Induction of α-amylase and endosperm-imposed seed dormancy: two pioneering papers in gibberellin research
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.01.01/00/22_008/0004581
European Regional Development Fund
CZ.02.01.01/00/23_020/0008497
European Regional Development Fund
PubMed
40278915
PubMed Central
PMC12031936
DOI
10.1007/s00425-025-04699-w
PII: 10.1007/s00425-025-04699-w
Knihovny.cz E-zdroje
- Klíčová slova
- Aleurone, Bioassays, Endosperm, Germination, Gibberellin action, α-amylase,
- MeSH
- alfa-amylasy * metabolismus genetika MeSH
- endosperm * fyziologie metabolismus MeSH
- gibereliny * metabolismus MeSH
- ječmen (rod) enzymologie genetika MeSH
- klíčení fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- semena rostlinná * fyziologie enzymologie MeSH
- vegetační klid * fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- alfa-amylasy * MeSH
- gibereliny * MeSH
- regulátory růstu rostlin MeSH
Two papers with quite different objectives established protocols that proved pivotal for future work on the role of gibberellins in seed germination. In their paper published in 1967, Russell Jones and Joseph Varner (Planta 72: 155-161) developed a bioassay based on induction of α-amylase activity in barley embryo-less half-seeds that was specific for bioactive gibberellins. The induction of α-amylase in the aleurone of barley and other cereals was to become the experimental system of choice to study gibberellin signalling. However, despite much progress in identifying the molecular events linking gibberellin action and α-amylase gene expression, in many cases their role in the process is still unclear. In 1987, Steven Groot and Cees Karssen (Planta 171:525-531) showed that germination of tomato seeds was limited by the ability of the radicle to penetrate the surrounding layers, with the endosperm forming the major barrier. They used a modified needle attached to a tensiometer to measure the force required to break through the endosperm. While in wild-type seeds, a factor from the embryo, assumed to be gibberellin, promoted breakdown of the endosperm, gibberellin-deficient seeds required an external supply of the hormone to weaken the endosperm or for it to be mechanically disrupted for germination to occur. The paradigm of seed germination being physically restricted by surrounding layers and the role of gibberellin in weakening these tissues has been confirmed in many eudicot species. Gibberellin signalling induces the production of cell-wall loosening enzymes in the micropylar endosperm adjacent to the radicle, but it is unclear whether or not this is a direct response. In both eudicot and monocot systems, there is still much to learn about the role of gibberellin signalling in germination.
Zobrazit více v PubMed
Aoki N, Ishibashi Y, Kai K, Tomokiyo R, Yuasa T, Iwaya-Inoue M (2014) Programmed cell death in barley aleurone cells is not directly stimulated by reactive oxygen species produced in response to gibberellin. J Plant Physiol 171:615–618. 10.1016/j.jplph.2014.01.005 PubMed
Banerjee S, Yuan XK, Germida JJ, Vujanovic V (2014) Gene expression patterns in wheat coleorhiza under cold- and biological stratification. Microbiol Res 169:616–622. 10.1016/j.micres.2013.09.016 PubMed
Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021. 10.1104/pp.109.137901 PubMed PMC
Bethke PC, Schuurink R, Jones RL (1997) Hormonal signalling in cereal aleurone. J Exp Bot 48:1337–1356. 10.1093/jxb/48.7.1337
Bethke PC, Fath A, Spiegel YN, Hwang YS, Jones RL (2002) Abscisic acid, gibberellin and cell viability in cereal aleurone. Euphytica 126:3–11. 10.1023/a:1019659319630
Binenbaum J, Weinstain R, Shani E (2018) Gibberellin localization and transport in plants. Trends Plant Sci 23:410–421. 10.1016/j.tplants.2018.02.005 PubMed
Binks R, Macmillan J, Pryce RJ (1969) Plant hormones-VIII: combined gas chromatography-mass spectrometry of methyl esters of gibberellins A1 to A24 and their trimethylsilyl ethers. Phytochemistry 8:271–284. 10.1016/s0031-9422(00)85825-2
