• This record comes from PubMed

Role of HSF1 in cell division, tumorigenesis and therapy: a literature review

. 2025 Apr 26 ; 20 (1) : 11. [epub] 20250426

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Review

Grant support
22-17102S Grantová Agentura České Republiky
MH CZ - DRO MMCI, 00209805 Ministerstvo Zdravotnictví Ceské Republiky
project SALVAGE, P JAC; CZ.02.01.01/00/22_008/0 004 644 Ministerstvo Školství, Mládeže a Tělovýchovy

Links

PubMed 40287736
PubMed Central PMC12034185
DOI 10.1186/s13008-025-00153-1
PII: 10.1186/s13008-025-00153-1
Knihovny.cz E-resources

Heat shock factor 1 (HSF1) is the master orchestrator of the heat shock response (HSR), a critical process for maintaining cellular health and protein homeostasis. These effects are achieved through rapid expression of molecular chaperones, the heat shock proteins (HSPs), which ensure correct protein folding, repair, degradation and stabilization of multiprotein complexes. In addition to its role in the HSR, HSF1 influences the cell cycle, including processes such as S phase progression and regulation of the p53 pathway, highlighting its importance in cellular protein synthesis and division. While HSF1 activity offers neuroprotective benefits in neurodegenerative diseases, its proteome-stabilizing function may also reinforce tumorigenic transformation. HSF1 overexpression in many types of cancer reportedly enhances cell growth enables survival, alters metabolism, weakens immune response and promotes angiogenesis or epithelial-mesenchymal transition (EMT) as these cells enter a form of "HSF1 addiction". Furthermore, the client proteins of HSF1-regulated chaperones, particularly Hsp90, include numerous key players in classical tumorigenic pathways. HSF1 thus presents a promising therapeutic target for cancer treatment, potentially in combination with HSP inhibitors to alleviate typical initiation of HSR upon their use.

See more in PubMed

Åkerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010;11(8):545–55. 10.1038/nrm2938. PubMed PMC

Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines. Cell. 1998;92(3):351–66. PubMed

Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996;381(6583):571–80. 10.1038/381571a0. PubMed

Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14(1):105–11. PubMed PMC

Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 2012;76:91–9. 10.1101/sqb.2012.76.010637. PubMed

Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol. 2018;19(1):4–19. PubMed PMC

Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 1999;18(21):5943–52. 10.1093/emboj/18.21.5943. PubMed PMC

Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi NF. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem. 2002;86(2):376–93. 10.1002/jcb.10232. PubMed

Kroeger PE, Sarge KD, Morimoto RI. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol Cell Biol. 1993;13(6):3370–83. 10.1128/mcb.13.6.3370-3383.1993. PubMed PMC

Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 1993;13(3):1392–407. 10.1128/mcb.13.3.1392-1407.1993. PubMed PMC

Östling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L. Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1*. J Biol Chem. 2007;282(10):7077–86. 10.1074/jbc.M607556200 PubMed

Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S et al. HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J. 2004;23(21):4297–306. 10.1038/sj.emboj.7600435. PubMed PMC

Kovács D, Kovács M, Ahmed S, Barna J. Functional diversification of heat shock factors. Biol Futur. 2022;73(4):427–39. PubMed

McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis*. J Biol Chem. 1998;273(13):7523–8. 10.1074/jbc.273.13.7523 PubMed

Rabindran SK, Giorgi G, Clos J, Wu C. Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci USA. 1991;88(16):6906–10. 10.1073/pnas.88.16.6906. PubMed PMC

Sandqvist A, Björk JK, Åkerfelt M, Chitikova Z, Grichine A, Vourc’h C et al. Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol Biol Cell. 2009;20(5):1340–7. 10.1091/mbc.e08-08-0864. PubMed PMC

Sorger PK, Nelson HC. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell. 1989;59(5):807–13. 10.1016/0092-8674(89)90604-1. PubMed

