Genetic Testing in Adults over 50 Years with Chronic Kidney Disease: Diagnostic Yield and Clinical Implications in a Specialized Kidney Genetics Clinic
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
40282368
PubMed Central
PMC12027001
DOI
10.3390/genes16040408
PII: genes16040408
Knihovny.cz E-resources
- Keywords
- chronic kidney disease, exome sequencing, genetic kidney disease, genetic testing, older adults,
- MeSH
- Renal Insufficiency, Chronic * genetics diagnosis MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Testing * methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Exome Sequencing MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Background: Genetic causes of chronic diseases, once considered rare in adult-onset disease, now account for between 10 and 20% of cases of chronic kidney disease (CKD). Confirming a genetic diagnosis can influence disease management; however, the utility of genetic testing in older adults remains poorly understood, partly due to age-based restrictions on testing access. To better evaluate the diagnostic yield and clinical utility of genetic testing in this population, we analyzed data from adults aged ≥50 years with CKD who were assessed in a specialized kidney genetics clinic. Methods: We studied a cohort of 125 adults with CKD aged ≥50 years at the time of genetic testing. Genetic testing included gene panels targeting disease-related genes based on clinical phenotype, and/or exome sequencing for additional monogenic causes if the initial panel testing was inconclusive. Results: Pathogenic variants in disease-related genes were identified in 38% of patients. The highest diagnostic yield (48%) was in patients aged 50-54 years. The most common diagnosis post-testing was glomerulopathies (32%). Clinical utility, shown through the case series, included modifications to treatment and clinical management, as well as a reduction in the diagnostic odyssey. Conclusions: Our findings from a dedicated Kidney Genetics Clinic show that genetic testing in adults ≥50 years with CKD has significant diagnostic and clinical utility. These results support guideline recommendations that there should be no upper age limit for genetic testing. Future research in unselected CKD populations is needed to establish the broader applicability and feasibility of genetic testing in older adults.
Department of Medicine Division of Nephrology London Health Sciences Centre London ON N6A 5A5 Canada
Multi Organ Transplant Program London Health Sciences Centre London ON N6A 5A5 Canada
Population Health Research Institute 20 Copeland Avenue Hamilton ON L8L 2X2 Canada
Section on Nephrology Wake Forest School of Medicine Winston Salem NC 27157 USA
See more in PubMed
Dahl N.K., Bloom M.S., Chebib F.T., Clark D., Westemeyer M., Jandeska S., Zhang Z., Milo-Rasouly H., Kolupaeva V., Marasa M., et al. The Clinical Utility of Genetic Testing in the Diagnosis and Management of Adults with Chronic Kidney Disease. J. Am. Soc. Nephrol. 2023;34:2039. doi: 10.1681/ASN.0000000000000249. PubMed DOI PMC
Groopman E.E., Marasa M., Cameron-Christie S., Petrovski S., Aggarwal V.S., Milo-Rasouly H., Li Y., Zhang J., Nestor J., Krithivasan P., et al. Diagnostic Utility of Exome Sequencing for Kidney Disease. N. Engl. J. Med. 2019;380:142–151. doi: 10.1056/NEJMoa1806891. PubMed DOI PMC