Brian PW, Hemming HG, Lowe D (1962) Relative activity of the gibberellins. Nature 193:946–948. 10.1038/193946a0 PubMed
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L (2020) An updated overview on the regulation of seed germination. Plants. 10.3390/plants9060703 PubMed PMC
Croker SJ, Gaskin P, Hedden P, Macmillan J, Macneil KAG (1994) Quantitative-analysis of gibberellins by isotope-dilution mass-spectrometry - a comparison of the use of calibration curves, an isotope-dilution fit program and arithmetical correction of isotope ratios. Phytochem Anal 5:74–80. 10.1002/pca.2800050206
Crozier A, Kuo CC, Durley RC, Pharis RP (1970) Biological activities of 26 gibberellins in nine plant bioassays. Can J Bot 48:867–877. 10.1139/b70-121
Deng T, Wu DP, Duan CF, Yan XH, Du Y, Zou J, Guan YF (2017) Spatial profiling of gibberellins in a single leaf based on microscale matrix solid-phase dispersion and precolumn derivatization coupled with ultraperformance liquid chromatography-tandem mass spectrometry. Anal Chem 89:9537–9543. 10.1021/acs.analchem.7b02589 PubMed
Gong DAK, He F, Liu JY, Zhang C, Wang YR, Tian SJ, Sun C, Zhang X (2022) Understanding of hormonal regulation in rice seed germination. Life. 10.3390/life12071021 PubMed PMC
Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z-L, Powers SJ, Gong F, Phillips AL, Hedden P, Sun T-p, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414. 10.1105/tpc.106.047415 PubMed PMC
Griffiths J, Rizza A, Tang BJ, Frommer WB, Jones AM (2024) GIBBERELLIN PERCEPTION SENSOR 2 reveals genesis and role of cellular GA dynamics in light-regulated hypocotyl growth. Plant Cell 36:4426–4441. 10.1093/plcell/koae198 PubMed PMC
Groot SPC, Karssen CM (1987) Gibberellins regulate seed-germination in tomato by endosperm weakening - a study with gibberellin-deficient mutants. Planta 171:525–531. 10.1007/bf00392302 PubMed
Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells - evidence for MYB transactivation of a high-pI α-amylase gene promoter. Plant Cell 7:1879–1891. 10.1105/tpc.7.11.1879 PubMed PMC
Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV (2002) Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol 129:191–200. 10.1104/pp.010918 PubMed PMC
Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34:740–760. 10.1007/s00344-015-9546-1 PubMed PMC
Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13:192–199. 10.1016/j.tplants.2008.02.005 PubMed
Holloway T, Steinbrecher T, Pérez M, Seville A, Stock D, Nakabayashi K, Leubner-Metzger G (2021) Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytol 229:2179–2191. 10.1111/nph.16948 PubMed
Illouz-Eliaz N, Ramon U, Shohat H, Blum S, Livne S, Mendelson D, Weiss D (2019) Multiple gibberellin receptors contribute to phenotypic stability under changing environments. Plant Cell 31:1506–1519. 10.1105/tpc.19.00235 PubMed PMC
Itoh H, Ueguchi-Tanaka M, Matsuoka M (2008) Molecular biology of gibberellins signaling in higher plants. In: Jeon KW (ed) International review of cell and molecular biology, vol 268. Elsevier Inc., pp 191–221. 10.1016/s1937-6448(08)00806-x PubMed
Jones RL (1985) This week's citation classic. Current Contents 13:16
Jones RL, Varner JE (1966) The bioassay of gibberellins. Planta 72:155–161. 10.1007/bf00387479 PubMed
Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2002) The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol 128:1264–1270. 10.1104/pp.010785 PubMed PMC
Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2003) Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J 35:104–115. 10.1046/j.1365-313X.2003.01780.x PubMed
Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography/tandem mass spectrometry: an application for hormone profiling in oryza sativa. Plant Cell Physiol 50:1201–1214. 10.1093/pcp/pcp057 PubMed PMC
Koornneef M, Vanderveen JH (1980) Induction and analysis of gibberellin sensitive mutants in Arabidopsis-thaliana (L) Heynh. Theor Appl Genet 58:257–263. 10.1007/bf00265176 PubMed
