Landscape of Steroid Dynamics in Pregnancy: Insights From the Maternal-Placental-Fetal Unit and Placental Models

. 2025 Jun ; 24 (6) : 100976. [epub] 20250423

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40280488
Odkazy

PubMed 40280488
PubMed Central PMC12289528
DOI 10.1016/j.mcpro.2025.100976
PII: S1535-9476(25)00074-X
Knihovny.cz E-zdroje

Recent advances in analytical methods have revolutionized our understanding of steroid biochemistry. The emergence of novel steroids such as 11-oxy androgens and 11-oxy progesterones has necessitated a reevaluation of steroid biosynthesis and metabolism within the maternal-placental-fetal unit. In this study, we employed a validated liquid chromatography high-resolution mass spectrometry method to quantify 51 steroids in paired maternal serum, neonatal serum, and placenta samples from 37 healthy pregnancies. Additionally, we characterized steroid release in various placental models, including human placenta perfusion, explants, and primary trophoblast cells isolated from human term placenta. Our findings emphasize the predominance of keto derivatives of androgens in the placenta compared to hydroxylated forms, which are dominant in maternal serum and neonatal serum. We also observed high levels of classic and novel progesterones in the placenta and across all models, with significant release on the maternal side. These results suggest that the placenta possesses an active enzymatic machinery capable of producing and metabolizing novel progesterones. Furthermore, we demonstrated that the catalytic activity of 11β-hydroxysteroid dehydrogenase type 2 extends beyond cortisol regulation to hydroxylated androgens, highlighting its significance in the broader context of steroid metabolism within the maternal-placental-fetal unit. These findings contribute to our understanding of placental physiology and impact on fetal development.

Zobrazit více v PubMed

Costa M.A. The endocrine function of human placenta: an overview. Reprod. Biomed. Online. 2016;32:14–43. PubMed

Brar A.K., Frank G.R., Kessler C.A., Cedars M.I., Handwerger S. Progesterone-dependent decidualization of the human endometrium is mediated by cAMP. Endocrine. 1997;6:301–307. PubMed

Chen J.Z., Wong M.H., Brennecke S.P., Keogh R.J. The effects of human chorionic gonadotrophin, progesterone and oestradiol on trophoblast function. Mol. Cell Endocrinol. 2011;342:73–80. PubMed

Napso T., Yong H.E.J., Lopez-Tello J., Sferruzzi-Perri A.N. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Review. Front. Physiol. 2018;9 doi: 10.3389/fphys.2018.01091. PubMed DOI PMC

Michael A.E., Papageorghiou A.T. Potential significance of physiological and pharmacological glucocorticoids in early pregnancy. Hum. Reprod. Update. 2008;14:497–517. PubMed

O'Shaughnessy P.J., Antignac J.P., Le Bizec B., Morvan M.L., Svechnikov K., Söder O., et al. Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 2019;17 PubMed PMC

Albrecht E.D., Pepe G.J. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy. Int. J. Dev. Biol. 2010;54:397–408. PubMed PMC

Chatuphonprasert W., Jarukamjorn K., Ellinger I. Physiology and pathophysiology of steroid biosynthesis, transport and metabolism in the human placenta. Front. Pharmacol. 2018;9:1027. PubMed PMC

Andrieu T., du Toit T., Vogt B., Mueller M.D., Groessl M. Parallel targeted and non-targeted quantitative analysis of steroids in human serum and peritoneal fluid by liquid chromatography high-resolution mass spectrometry. Anal. Bioanal. Chem. 2022;414:7461–7472. PubMed PMC

Yoshida T., Matsumoto K., Miyado M., Miyashiro Y., Sago H., Horikawa R., et al. Quantification of androgens and their precursors in full-term human placenta. Eur. J. Endocrinol. 2021;185:K7–K11. PubMed

He X., Banker M., Puttabyatappa M., Padmanabhan V., Auchus R.J. Maternal 11-ketoandrostenedione rises through normal pregnancy and is the dominant 11-oxygenated androgen in cord blood. J. Clin. Endocrinol. Metab. 2022;107:660–667. PubMed PMC

du Toit T., Finken M.J.J., Hamer H.M., Heijboer A.C., Swart A.C. C11-oxy C(19) and C11-oxy C(21) steroids in neonates: UPC(2)-MS/MS quantification of plasma 11β-hydroxyandrostenedione, 11-ketotestosterone and 11-ketoprogesterone. Steroids. 2018;138 doi: 10.1016/j.steroids.2018.06.003. PubMed DOI