Abdulrahim J.W., Kwee L.C., Alenezi F., Sun A.Y., Baras A., Ajayi T.A., Henao R., Holley C., McGarrah R., Daubert J.P., et al. Identification of Undetected Monogenic Cardiovascular Disorders. J. Am. Coll. Cardiol. 2020;76:797–808. doi: 10.1016/j.jacc.2020.06.037. PubMed DOI PMC
Van Der Lee S.J., Hulsman M., Van Spaendonk R., Van Der Schaar J., Dijkstra J., Tesi N., van Ruissen F., Elting M., Reinders M., De Rojas I., et al. Prevalence of Pathogenic Variants and Eligibility Criteria for Genetic Testing in Patients Who Visit a Memory Clinic. Neurology. 2025;104:e210273. doi: 10.1212/WNL.0000000000210273. PubMed DOI PMC
Ganapathy A., Mishra A., Soni M.R., Kumar P., Sadagopan M., Kanthi A.V., Patric I.R.P., George S., Sridharan A., Thyagarajan T.C., et al. Multi-gene testing in neurological disorders showed an improved diagnostic yield: Data from over 1000 Indian patients. J. Neurol. 2019;266:1919–1926. doi: 10.1007/s00415-019-09358-1. PubMed DOI
Schott C., Lebedeva V., Taylor C., Abumelha S., Roshanov P.S., Connaughton D.M. Utility of Genetic Testing in Adults with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2024;20:101–115. doi: 10.2215/CJN.0000000000000564. PubMed DOI PMC
Elliott M.D., James L.C., Simms E.L., Sharma P., Girard L.P., Cheema K., Elliott M.J., Lauzon J.L., Chun J. Mainstreaming Genetic Testing for Adult Patients With Autosomal Dominant Polycystic Kidney Disease. Can. J. Kidney Health Dis. 2021;8:20543581211055001. doi: 10.1177/20543581211055001. PubMed DOI PMC
Ames E.G., Anand P.M., Bekheirnia M.R., Doshi M.D., El Ters M., Freese M.E., Gbadegesin R.A., Guay-Woodford L.M., Java A., Ranch D., et al. Evaluation for genetic disease in kidney transplant candidates: A practice resource. Am. J. Transplant. 2025;25:237–249. doi: 10.1016/j.ajt.2024.10.019. PubMed DOI
Aron A.W., Dahl N.K., Besse W. A Practical Guide to Genetic Testing for Kidney Disorders of Unknown Etiology. Kidney360. 2022;3:1640–1651. doi: 10.34067/KID.0007552021. PubMed DOI PMC
National Health Services England National Genomic Test Directory Testing Criteria for Rare and Inherited Disease. 2024. [(accessed on 26 March 2024)]. Available online: https://www.england.nhs.uk/wp-content/uploads/2024/07/national-genomic-test-directory-rare-and-inherited-disease-eligibility-criteria-v7.pdf.
Guidelines for Genetic Diagnostics in Kidney Disease. MEDonline Publisher; Breukelen, The Netherlands: 2018. [(accessed on 17 December 2024)]. Available online: https://publicatie.nefro.nl/richtlijnen/handreiking-genetische-diagnostiek-bij-nierziekten/
Snoek R., van Jaarsveld R.H., Nguyen T.Q., Peters E.D.J., Elferink M.G., Ernst R.F., Rookmaaker M.B., Lilien M.R., Spierings E., Goldschmeding R., et al. Genetics-first approach improves diagnostics of ESKD patients <50 years old. Nephrol. Dial. Transplant. 2022;37:349–357. doi: 10.1093/ndt/gfaa363. PubMed DOI
Vivante A., Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat. Rev. Nephrol. 2016;12:133–146. doi: 10.1038/nrneph.2015.205. PubMed DOI PMC
Schott C., Arnaldi M., Baker C., Wang J., McIntyre A.D., Colaicovo S., Relouw S., Offerni G.A., Campagnolo C., Nyatten L.R.V., et al. Implementation of a kidney genetic service into the diagnostic pathway for patients with chronic kidney disease in Canada. Kidney Int. Rep. 2025;10:574–590. doi: 10.1016/j.ekir.2024.11.004. PubMed DOI PMC