Green M, Schuetz TJ, Sullivan EK, Kingston RE. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol. 1995;15(6):3354–62. 10.1128/MCB.15.6.3354. PubMed PMC

Shi Y, Kroeger PE, Morimoto RI. The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Mol Cell Biol. 1995;15(8):4309–18. 10.1128/MCB.15.8.4309. PubMed PMC

Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science. 1993;259(5092):230–4. 10.1126/science.8421783. PubMed

Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K. HSF4, a New member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol. 1997;17(1):469–81. 10.1128/MCB.17.1.469. PubMed PMC

Newton EM, Knauf U, Green M, Kingston RE. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol Cell Biol. 1996;16(3):839–46. 10.1128/MCB.16.3.839. PubMed PMC

Anckar J, Sistonen L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem. 2011;80:1089–115. 10.1146/annurev-biochem-060809-095203 PubMed

Biamonti G. Nuclear stress bodies: a heterochromatin affair? Nat Rev Mol Cell Biol. 2004;5(6):493–8. 10.1038/nrm1405. PubMed

Denegri M, Moralli D, Rocchi M, Biggiogera M, Raimondi E, Cobianchi F, et al. Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell. 2002;13(6):2069–79. PubMed PMC

Cotto J, Fox S, Morimoto R. HSF1 granules: a novel stress-induced nuclear compartment of human cells. J Cell Sci. 1997;110 (Pt 23):2925–34. 10.1242/jcs.110.23.2925. PubMed

Biamonti G, Vourc’h C. Nuclear stress bodies. Cold Spring Harb Perspect Biol. 2010;2(6):a000695–000695. PubMed PMC

Zhang H, Shao S, Zeng Y, Wang X, Qin Y, Ren Q, et al. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock. Nat Cell Biol. 2022;24(3):340–52. PubMed

Gaglia G, Rashid R, Yapp C, Joshi GN, Li CG, Lindquist SL, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22(2):151–8. PubMed PMC

Ritossa F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia. 1962;18(12):571–3.

Colinet H, Lee SF, Hoffmann A. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult drosophila melanogaster. FEBS J. 2010;277(1):174–85. PubMed

Triandafillou CG, Katanski CD, Dinner AR, Drummond DA. Transient intracellular acidification regulates the core transcriptional heat shock response. Elife. 2020;9. PubMed PMC

Petronini PG, Alfieri R, Campanini C, Borghetti AF. Effect of an alkaline shift on induction of the heat shock response in human fibroblasts. J Cell Physiol. 1995;162(3):322–9. PubMed

Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol. 2013;94(6):1167–84. PubMed PMC

Dukay B, Csoboz B, Tóth ME. Heat-Shock proteins in neuroinflammation. Front Pharmacol. 2019;10. PubMed PMC

Ahn SG, Thiele DJ. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 2003;17(4):516–28. 10.1101/gad.1044503. PubMed PMC

Paul S, Ghosh S, Mandal S, Sau S, Pal M. NRF2 transcriptionally activates the heat shock factor 1 promoter under oxidative stress and affects survival and migration potential of MCF7 cells. J Biol Chem. 2018;293(50):19303–16. PubMed PMC

Mahmood K, Jadoon S, Mahmood Q, Irshad M, Hussain J. Synergistic effects of toxic elements on heat shock proteins. Biomed Res Int. 2014;2014:1–17. PubMed PMC

Steurer C, Eder N, Kerschbaum S, Wegrostek C, Gabriel S, Pardo N, et al. HSF1 mediated stress response of heavy metals. PLoS ONE. 2018;13(12):e0209077. PubMed PMC

Zhou N, Ye Y, Wang X, Ma B, Wu J, Li L, et al. Heat shock transcription factor 1 protects against pressure overload-induced cardiac fibrosis via Smad3. J Mol Med. 2017;95(4):445–60. PubMed PMC

Finka A, Goloubinoff P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones. 2013;18(5):591–605. PubMed PMC