Koornneef M, Bosma TDG, Hanhart CJ, Vanderveen JH, Zeevaart JAD (1990) The isolation and characterization of gibberellin-deficient mutants in tomato. Theor Appl Genet 80:852–857. 10.1007/bf00224204 PubMed
Kutschera U, Schopfer P (1985) Evidence for the acid-growth theory of fusicoccin action. Planta 163:494–499. 10.1007/bf00392706 PubMed
Lenton JR, Appleford NEJ, Croker SJ (1994) Gibberellins and α-amylase gene-expression in germinating wheat grains. Plant Growth Regul 15:261–270. 10.1007/bf00029899
Li M, Lopato S, Kovalchuk N, Langridge P (2013) Functional genomics of seed development in cereals. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer Scientific, Dordrecht, pp 215–245. 10.1007/978-94-007-6401-9_9
Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253–270. 10.1007/s00299-011-1180-1 PubMed
Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822. 10.1105/tpc.109.070201 PubMed PMC
Lovegrove A, Hooley R (2000) Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci 5:102–110. 10.1016/s1360-1385(00)01571-5 PubMed
Martínez-Andújar C, Pluskota WE, Bassel GW, Asahina M, Pupel P, Nguyen TT, Takeda-Kamiya N, Toubiana D, Bai B, Górecki RJ, Fait A, Yamaguchi S, Nonogaki H (2012) Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds. Plant J 71:575–586. 10.1111/j.1365-313X.2012.05010.x PubMed
Nicholls PB, Paleg LG (1963) A barley endosperm bioassay for gibberellins. Nature 199:823–824 PubMed
Nonogaki H (2014) Seed dormancy and germination - emerging mechanisms and new hypotheses. Front Plant Sci. 10.3389/fpls.2014.00233 PubMed PMC
Nonogaki H (2019) Seed germination and dormancy: the classic story, new puzzles, and evolution. J Integr Plant Biol 61:541–563. 10.1111/jipb.12762 PubMed
Nonogaki H, Nomaguchi M, Okumoto N, Kaneko Y, Matsushima H, Morohashi Y (1998) Temporal and spatial pattern of the biochemical activation of the endosperm during and following imbibition of tomato seeds. Physiol Plant 102:236–242. 10.1034/j.1399-3054.1998.1020211.x
Paleg LG (1960) Physiological effects of gibberellic acid. 1. On carbohydrate metabolism and amylase activity of barley endosperm. Plant Physiol 35:293–299. 10.1104/pp.35.3.293 PubMed PMC
Peng JR, Harberd NP (2002) The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol 5:376–381. 10.1016/s1369-5266(02)00279-0 PubMed
Ratnikova TA, Podila R, Rao AP, Taylor AG (2015) Tomato seed coat permeability to selected carbon nanomaterials and enhancement of germination and seedling growth. Sci World J. 10.1155/2015/419215 PubMed PMC
Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM (2017) In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plants 3:803–813. 10.1038/s41477-017-0021-9 PubMed
Shani E, Hedden P, Sun TP (2024) Highlights in gibberellin research: a tale of the dwarf and the slender. Plant Physiol 195:111–134. 10.1093/plphys/kiae044 PubMed PMC
Steinbrecher T, Leubner-Metzger G (2017) The biomechanics of seed germination. J Exp Bot 68:765–783. 10.1093/jxb/erw428 PubMed
Toorop PE, van Aelst AC, Hilhorst HWM (2000) The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. J Exp Bot 51:1371–1379. 10.1093/jexbot/51.349.1371 PubMed
Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698. 10.1038/nature04028 PubMed
Urbanova T, Tarkowska D, Novak O, Hedden P, Strnad M (2013) Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta 112:85–94. 10.1016/j.talanta.2013.03.068 PubMed
Varner JE, Ram Chandra G (1964) Hormonal control of enzyme synthesis in barley endosperm. Proc Natl Acad Sci USA 52:100–106. 10.1073/pnas.52.1.100 PubMed PMC
Yamaguchi I, Weiler EW (1991) A minireview on the immunoassay for gibberellins. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins. Springer, New York, pp 146–165. 10.1007/978-1-4612-3002-1_15
Yomo H (1960) Studies on the amylase activating substance. Part 4. On the amylase activating action of gibberellin. Hakko Kyokaishi 18:600–602
Zhang QS, Li CD (2017) Comparisons of copy number, genomic structure, and conserved motifs for α-amylase genes from barley, rice, and wheat. Front Plant Sci. 10.3389/fpls.2017.01727 PubMed PMC