• This record comes from PubMed

Surface Defects and Crystal Growth of Apremilast Benzoic Acid Cocrystals

. 2025 Apr 18 ; 29 (4) : 1067-1075. [epub] 20250319

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

A cocrystallization process of the active pharmaceutical ingredient apremilast with benzoic acid is explored in this work. The aim of the study is to adjust operating conditions during the crystallization to purposefully tune the dissolution properties of the final product. Understanding the cocrystallization is key to obtaining a consistent, high-quality product, as well as tuning other properties such as powder flowability or dissolution properties. It was discovered early in development that the studied cocrystallization process does not follow the common rules of crystallization. Better crystals were obtained at faster cooling rates and worse crystals at slower cooling rates. Interestingly, this can be explained by crystal collisions and a two-phase growth of the crystals. Standard operating conditions were further tested, resulting in different shapes and sizes of the product. Different types of produced crystals were tested in a dissolution apparatus and provided significantly modified dissolution profiles.

See more in PubMed

Good D. J.; Rodríguez-Hornedo N. Solubility Advantage of Pharmaceutical Cocrystals. Cryst. Growth Des. 2009, 9 (5), 2252–2264. 10.1021/cg801039j. DOI

Blagden N.; de Matas M.; Gavan P. T.; York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Delivery Rev. 2007, 59 (7), 617–630. 10.1016/j.addr.2007.05.011. PubMed DOI

Chen H.; Khemtong C.; Yang X.; Chang X.; Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discovery Today 2011, 16 (7), 354–360. 10.1016/j.drudis.2010.02.009. PubMed DOI

Gavhane Y. N.; Yadav A. V. Loss of orally administered drugs in GI tract. Saudi Pharm. J. 2012, 20 (4), 331–344. 10.1016/j.jsps.2012.03.005. PubMed DOI PMC

Pinnamaneni S.; Das N. G.; Das S. K. Formulation approaches for orally administered poorly soluble drugs. Pharmazie 2002, 57 (5), 291–300. PubMed

Lipinski C. Poor aqueous solubility - An industry wide problem in drug discovery. Am. Pharm. Rev. 2002, 5, 82–85.

Variankaval N.; Cote A. S.; Doherty M. F. From form to function: Crystallization of active pharmaceutical ingredients. AlChE J. 2008, 54 (7), 1682–1688. 10.1002/aic.11555. DOI

Chen J.-M.; Wang Z.-Z.; Wu C.-B.; Li S.; Lu T.-B. Crystal engineering approach to improve the solubility of mebendazole. CrystEngComm 2012, 14 (19), 6221–6229. 10.1039/c2ce25724f. DOI

Malamatari M.; Ross S. A.; Douroumis D.; Velaga S. P. Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv. Drug Delivery Rev. 2017, 117, 162–177. 10.1016/j.addr.2017.08.006. PubMed DOI

Delori A.; Friščić T.; Jones W. The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm 2012, 14 (7), 2350–2362. 10.1039/c2ce06582g. DOI

Berry D. J.; Seaton C. C.; Clegg W.; Harrington R. W.; Coles S. J.; Horton P. N.; Hursthouse M. B.; Storey R.; Jones W.; Friščić T.; Blagden N. Applying Hot-Stage Microscopy to Co-Crystal Screening: A Study of Nicotinamide with Seven Active Pharmaceutical Ingredients. Cryst. Growth Des. 2008, 8 (5), 1697–1712. 10.1021/cg800035w. DOI

El-Zhry El-Yafi A. K.; El-Zein H. Technical crystallization for application in pharmaceutical material engineering: Review article. Asian Journal of Pharmaceutical Sciences 2015, 10 (4), 283–291. 10.1016/j.ajps.2015.03.003. DOI

Shekunov B. Y.; York P. Crystallization processes in pharmaceutical technology and drug delivery design. J. Cryst. Growth 2000, 211 (1), 122–136. 10.1016/S0022-0248(99)00819-2. DOI

Thakuria R.; Delori A.; Jones W.; Lipert M. P.; Roy L.; Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2013, 453 (1), 101–125. 10.1016/j.ijpharm.2012.10.043. PubMed DOI

Chiarella R. A.; Davey R. J.; Peterson M. L. Making Co-CrystalsThe Utility of Ternary Phase Diagrams. Cryst. Growth Des. 2007, 7 (7), 1223–1226. 10.1021/cg070218y. DOI

Holaň J.; Štěpánek F.; Billot P.; Ridvan L. The construction, prediction and measurement of co-crystal ternary phase diagrams as a tool for solvent selection. European Journal of Pharmaceutical Sciences 2014, 63, 124–131. 10.1016/j.ejps.2014.06.017. PubMed DOI

Jirát J.; Ondo D.; Babor M.; Ridvan L.; Šoóš M. Complex methodology for rational design of Apremilast-benzoic acid co-crystallization process. Int. J. Pharm. 2019, 570, 11863910.1016/j.ijpharm.2019.118639. PubMed DOI

Zerilli T.; Ocheretyaner E. Apremilast (Otezla): A New Oral Treatment for Adults With Psoriasis and Psoriatic Arthritis. Pharm. Ther. 2015, 40 (8), 495–500. PubMed PMC

Bravais A.Etudes cristallo-graphiques; Gauthier-Villars: Paris, 1866.

Friedel G.Leçons de cristallographie; A. Hermann et fils: Paris, 1911.

Donnay J. D. H.; Harker D. A new law of crystal morphology extending the Law of Bravais. Am. Mineral. 1937, 22 (5), 446–467.

Macrae C. F.; Sovago I.; Cottrell S. J.; Galek P. T. A.; McCabe P.; Pidcock E.; Platings M.; Shields G. P.; Stevens J. S.; Towler M.; Wood P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53 (1), 226–235. 10.1107/S1600576719014092. PubMed DOI PMC

Kim K.; Kim K.-J. Quantitative Study on Crystal Defects Using the Relationship between Crystallization Parameters and Thermal Analysis. Cryst. Growth Des. 2018, 18 (9), 5021–5028. 10.1021/acs.cgd.8b00453. DOI

Beckmann W.; Budde U.. Crystallization. In Encyclopedia of Separation Science, Wilson I. D., Ed. Academic Press: Oxford, 2000; pp 3729–3738.

Kim J.-W.; Kim J.-K.; Kim H.-S.; Koo K.-K. Characterization of Liquid Inclusion of RDX Crystals with a Cooling Crystallization. Cryst. Growth Des. 2009, 9 (6), 2700–2706. 10.1021/cg801343b. DOI

Duffar T. Use of Growth-Rate/Temperature-Gradient Charts for Defect Engineering in Crystal Growth from the Melt. Crystals 2020, 10 (10), 909.10.3390/cryst10100909. DOI

Xu L.; Jie W.; Bolotnikov A. E.; Roy U. N.; Stein J.; Hossain A.; Camarda G. S.; Kim K. H.; Yang G.; Gul R.; Cui Y.; Xu Y.; Wang T.; Zha G.; James R. B. Concentration of extended defects in CdZnTe single crystals: Effects of cooling rate after growth. J. Cryst. Growth 2012, 355 (1), 84–87. 10.1016/j.jcrysgro.2012.06.024. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...