KDIGO Conference Participants Genetics in chronic kidney disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2022;101:1126–1141. doi: 10.1016/j.kint.2022.03.019. PubMed DOI PMC
Hildebrandt F. Genetic kidney diseases. Lancet. 2010;375:1287–1295. doi: 10.1016/S0140-6736(10)60236-X. PubMed DOI PMC
Merchant A.A., Ling E. An approach to treating older adults with chronic kidney disease. CMAJ. 2023;195:E612–E618. doi: 10.1503/cmaj.221427. PubMed DOI PMC
Levey A.S., Eckardt K.-U., Tsukamoto Y., Levin A., Coresh J., Rossert J., Zeeuw D.D.E., Hostetter T.H., Lameire N., Eknoyan G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2005;67:2089–2100. doi: 10.1111/j.1523-1755.2005.00365.x. PubMed DOI
Ayasreh N., Bullich G., Miquel R., Furlano M., Ruiz P., Lorente L., Valero O., García-González M.A., Arhda N., Garin I., et al. Autosomal Dominant Tubulointerstitial Kidney Disease: Clinical Presentation of Patients With ADTKD-UMOD and ADTKD-MUC1. Am. J. Kidney Dis. 2018;72:411–418. doi: 10.1053/j.ajkd.2018.03.019. PubMed DOI
Blumenstiel B., DeFelice M., Birsoy O., Bleyer A.J., Kmoch S., Carter T.A., Gnirke A., Kidd K., Rehm H.L., Ronco L., et al. Development and Validation of a Mass Spectrometry-Based Assay for the Molecular Diagnosis of Mucin-1 Kidney Disease. J. Mol. Diagn. 2016;18:566–571. doi: 10.1016/j.jmoldx.2016.03.003. PubMed DOI
Szuto A. Genome-Wide Sequencing Ontario. 2023. Provincial Update: Exome Sequencing for Rare Disease Diagnostics. [(accessed on 15 July 2024)]. Available online: https://gsontario.ca/for-providers/patient-eligibility/
Sheikh Hassani M., Jain R., Ramaswamy S., Sinha S., El Naofal M., Halabi N., Alyafei S., Alfalasi R., Shenbagam S., Taylor A., et al. Virtual Gene Panels Have a Superior Diagnostic Yield for Inherited Rare Diseases Relative to Static Panels. Clin. Chem. 2025;71:169–184. doi: 10.1093/clinchem/hvae183. PubMed DOI
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Hayeems R.Z., Dimmock D., Bick D., Belmont J.W., Green R.C., Lanpher B., Jobanputra V., Mendoza R., Kulkarni S., Grove M.E., et al. Clinical utility of genomic sequencing: A measurement toolkit. NPJ Genom. Med. 2020;5:56. doi: 10.1038/s41525-020-00164-7. PubMed DOI PMC
Ariceta G., Beck-Nielsen S.S., Boot A.M., Brandi M.L., Briot K., de Lucas Collantes C., Emma F., Giannini S., Haffner D., Keen R., et al. The International X-Linked Hypophosphatemia (XLH) Registry: First interim analysis of baseline demographic, genetic and clinical data. Orphanet J. Rare Dis. 2023;18:304. doi: 10.1186/s13023-023-02882-4. PubMed DOI PMC
Pettifor J.M. What’s new in hypophosphataemic rickets? Eur. J. Pediatr. 2008;167:493–499. doi: 10.1007/s00431-007-0662-1. PubMed DOI PMC
Kayser M., Jain P., Bale A., Carpenter T.O. A De Novo Deleterious PHEX Variant Without Clinical Features of X-Linked Hypophosphatemia. JCEM Case Rep. 2023;1:luad082. doi: 10.1210/jcemcr/luad082. PubMed DOI PMC
Giannini S., Bianchi M.L., Rendina D., Massoletti P., Lazzerini D., Brandi M.L. Burden of disease and clinical targets in adult patients with X-linked hypophosphatemia. A comprehensive review. Osteoporos. Int. 2021;32:1937–1949. doi: 10.1007/s00198-021-05997-1. PubMed DOI PMC
Haffner D., Emma F., Eastwood D.M., Duplan M.B., Bacchetta J., Schnabel D., Wicart P., Bockenhauer D., Santos F., Levtchenko E., et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 2019;15:435. doi: 10.1038/s41581-019-0152-5. PubMed DOI PMC
