114: 414-425, 2013. https://www.sciencedirect.com/science/article/abs/pii/S1537511012001675?via%3Dihub

Iturbe-Ormaetxe I., Escuredo P.R., Arrese-Igor C., Becana M.: Oxidative damage in pea plants exposed to water deficit or paraquat. – Plant Physiol. 116: 173-181, 1998. https://academic.oup.com/plphys/article/116/1/173/6097356

Jiao W., Tian C., Chang Q. et al.: A new multi-sensor integrated index for drought monitoring. – Agr. Forest Meteorol. 268: 74-85, 2019. https://www.sciencedirect.com/science/article/abs/pii/S0168192319300085?via%3Dihub

Karimi Y., Prasher S.O., Patel R.M., Kim S.H.: Application of support vector machine technology for weed and nitrogen stress detection in corn. – Comput. Electron. Agr. 51: 99-109, 2006. https://www.sciencedirect.com/science/article/abs/pii/S0168169906000111?via%3Dihub

Kour V.P., Arora A.S.: Particle swarm optimization based support vector machine (P-SVM) for the segmentation and classification of plants. – IEEE Access 7: 29374-29385, 2019. https://ieeexplore.ieee.org/document/8664152

Kumar A., Lata C., Kumar P. et al.: Salinity and drought induced changes in gas exchange attributes and chlorophyll fluorescence characteristics of rice (Oryza sativa) varieties. – Indian J. Agr. Sci. 86: 718-726, 2016. http://epubs.icar.org.in/ejournal/index.php/IJAgS/article/view/58833/0

Kumar S.V., Peters-Lidard C.D., Mocko D. et al.: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. – J. Hydrometeorol. 15: 2446-2469, 2014. https://journals.ametsoc.org/view/journals/hydr/15/6/jhm-d-13-0132_1.xml

Lazár D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. – Funct. Plant Biol. 33: 9-30, 2006. https://www.publish.csiro.au/fp/FP05095 PubMed

Maghsoudi K., Emam Y., Ashraf M.: Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. – Turk. J. Bot. 39: 625-634, 2015. https://journals.tubitak.gov.tr/botany/issues/bot-15-39-4/bot-39-4-7-1407-11.pdf

Marcos-Garcia P., Lopez-Nicolas A., Pulido-Velazquez M.: Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin. – J. Hydrol. 554: 292-305, 2017. https://www.sciencedirect.com/science/article/abs/pii/S0022169417306327?via%3Dihub

Melandri G., AbdElgawad H., Riewe D. et al.: Biomarkers for grain yield stability in rice under drought stress. – J. Exp. Bot. 71: 669-683, 2020. https://academic.oup.com/jxb/article/71/2/669/5489278 PubMed PMC

Meravi N., Prajapati S.K.: Temporal variation in chlorophyll fluorescence of different tree species. – Biol. Rhythm Res. 51: 331-337, 2020. https://www.tandfonline.com/doi/full/10.1080/09291016.2018.1528694 DOI

Miyashita K., Tanakamaru S., Maitani T., Kimura K.: Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. – Environ. Exp. Bot. 53: 205-214, 2005. https://www.sciencedirect.com/science/article/abs/pii/S009884720400053X?via%3Dihub

Mukherjee S., Mishra A., Trenberth K.E.: Climate change and drought: a perspective on drought indices. – Curr. Clim. Change Rep. 4: 145-163, 2018. https://link.springer.com/article/10.1007/s40641-018-0098-x DOI

Oukarroum A., El Madidi S., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. – Environ. Exp. Bot. 60: 438-446, 2007. https://www.sciencedirect.com/science/article/abs/pii/S0098847207000305?via%3Dihub

Qiao X., Bao J., Zhang H. et al.: Underwater sea cucumber identification based on Principal Component Analysis and Support Vector Machine. – Measurement 133: 444-455, 2019. https://www.sciencedirect.com/science/article/abs/pii/S026322411830976X?via%3Dihub

Rosegrant M.W., Cline S.A.: Global food security: challenges and policies. – Science 302: 1917-1919, 2003. https://www.science.org/doi/10.1126/science.1092958 PubMed DOI