Hampl R., Sulcová J., Zwinger A., Stárka L. 11 beta-hydroxyandrostenedione in human amniotic fluid. Exp. Clin. Endocrinol. 1990;96:325–327. PubMed

Koskivuori J., Voutilainen R., Storvik M., Häkkinen M.R., Uusitalo L., Keski-Nisula L., et al. Comparative steroid profiling of newborn hair and umbilical cord serum highlights the role of fetal adrenals, placenta, and pregnancy outcomes in fetal steroid metabolism. J. Steroid Biochem. Mol. Biol. 2023;232 PubMed

Dufau M.L., Villee D.B. Aldosterone biosynthesis by human fetal adrenal in vitro. Biochim. Biophys. Acta. 1969;176:637–640. PubMed

Villee D.B., Driscoll S.G. Pregnenolone and progesterone metabolism in human adrenals from twin female fetuses. Endocrinology. 1965;77:602–608. PubMed

Turcu A.F., Rege J., Auchus R.J., Rainey W.E. 11-Oxygenated androgens in health and disease. Nat. Rev. Endocrinol. 2020;16:284–296. PubMed PMC

Schloms L., Storbeck K.H., Swart P., Gelderblom W.C., Swart A.C. The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: quantification of steroid intermediates and end products in H295R cells. J. Steroid Biochem. Mol. Biol. 2012;128:128–138. PubMed

Swart A.C., Schloms L., Storbeck K.H., Bloem L.M., Toit T.d., Quanson J.L., et al. 11β-hydroxyandrostenedione, the product of androstenedione metabolism in the adrenal, is metabolized in LNCaP cells by 5α-reductase yielding 11β-hydroxy-5α-androstanedione. J. Steroid Biochem. Mol. Biol. 2013;138:132–142. PubMed

Storbeck K.H., Bloem L.M., Africander D., Schloms L., Swart P., Swart A.C. 11β-Hydroxydihydrotestosterone and 11-ketodihydrotestosterone, novel C19 steroids with androgenic activity: a putative role in castration resistant prostate cancer? Mol. Cell Endocrinol. 2013;377:135–146. PubMed

Yoshida N., Osawa Y. Purification of human placental aromatase cytochrome P-450 with monoclonal antibody and its characterization. Biochemistry. 1991;30:3003–3010. PubMed

Karahoda R., Kallol S., Groessl M., Ontsouka E., Anderle P., Fluck C., et al. Revisiting steroidogenic pathways in the human placenta and primary human trophoblast cells. Int. J. Mol. Sci. 2021;22:1704. PubMed PMC

Siiteri P.K., MacDonald P.C. Placental estrogen biosynthesis during human pregnancy. J. Clin. Endocrinol. Metab. 1966;26:751–761. PubMed

Lukacik P., Kavanagh K.L., Oppermann U. Structure and function of human 17beta-hydroxysteroid dehydrogenases. Mol. Cell Endocrinol. 2006;248:61–71. PubMed

Li Y., Isomaa V., Pulkka A., Herva R., Peltoketo H., Vihko P. Expression of 3beta-hydroxysteroid dehydrogenase type 1, P450 aromatase, and 17beta-hydroxysteroid dehydrogenase types 1, 2, 5 and 7 mRNAs in human early and mid-gestation placentas. Placenta. 2005;26:387–392. PubMed

Takeyama J., Sasano H., Suzuki T., Iinuma K., Nagura H., Andersson S. 17Beta-hydroxysteroid dehydrogenase types 1 and 2 in human placenta: an immunohistochemical study with correlation to placental development. J. Clin. Endocrinol. Metab. 1998;83:3710–3715. PubMed

Benediktsson R., Calder A.A., Edwards C.R., Seckl J.R. Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin. Endocrinol. (Oxf) 1997;46:161–166. PubMed

Pignatti E., du Toit T., Flück C.E. Development and function of the fetal adrenal. Rev. Endocr. Metab. Disord. 2023;24:5–21. PubMed PMC

du Toit T., Swart A.C. Turning the spotlight on the C11-oxy androgens in human fetal development. J. Steroid Biochem. Mol. Biol. 2021;212 PubMed