Emma F., Salviati L. Mitochondrial cytopathies and the kidney. Nephrol. Ther. 2017;13((Suppl. S1)):S23–S28. doi: 10.1016/j.nephro.2017.01.014. PubMed DOI
Chan S.S.L., Longley M.J., Copeland W.C. The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J. Biol. Chem. 2005;280:31341–31346. doi: 10.1074/jbc.M506762200. PubMed DOI
Parikh S., Goldstein A., Karaa A., Koenig M.K., Anselm I., Brunel-Guitton C., Christodoulou J., Cohen B.H., Dimmock D., Enns G.M., et al. Patient care standards for primary mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet. Med. 2017;19:1380. doi: 10.1038/gim.2017.107. PubMed DOI PMC
Cohen B.H., Chinnery P.F., Copeland W.C. POLG-Related Disorders. In: Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J., Gripp K.W., Amemiya A., editors. GeneReviews®. University of Washington; Seattle, WA, USA: 1993. [(accessed on 28 May 2024)]. Available online: http://www.ncbi.nlm.nih.gov/books/NBK26471/ PubMed
Cornec-Le Gall E., Alam A., Perrone R.D. Autosomal dominant polycystic kidney disease. Lancet. 2019;393:919–935. doi: 10.1016/S0140-6736(18)32782-X. PubMed DOI
Fujimaru T., Mori T., Sekine A., Mandai S., Chiga M., Kikuchi H., Ando F., Mori Y., Nomura N., Iimori S., et al. Kidney enlargement and multiple liver cyst formation implicate mutations in PKD1/2 in adult sporadic polycystic kidney disease. Clin. Genet. 2018;94:125–131. doi: 10.1111/cge.13249. PubMed DOI
Senum S.R., Li Y.M., Benson K.A., Joli G., Olinger E., Lavu S., Madsen C.D., Gregory A.V., Neatu R., Kline T.L., et al. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am. J. Hum. Genet. 2022;109:136–156. doi: 10.1016/j.ajhg.2021.11.016. PubMed DOI PMC
Nuñez Zuno J.A., Khaddour K. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2024. [(accessed on 10 July 2024)]. Thrombotic Thrombocytopenic Purpura Evaluation and Management. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470585/ PubMed
Tsai H.-M. The kidney in thrombotic thrombocytopenic purpura. Minerva Med. 2007;98:731–747. PubMed PMC
Dorgalaleh A., Mahmudi M., Tabibian S., Khatib Z.K., Tamaddon G.H., Moghaddam E.S., Bamedi T., Alizadeh S., Moradi E. Anemia and Thrombocytopenia in Acute and Chronic Renal Failure. Int. J. Hematol.-Oncol. Stem Cell Res. 2013;7:34–39. PubMed PMC
Živná M., Kidd K.O., Barešová V., Hůlková H., Kmoch S., Bleyer A.J. Autosomal dominant tubulointerstitial kidney disease: A review. Am. J. Med. Genet. C Semin. Med. Genet. 2022;190:309–324. doi: 10.1002/ajmg.c.32008. PubMed DOI PMC
Kmochová T., Kidd K.O., Orr A., Hnízda A., Hartmannová H., Hodaňová K., Vyleťal P., Naušová K., Brinsa V., Trešlová H., et al. Autosomal dominant ApoA4 mutations present as tubulointerstitial kidney disease with medullary amyloidosis. Kidney Int. 2024;105:799–811. doi: 10.1016/j.kint.2023.11.021. PubMed DOI
Rasouly H.M., Balderes O., Marasa M., Fernandez H., Lipton M., Lin F., Gharavi A.G., Sabatello M. The effect of genetic education on the referral of patients to genetic evaluation: Findings from a national survey of nephrologists. Genet. Med. 2023;25:100814. doi: 10.1016/j.gim.2023.100814. PubMed DOI PMC
Mrug M., Bloom M.S., Seto C., Malhotra M., Tabriziani H., Gauthier P., Sidlow V., McKanna T., Billings P.R. Genetic Testing for Chronic Kidney Diseases: Clinical Utility and Barriers Perceived by Nephrologists. Kidney Med. 2021;3:1050–1056. doi: 10.1016/j.xkme.2021.08.006. PubMed DOI PMC
