Induction of α-amylase and endosperm-imposed seed dormancy: two pioneering papers in gibberellin research

. 2025 Apr 25 ; 261 (6) : 118. [epub] 20250425

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40278915

Grantová podpora
CZ.02.01.01/00/22_008/0004581 European Regional Development Fund
CZ.02.01.01/00/23_020/0008497 European Regional Development Fund

Odkazy

PubMed 40278915
PubMed Central PMC12031936
DOI 10.1007/s00425-025-04699-w
PII: 10.1007/s00425-025-04699-w
Knihovny.cz E-zdroje

Two papers with quite different objectives established protocols that proved pivotal for future work on the role of gibberellins in seed germination. In their paper published in 1967, Russell Jones and Joseph Varner (Planta 72: 155-161) developed a bioassay based on induction of α-amylase activity in barley embryo-less half-seeds that was specific for bioactive gibberellins. The induction of α-amylase in the aleurone of barley and other cereals was to become the experimental system of choice to study gibberellin signalling. However, despite much progress in identifying the molecular events linking gibberellin action and α-amylase gene expression, in many cases their role in the process is still unclear. In 1987, Steven Groot and Cees Karssen (Planta 171:525-531) showed that germination of tomato seeds was limited by the ability of the radicle to penetrate the surrounding layers, with the endosperm forming the major barrier. They used a modified needle attached to a tensiometer to measure the force required to break through the endosperm. While in wild-type seeds, a factor from the embryo, assumed to be gibberellin, promoted breakdown of the endosperm, gibberellin-deficient seeds required an external supply of the hormone to weaken the endosperm or for it to be mechanically disrupted for germination to occur. The paradigm of seed germination being physically restricted by surrounding layers and the role of gibberellin in weakening these tissues has been confirmed in many eudicot species. Gibberellin signalling induces the production of cell-wall loosening enzymes in the micropylar endosperm adjacent to the radicle, but it is unclear whether or not this is a direct response. In both eudicot and monocot systems, there is still much to learn about the role of gibberellin signalling in germination.

Zobrazit více v PubMed

Aoki N, Ishibashi Y, Kai K, Tomokiyo R, Yuasa T, Iwaya-Inoue M (2014) Programmed cell death in barley aleurone cells is not directly stimulated by reactive oxygen species produced in response to gibberellin. J Plant Physiol 171:615–618. 10.1016/j.jplph.2014.01.005 PubMed DOI

Banerjee S, Yuan XK, Germida JJ, Vujanovic V (2014) Gene expression patterns in wheat coleorhiza under cold- and biological stratification. Microbiol Res 169:616–622. 10.1016/j.micres.2013.09.016 PubMed DOI

Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021. 10.1104/pp.109.137901 PubMed DOI PMC

Bethke PC, Schuurink R, Jones RL (1997) Hormonal signalling in cereal aleurone. J Exp Bot 48:1337–1356. 10.1093/jxb/48.7.1337 DOI

Bethke PC, Fath A, Spiegel YN, Hwang YS, Jones RL (2002) Abscisic acid, gibberellin and cell viability in cereal aleurone. Euphytica 126:3–11. 10.1023/a:1019659319630 DOI

Binenbaum J, Weinstain R, Shani E (2018) Gibberellin localization and transport in plants. Trends Plant Sci 23:410–421. 10.1016/j.tplants.2018.02.005 PubMed DOI

Binks R, Macmillan J, Pryce RJ (1969) Plant hormones-VIII: combined gas chromatography-mass spectrometry of methyl esters of gibberellins A DOI

Brian PW, Hemming HG, Lowe D (1962) Relative activity of the gibberellins. Nature 193:946–948. 10.1038/193946a0 PubMed DOI

Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L (2020) An updated overview on the regulation of seed germination. Plants. 10.3390/plants9060703 PubMed DOI PMC