Swart A.C., Storbeck K.H. 11β-Hydroxyandrostenedione: downstream metabolism by 11βHSD, 17βHSD and SRD5A produces novel substrates in familiar pathways. Mol. Cell Endocrinol. 2015;408:114–123. PubMed

Dhayat N.A., Frey A.C., Frey B.M., d'Uscio C.H., Vogt B., Rousson V., et al. Estimation of reference curves for the urinary steroid metabolome in the first year of life in healthy children: tracing the complexity of human postnatal steroidogenesis. J. Steroid Biochem. Mol. Biol. 2015;154:226–236. PubMed

Bileck A., Fluck C.E., Dhayat N., Groessl M. How high-resolution techniques enable reliable steroid identification and quantification. J. Steroid Biochem. Mol. Biol. 2019;186:74–78. PubMed

Barnard L., Gent R., van Rooyen D., Swart A.C. Adrenal C11-oxy C(21) steroids contribute to the C11-oxy C(19) steroid pool via the backdoor pathway in the biosynthesis and metabolism of 21-deoxycortisol and 21-deoxycortisone. J. Steroid Biochem. Mol. Biol. 2017;174:86–95. PubMed

van Rooyen D., Gent R., Barnard L., Swart A.C. The in vitro metabolism of 11β-hydroxyprogesterone and 11-ketoprogesterone to 11-ketodihydrotestosterone in the backdoor pathway. J. Steroid Biochem. Mol. Biol. 2018;178:203–212. PubMed

Kamrath C., Hartmann M.F., Remer T., Wudy S.A. The activities of 5α-reductase and 17,20-lyase determine the direction through androgen synthesis pathways in patients with 21-hydroxylase deficiency. Steroids. 2012;77:1391–1397. PubMed

Gent R., du Toit T., Bloem L.M., Swart A.C. The 11β-hydroxysteroid dehydrogenase isoforms: pivotal catalytic activities yield potent C11-oxy C(19) steroids with 11βHSD2 favouring 11-ketotestosterone, 11-ketoandrostenedione and 11-ketoprogesterone biosynthesis. J. Steroid Biochem. Mol. Biol. 2019;189:116–126. PubMed

Schneider H., Albrecht C., Ahmed M.S., Broekhuizen M., Aengenheister L., Buerki-Thurnherr T., et al. Ex vivo dual perfusion of an isolated human placenta cotyledon: towards protocol standardization and improved inter-centre comparability. Placenta. 2022;126:83–89. PubMed

Miller R.K., Genbacev O., Turner M.A., Aplin J.D., Caniggia I., Huppertz B. Human placental explants in culture: approaches and assessments. Placenta. 2005;26:439–448. PubMed

Melhem H., Kallol S., Huang X., Lüthi M., Ontsouka C.E., Keogh A., et al. Placental secretion of apolipoprotein A1 and E: the anti-atherogenic impact of the placenta. Sci. Rep. 2019;9:6225. PubMed PMC

Schneider H., Panigel M., Dancis J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am. J. Obstet. Gynecol. 1972;114:822–828. PubMed

Mathiesen L., Mose T., Mørck T.J., Nielsen J.K.S., Nielsen L.K., Maroun L.L., et al. Quality assessment of a placental perfusion protocol. Reprod. Toxicol. 2010;30:138–146. PubMed

Kallol S., Huang X., Muller S., Ontsouka C.E., Albrecht C. Novel insights into concepts and directionality of Maternal(-)Fetal cholesterol transfer across the human placenta. Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19082334. PubMed DOI PMC

Kallol S., Moser-Haessig R., Ontsouka C.E., Albrecht C. Comparative expression patterns of selected membrane transporters in differentiated BeWo and human primary trophoblast cells. Placenta. 2018;72-73:48–52. PubMed

Nikitina L., Wenger F., Baumann M., Surbek D., Korner M., Albrecht C. Expression and localization pattern of ABCA1 in diverse human placental primary cells and tissues. Placenta. 2011;32:420–430. PubMed

Kliman H.J., Nestler J.E., Sermasi E., Sanger J.M., Strauss J.F., 3rd Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 1986;118:1567–1582. PubMed