Dvela-Levitt M., Kost-Alimova M., Emani M., Kohnert E., Thompson R., Sidhom E.-H., Rivadeneira A., Sahakian N., Roignot J., Papagregoriou G., et al. Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell. 2019;178:521–535.e23. doi: 10.1016/j.cell.2019.07.002. PubMed DOI
Jayasinghe K., Quinlan C., Mallett A.J., Kerr P.G., McClaren B., Nisselle A., Mallawaarachchi A., Polkinghorne K.R., Patel C., Best S., et al. Attitudes and Practices of Australian Nephrologists Toward Implementation of Clinical Genomics. Kidney Int. Rep. 2021;6:272–283. doi: 10.1016/j.ekir.2020.10.030. PubMed DOI PMC
Connaughton D.M., Kennedy C., Shril S., Mann N., Murray S.L., Williams P.A., Conlon E., Nakayama M., van der Ven A.T., Ityel H., et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 2019;95:914–928. doi: 10.1016/j.kint.2018.10.031. PubMed DOI PMC
Lata S., Marasa M., Li Y., Fasel D.A., Groopman E., Jobanputra V., Rasouly H., Mitrotti A., Westland R., Verbitsky M., et al. Whole-Exome Sequencing in Adults With Chronic Kidney Disease A Pilot Study. Ann. Intern. Med. 2018;168:100–109. doi: 10.7326/M17-1319. PubMed DOI PMC
Braun D.A., Schueler M., Halbritter J., Gee H.Y., Porath J.D., Lawson J.A., Airik R., Shril S., Allen S.J., Stein D., et al. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney Int. 2016;89:468–475. doi: 10.1038/ki.2015.317. PubMed DOI PMC
Burnes D., Sheppard C., Henderson C.R., Wassel M., Cope R., Barber C., Pillemer K. Interventions to Reduce Ageism Against Older Adults: A Systematic Review and Meta-Analysis. Am. J. Public Health. 2019;109:e1–e9. doi: 10.2105/AJPH.2019.305123. PubMed DOI PMC
Beal F., Forrester N., Watson E., Williams M., Buckton A., Marlais M., Maxted A., UK Gene Panel Study Group. Woolf A.S., Saleem M.A., et al. A targeted gene panel illuminates pathogenesis in young people with unexplained kidney failure. J. Nephrol. 2024;37:1273–1284. doi: 10.1007/s40620-024-01964-1. PubMed DOI
Knoers N., Antignac C., Bergmann C., Dahan K., Giglio S., Heidet L., Lipska-Ziętkiewicz B.S., Noris M., Remuzzi G., Vargas-Poussou R., et al. Genetic testing in the diagnosis of chronic kidney disease: Recommendations for clinical practice. Nephrol. Dial. Transplant. 2022;37:239–254. doi: 10.1093/ndt/gfab218. PubMed DOI PMC
Bleyer A.J., Kmoch S., Antignac C., Robins V., Kidd K., Kelsoe J.R., Hladik G., Klemmer P., Knohl S.J., Scheinman S.J., et al. Variable clinical presentation of an MUC1 mutation causing medullary cystic kidney disease type 1. Clin. J. Am. Soc. Nephrol. 2014;9:527–535. doi: 10.2215/CJN.06380613. PubMed DOI PMC
Dusic E.J., Theoryn T., Wang C., Swisher E.M., Bowen D.J. Barriers, interventions, and recommendations: Improving the genetic testing landscape. Front. Digit. Health. 2022;4:961128. doi: 10.3389/fdgth.2022.961128. PubMed DOI PMC
Schott C., Dilliott A.A., Wang J., McIntyre A.D., Son S., Colaiacovo S., Baker C., Gunaratnam L., House A.A., Huang S.-H.S., et al. Vascular calcification in chronic kidney disease associated with pathogenic variants in ABCC6. Gene. 2024;927:148731. PubMed
Schott C., Colaiacovo S., Baker C., Weir M.A., Connaughton D.M. Reclassification of Genetic Testing Results: A Case Report Demonstrating the Need for Structured Re-Evaluation of Genetic Findings. Can. J. Kidney Health Dis. 2024;11:20543581241242562. doi: 10.1177/20543581241242562. PubMed DOI PMC