Croker SJ, Gaskin P, Hedden P, Macmillan J, Macneil KAG (1994) Quantitative-analysis of gibberellins by isotope-dilution mass-spectrometry - a comparison of the use of calibration curves, an isotope-dilution fit program and arithmetical correction of isotope ratios. Phytochem Anal 5:74–80. 10.1002/pca.2800050206 DOI

Crozier A, Kuo CC, Durley RC, Pharis RP (1970) Biological activities of 26 gibberellins in nine plant bioassays. Can J Bot 48:867–877. 10.1139/b70-121 DOI

Deng T, Wu DP, Duan CF, Yan XH, Du Y, Zou J, Guan YF (2017) Spatial profiling of gibberellins in a single leaf based on microscale matrix solid-phase dispersion and precolumn derivatization coupled with ultraperformance liquid chromatography-tandem mass spectrometry. Anal Chem 89:9537–9543. 10.1021/acs.analchem.7b02589 PubMed DOI

Gong DAK, He F, Liu JY, Zhang C, Wang YR, Tian SJ, Sun C, Zhang X (2022) Understanding of hormonal regulation in rice seed germination. Life. 10.3390/life12071021 PubMed DOI PMC

Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z-L, Powers SJ, Gong F, Phillips AL, Hedden P, Sun T-p, Thomas SG (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in PubMed DOI PMC

Griffiths J, Rizza A, Tang BJ, Frommer WB, Jones AM (2024) GIBBERELLIN PERCEPTION SENSOR 2 reveals genesis and role of cellular GA dynamics in light-regulated hypocotyl growth. Plant Cell 36:4426–4441. 10.1093/plcell/koae198 PubMed DOI PMC

Groot SPC, Karssen CM (1987) Gibberellins regulate seed-germination in tomato by endosperm weakening - a study with gibberellin-deficient mutants. Planta 171:525–531. 10.1007/bf00392302 PubMed DOI

Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a PubMed DOI PMC

Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV (2002) Gibberellin signaling in barley aleurone cells. Control of PubMed DOI PMC

Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34:740–760. 10.1007/s00344-015-9546-1 PubMed DOI PMC

Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13:192–199. 10.1016/j.tplants.2008.02.005 PubMed DOI

Holloway T, Steinbrecher T, Pérez M, Seville A, Stock D, Nakabayashi K, Leubner-Metzger G (2021) Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytol 229:2179–2191. 10.1111/nph.16948 PubMed DOI

Illouz-Eliaz N, Ramon U, Shohat H, Blum S, Livne S, Mendelson D, Weiss D (2019) Multiple gibberellin receptors contribute to phenotypic stability under changing environments. Plant Cell 31:1506–1519. 10.1105/tpc.19.00235 PubMed DOI PMC

Itoh H, Ueguchi-Tanaka M, Matsuoka M (2008) Molecular biology of gibberellins signaling in higher plants. In: Jeon KW (ed) International review of cell and molecular biology, vol 268. Elsevier Inc., pp 191–221. 10.1016/s1937-6448(08)00806-x PubMed

Jones RL (1985) This week's citation classic. Current Contents 13:16

Jones RL, Varner JE (1966) The bioassay of gibberellins. Planta 72:155–161. 10.1007/bf00387479 PubMed DOI

Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2002) The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol 128:1264–1270. 10.1104/pp.010785 PubMed DOI PMC

Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2003) Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J 35:104–115. 10.1046/j.1365-313X.2003.01780.x PubMed DOI

Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography/tandem mass spectrometry: an application for hormone profiling in PubMed DOI PMC

Koornneef M, Vanderveen JH (1980) Induction and analysis of gibberellin sensitive mutants in PubMed DOI

Koornneef M, Bosma TDG, Hanhart CJ, Vanderveen JH, Zeevaart JAD (1990) The isolation and characterization of gibberellin-deficient mutants in tomato. Theor Appl Genet 80:852–857. 10.1007/bf00224204 PubMed DOI

Kutschera U, Schopfer P (1985) Evidence for the acid-growth theory of fusicoccin action. Planta 163:494–499. 10.1007/bf00392706 PubMed DOI