Fuenzalida B., Cantin C., Kallol S., Carvajal L., Pastén V., Contreras-Duarte S., et al. Cholesterol uptake and efflux are impaired in human trophoblast cells from pregnancies with maternal supraphysiological hypercholesterolemia. Sci. Rep. 2020;10:5264. PubMed PMC

Huang X., Luthi M., Ontsouka E.C., Kallol S., Baumann M.U., Surbek D.V., et al. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport. Mol. Hum. Reprod. 2016;22:442–456. PubMed

Coulter C.L., Jaffe R.B. Functional maturation of the primate fetal adrenal in vivo: 3. Specific zonal localization and developmental regulation of CYP21A2 (P450c21) and CYP11B1/CYP11B2 (P450c11/aldosterone synthase) lead to integrated concept of zonal and temporal steroid biosynthesis. Endocrinology. 1998;139:5144–5150. PubMed

Charoensri S., Rege J., Lee C., Marko X., Sherk W., Sholinyan J., et al. Human Gonads do not contribute to the circulating pool of 11-oxygenated androgens. J. Clin. Endocrinol. Metab. 2024 doi: 10.1210/clinem/dgae420. PubMed DOI PMC

Auer M.K., Hawley J.M., Lottspeich C., Bidlingmaier M., Sappl A., Nowotny H.F., et al. 11-Oxygenated androgens are not secreted by the human ovary: in-vivo data from four different cases of hyperandrogenism. Eur. J. Endocrinol. 2022;187:K47–K53. PubMed PMC

Zander J., Thijssen J., von Münstermann A.-M. Isolation and identification of 16α-hydroxyprogesterone from human corpora Lutea and placental blood. J. Clin. Endocrinol. Metab. 1962;22:861–862. PubMed

Villee D.B., Engel L.L., Loring J.M., Villee C.A. Steroid hydroxylation in human fetal adrenals: formation of 16 alpha-hydroxyprogesterone, 17-hydroxyprogesterone and deoxycorticosterone. Endocrinology. 1961;69:354–372. PubMed

Schuetz J.D., Kauma S., Guzelian P.S. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J. Clin. Invest. 1993;92:1018–1024. PubMed PMC

Hakkola J., Pasanen M., Hukkanen J., Pelkonen O., Mäenpää J., Edwards R.J., et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human full-term placenta. Biochem. Pharmacol. 1996;51:403–411. PubMed

van Rooyen D., du Toit T., Louw-du Toit R., Africander D., Swart P., Swart A.C. The metabolic fate and receptor interaction of 16α-hydroxyprogesterone and its 5α-reduced metabolite, 16α-hydroxy-dihydroprogesterone. Mol. Cell Endocrinol. 2017;441:86–98. PubMed

Gent R., Van Rooyen D., Atkin S.L., Swart A.C. C11-hydroxy and C11-oxo C19 and C21 steroids: pre-receptor regulation and interaction with androgen and progesterone steroid receptors. Int. J. Mol. Sci. 2024;25:101. PubMed PMC

Barnard L., Schiffer L., Louw du-Toit R., Tamblyn J.A., Chen S., Africander D., et al. 11-Oxygenated estrogens are a novel class of human estrogens but do not contribute to the circulating estrogen pool. Endocrinology. 2021:162. doi: 10.1210/endocr/bqaa231. PubMed DOI PMC

Vondra S., Kunihs V., Eberhart T., Eigner K., Bauer R., Haslinger P., et al. Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages. J. Lipid Res. 2019;60:1922–1934. PubMed PMC

Kosicka K., Siemiątkowska A., Szpera-Goździewicz A., Krzyścin M., Bręborowicz G.H., Główka F.K. Increased cortisol metabolism in women with pregnancy-related hypertension. Endocrine. 2018;61:125–133. PubMed PMC

Jayasuriya N.A., Hughes A.E., Sovio U., Cook E., Charnock-Jones D.S., Smith G.C.S. A lower maternal cortisol-to-cortisone ratio precedes clinical diagnosis of preterm and term preeclampsia by many weeks. J. Clin. Endocrinol. Metab. 2019;104:2355–2366. PubMed PMC

Siemiątkowska A., Kosicka K., Szpera-Goździewicz A., Krzyścin M., Bręborowicz G.H., Główka F.K. Cortisol metabolism in pregnancies with small for gestational age neonates. Sci. Rep. 2019;9 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...