Saglam A., Terzi R., Demiralay M.: Effects of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance. – Acta Biol. Hung. 65: 178-188, 2014. https://akjournals.com/view/journals/018/65/2/article-p178.xml PubMed

Sánchez N., González-Zamora Á., Martínez-Fernández J. et al.: Integrated remote sensing approach to global agricultural drought monitoring. – Agr. Forest Meteorol. 259: 141-153, 2018. https://www.sciencedirect.com/science/article/abs/pii/S016819231830145X?via%3Dihub

Sayed O.H.: Chlorophyll fluorescence as a tool in cereal crop research. – Photosynthetica 41: 321-330, 2003. https://ps.ueb.cas.cz/artkey/phs-200303-0001_chlorophyll-fluorescence-as-a-tool-in-cereal-crop-research.php

Stirbet A., Govindjee G.: On the relation between the Kautsky effect, chlorophyll a fluorescence induction and photosystem II: basics and applications of the OJIP fluorescence transient. – J. Photoch. Photobio. B 104: 236-257, 2011. https://www.sciencedirect.com/science/article/abs/pii/S1011134410002812?via%3Dihub PubMed

Timsorn K., Lorjaroenphon Y., Wongchoosuk C.: Identification of adulteration in uncooked Jasmine rice by a portable low-cost artificial olfactory system. – Measurement 108: 67-76, 2017. https://www.sciencedirect.com/science/article/abs/pii/S0263224117303093?via%3Dihub

Urban L., Aarrouf J., Bidel L.P.R.: Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll a fluorescence. – Front. Plant Sci. 8: 2068, 2017. https://www.frontiersin.org/articles/10.3389/fpls.2017.02068/full PubMed DOI PMC

Wang F.Z., Wang Q.B., Kwon S.Y. et al.: Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. – J. Plant Physiol. 162: 465-472, 2005. https://www.sciencedirect.com/science/article/abs/pii/S0176161704002391?via%3Dihub PubMed

Wang S., Tang H., Xia Q. et al.: Modeling and simulation of photosynthetic activities in C3 plants as affected by CO2. – IET Syst. Biol. 13: 101-108, 2019. https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-syb.2018.5064 PubMed DOI PMC

Wang Y., Hu X., Hou Z. et al.: Discrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imaging. – J. Sci. Food Agr. 98: 4659-4664, 2018. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.8996 PubMed DOI

Webber H., Ewert F., Olesen J.E. et al.: Diverging importance of drought stress for maize and winter wheat in Europe. – Nat. Commun. 9: 4249, 2018. https://www.nature.com/articles/s41467-018-06525-2 PubMed PMC

West H., Quinn N., Horswell M.: Remote sensing for drought monitoring & impact assessment: progress, past challenges and future opportunities. – Remote Sens. Environ. 232: 111291, 2019. https://www.sciencedirect.com/science/article/abs/pii/S0034425719303104?via%3Dihub

Woo N.S., Badger M.R., Pogson B.J.: A rapid, noninvasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. – Plant Methods 4: 27, 2008. https://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-4-27 PubMed DOI PMC

Xia Q., Tan J., Ji X. et al.: Modelling and simulation of chlorophyll fluorescence from photosystem II as affected by temperature. – IET Syst. Biol. 12: 304-310, 2018. https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-syb.2018.5030 PubMed DOI PMC

Xu Q., Ma X., Lv T. et al.: Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. – Water 12: 289, 2020. https://www.mdpi.com/2073-4441/12/1/289

Yang X., Wang B., Chen L. et al.: The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. – Sci. Rep.-UK 9: 3742, 2019. https://www.nature.com/articles/s41598-019-40161-0 PubMed PMC

Zendonadi N.D.S., Piepho H.P., Condorelli G.E. et al.: High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought. – Plant Cell Environ. 44: 2858-2878, 2021. https://onlinelibrary.wiley.com/doi/10.1111/pce.14136 PubMed DOI

Zivcak M., Brestic M., Balatova Z. et al.: Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. – Photosynth. Res. 117: 529-546, 2013. https://link.springer.com/article/10.1007%2Fs11120-013-9885-3 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...