Lenton JR, Appleford NEJ, Croker SJ (1994) Gibberellins and α-amylase gene-expression in germinating wheat grains. Plant Growth Regul 15:261–270. 10.1007/bf00029899 DOI

Li M, Lopato S, Kovalchuk N, Langridge P (2013) Functional genomics of seed development in cereals. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer Scientific, Dordrecht, pp 215–245. 10.1007/978-94-007-6401-9_9

Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253–270. 10.1007/s00299-011-1180-1 PubMed DOI

Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using PubMed DOI PMC

Lovegrove A, Hooley R (2000) Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci 5:102–110. 10.1016/s1360-1385(00)01571-5 PubMed DOI

Martínez-Andújar C, Pluskota WE, Bassel GW, Asahina M, Pupel P, Nguyen TT, Takeda-Kamiya N, Toubiana D, Bai B, Górecki RJ, Fait A, Yamaguchi S, Nonogaki H (2012) Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds. Plant J 71:575–586. 10.1111/j.1365-313X.2012.05010.x PubMed DOI

Nicholls PB, Paleg LG (1963) A barley endosperm bioassay for gibberellins. Nature 199:823–824 DOI

Nonogaki H (2014) Seed dormancy and germination - emerging mechanisms and new hypotheses. Front Plant Sci. 10.3389/fpls.2014.00233 PubMed DOI PMC

Nonogaki H (2019) Seed germination and dormancy: the classic story, new puzzles, and evolution. J Integr Plant Biol 61:541–563. 10.1111/jipb.12762 PubMed DOI

Nonogaki H, Nomaguchi M, Okumoto N, Kaneko Y, Matsushima H, Morohashi Y (1998) Temporal and spatial pattern of the biochemical activation of the endosperm during and following imbibition of tomato seeds. Physiol Plant 102:236–242. 10.1034/j.1399-3054.1998.1020211.x DOI

Paleg LG (1960) Physiological effects of gibberellic acid. 1. On carbohydrate metabolism and amylase activity of barley endosperm. Plant Physiol 35:293–299. 10.1104/pp.35.3.293 PubMed DOI PMC

Peng JR, Harberd NP (2002) The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol 5:376–381. 10.1016/s1369-5266(02)00279-0 PubMed DOI

Ratnikova TA, Podila R, Rao AP, Taylor AG (2015) Tomato seed coat permeability to selected carbon nanomaterials and enhancement of germination and seedling growth. Sci World J. 10.1155/2015/419215 PubMed DOI PMC

Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM (2017) PubMed DOI

Shani E, Hedden P, Sun TP (2024) Highlights in gibberellin research: a tale of the dwarf and the slender. Plant Physiol 195:111–134. 10.1093/plphys/kiae044 PubMed DOI PMC

Steinbrecher T, Leubner-Metzger G (2017) The biomechanics of seed germination. J Exp Bot 68:765–783. 10.1093/jxb/erw428 PubMed DOI

Toorop PE, van Aelst AC, Hilhorst HWM (2000) The second step of the biphasic endosperm cap weakening that mediates tomato ( PubMed DOI

Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) PubMed DOI

Urbanova T, Tarkowska D, Novak O, Hedden P, Strnad M (2013) Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta 112:85–94. 10.1016/j.talanta.2013.03.068 PubMed DOI

Varner JE, Ram Chandra G (1964) Hormonal control of enzyme synthesis in barley endosperm. Proc Natl Acad Sci USA 52:100–106. 10.1073/pnas.52.1.100 PubMed DOI PMC

Yamaguchi I, Weiler EW (1991) A minireview on the immunoassay for gibberellins. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins. Springer, New York, pp 146–165. 10.1007/978-1-4612-3002-1_15

Yomo H (1960) Studies on the amylase activating substance. Part 4. On the amylase activating action of gibberellin. Hakko Kyokaishi 18:600–602

Zhang QS, Li CD (2017) Comparisons of copy number, genomic structure, and conserved motifs for α-amylase genes from barley, rice, and wheat. Front Plant Sci. 10.3389/fpls.2017.01727 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...