Surface Defects and Crystal Growth of Apremilast Benzoic Acid Cocrystals
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40270990
PubMed Central
PMC12012881
DOI
10.1021/acs.oprd.4c00480
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
A cocrystallization process of the active pharmaceutical ingredient apremilast with benzoic acid is explored in this work. The aim of the study is to adjust operating conditions during the crystallization to purposefully tune the dissolution properties of the final product. Understanding the cocrystallization is key to obtaining a consistent, high-quality product, as well as tuning other properties such as powder flowability or dissolution properties. It was discovered early in development that the studied cocrystallization process does not follow the common rules of crystallization. Better crystals were obtained at faster cooling rates and worse crystals at slower cooling rates. Interestingly, this can be explained by crystal collisions and a two-phase growth of the crystals. Standard operating conditions were further tested, resulting in different shapes and sizes of the product. Different types of produced crystals were tested in a dissolution apparatus and provided significantly modified dissolution profiles.
See more in PubMed
Good D. J.; Rodríguez-Hornedo N. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des. 2009, 9 (5), 2252–2264. 10.1021/cg801039j. DOI
Blagden N.; de Matas M.; Gavan P. T.; York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Delivery Rev. 2007, 59 (7), 617–630. 10.1016/j.addr.2007.05.011. PubMed DOI
Chen H.; Khemtong C.; Yang X.; Chang X.; Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discovery Today 2011, 16 (7), 354–360. 10.1016/j.drudis.2010.02.009. PubMed DOI
Gavhane Y. N.; Yadav A. V. Loss of orally administered drugs in GI tract. Saudi Pharm. J. 2012, 20 (4), 331–344. 10.1016/j.jsps.2012.03.005. PubMed DOI PMC
Pinnamaneni S.; Das N. G.; Das S. K. Formulation approaches for orally administered poorly soluble drugs. Pharmazie 2002, 57 (5), 291–300. PubMed
Lipinski C. Poor aqueous solubility - An industry wide problem in drug discovery. Am. Pharm. Rev. 2002, 5, 82–85.
Variankaval N.; Cote A. S.; Doherty M. F. From form to function: Crystallization of active pharmaceutical ingredients. AlChE J. 2008, 54 (7), 1682–1688. 10.1002/aic.11555. DOI
Chen J.-M.; Wang Z.-Z.; Wu C.-B.; Li S.; Lu T.-B. Crystal engineering approach to improve the solubility of mebendazole. CrystEngComm 2012, 14 (19), 6221–6229. 10.1039/c2ce25724f. DOI
Malamatari M.; Ross S. A.; Douroumis D.; Velaga S. P. Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv. Drug Delivery Rev. 2017, 117, 162–177. 10.1016/j.addr.2017.08.006. PubMed DOI
Delori A.; Friščić T.; Jones W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm 2012, 14 (7), 2350–2362. 10.1039/c2ce06582g. DOI
Berry D. J.; Seaton C. C.; Clegg W.; Harrington R. W.; Coles S. J.; Horton P. N.; Hursthouse M. B.; Storey R.; Jones W.; Friščić T.; Blagden N. Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients. Cryst. Growth Des. 2008, 8 (5), 1697–1712. 10.1021/cg800035w. DOI
El-Zhry El-Yafi A. K.; El-Zein H. Technical crystallization for application in pharmaceutical material engineering: Review article. Asian Journal of Pharmaceutical Sciences 2015, 10 (4), 283–291. 10.1016/j.ajps.2015.03.003. DOI
Shekunov B. Y.; York P. Crystallization processes in pharmaceutical technology and drug delivery design. J. Cryst. Growth 2000, 211 (1), 122–136. 10.1016/S0022-0248(99)00819-2. DOI
Thakuria R.; Delori A.; Jones W.; Lipert M. P.; Roy L.; Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2013, 453 (1), 101–125. 10.1016/j.ijpharm.2012.10.043. PubMed DOI
Chiarella R. A.; Davey R. J.; Peterson M. L. Making Co-CrystalsThe Utility of Ternary Phase Diagrams. Cryst. Growth Des. 2007, 7 (7), 1223–1226. 10.1021/cg070218y. DOI
Holaň J.; Štěpánek F.; Billot P.; Ridvan L. The construction, prediction and measurement of co-crystal ternary phase diagrams as a tool for solvent selection. European Journal of Pharmaceutical Sciences 2014, 63, 124–131. 10.1016/j.ejps.2014.06.017. PubMed DOI
Jirát J.; Ondo D.; Babor M.; Ridvan L.; Šoóš M. Complex methodology for rational design of Apremilast-benzoic acid co-crystallization process. Int. J. Pharm. 2019, 570, 11863910.1016/j.ijpharm.2019.118639. PubMed DOI
Zerilli T.; Ocheretyaner E. Apremilast (Otezla): A New Oral Treatment for Adults With Psoriasis and Psoriatic Arthritis. Pharm. Ther. 2015, 40 (8), 495–500. PubMed PMC
Bravais A.Etudes cristallo-graphiques; Gauthier-Villars: Paris, 1866.
Friedel G.Leçons de cristallographie; A. Hermann et fils: Paris, 1911.
Donnay J. D. H.; Harker D. A new law of crystal morphology extending the Law of Bravais. Am. Mineral. 1937, 22 (5), 446–467.
Macrae C. F.; Sovago I.; Cottrell S. J.; Galek P. T. A.; McCabe P.; Pidcock E.; Platings M.; Shields G. P.; Stevens J. S.; Towler M.; Wood P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53 (1), 226–235. 10.1107/S1600576719014092. PubMed DOI PMC
Kim K.; Kim K.-J. Quantitative Study on Crystal Defects Using the Relationship between Crystallization Parameters and Thermal Analysis. Cryst. Growth Des. 2018, 18 (9), 5021–5028. 10.1021/acs.cgd.8b00453. DOI
Beckmann W.; Budde U.. Crystallization. In Encyclopedia of Separation Science, Wilson I. D., Ed. Academic Press: Oxford, 2000; pp 3729–3738.
Kim J.-W.; Kim J.-K.; Kim H.-S.; Koo K.-K. Characterization of Liquid Inclusion of RDX Crystals with a Cooling Crystallization. Cryst. Growth Des. 2009, 9 (6), 2700–2706. 10.1021/cg801343b. DOI
Duffar T. Use of Growth-Rate/Temperature-Gradient Charts for Defect Engineering in Crystal Growth from the Melt. Crystals 2020, 10 (10), 909.10.3390/cryst10100909. DOI
Xu L.; Jie W.; Bolotnikov A. E.; Roy U. N.; Stein J.; Hossain A.; Camarda G. S.; Kim K. H.; Yang G.; Gul R.; Cui Y.; Xu Y.; Wang T.; Zha G.; James R. B. Concentration of extended defects in CdZnTe single crystals: Effects of cooling rate after growth. J. Cryst. Growth 2012, 355 (1), 84–87. 10.1016/j.jcrysgro.2012.06.024. DOI