Sivéry A, Courtade E, Thommen Q. A minimal titration model of the mammalian dynamical heat shock response. Phys Biol. 2016;13(6):066008. 10.1088/1478-3975/13/6/066008. PubMed

Abravaya K, Myers MP, Murphy SP, Morimoto RI. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 1992;6(7):1153–64. 10.1101/gad.6.7.1153. PubMed

Baler R, Welch WJ, Voellmy R. Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J Cell Biol. 1992;117(6):1151–9. 10.1083/jcb.117.6.1151. PubMed PMC

Bharadwaj S, Ali A, Ovsenek N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol Cell Biol. 1999;19(12):8033–41. 10.1128/MCB.19.12.8033. PubMed PMC

Ali A, Bharadwaj S, O’Carroll R, Ovsenek N. HSP90 interacts with and regulates the activity of heat shock factor 1 in xenopus oocytes. Mol Cell Biol. 1998;18(9):4949–60. 10.1128/MCB.18.9.4949. PubMed PMC

Krakowiak J, Zheng X, Patel N, Feder ZA, Anandhakumar J, Valerius K et al. Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response. Elife. 2018;7. PubMed PMC

Zheng X, Krakowiak J, Patel N, Beyzavi A, Ezike J, Khalil AS et al. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. Elife. 2016;5. PubMed PMC

Guisbert E, Czyz DM, Richter K, McMullen PD, Morimoto RI. Identification of a tissue-selective heat shock response regulatory network. PLoS Genet. 2013;9(4):e1003466. PubMed PMC

Kmiecik SW, Le Breton L, Mayer MP. Feedback regulation of heat shock factor 1 (Hsf1) activity by Hsp70-mediated trimer unzipping and dissociation from DNA. EMBO J. 2020;39(14). PubMed PMC

Simoncik O, Tichy V, Durech M, Hernychova L, Trcka F, Uhrik L, et al. Direct activation of HSF1 by macromolecular crowding and misfolded proteins. PLoS ONE. 2024;19(11):e0312524. PubMed PMC

Zhong M, Orosz A, Wu C. Direct Sensing of Heat and Oxidation by Drosophila Heat Shock Transcription Factor. Mol Cell. 1998;2(1):101–8. Accessed 20 Aug 2024 https://www.sciencedirect.com/science/article/pii/S1097276500801185 PubMed

Farkas T, Kutskova YA, Zimarino V. Intramolecular repression of mouse heat shock factor 1. Mol Cell Biol. 1998;18(2):906–18. 10.1128/MCB.18.2.906. PubMed PMC

Goodson ML, Sarge KD. Heat-inducible DNA binding of purified heat shock transcription factor 1 (∗). J Biol Chem. 1995;270(6):2447–50. 10.1074/jbc.270.6.2447 PubMed

Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer MP. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. Ron D, editor. Elife. 2016;5:e11576. 10.7554/eLife.11576. PubMed PMC

Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E. RNA-mediated response to heat shock in mammalian cells. Nature. 2006;440(7083):556–60. 10.1038/nature04518. PubMed

Kugel JF, Goodrich JA. Beating the heat: a translation factor and an RNA Mobilize the heat shock transcription factor HSF1. Mol Cell. 2006;22(2):153–4. 10.1016/j.molcel.2006.04.003 PubMed

Choi D, Oh HJ, Goh CJ, Lee K, Hahn Y. Heat shock RNA 1, known as a eukaryotic temperature-sensing noncoding RNA, is of bacterial origin. J Microbiol Biotechnol. 2015;25(8):1234–40. PubMed

Prahlad V, Cornelius T, Morimoto RI. Regulation of the cellular heat shock response in caenorhabditis elegans by thermosensory neurons. Science (1979). 2008;320(5877):811–4. 10.1126/science.1156093. PubMed PMC

Dai C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos Trans R Soc B Biol Sci. 2017;373(1738):20160525. 10.1098/rstb.2016.0525. PubMed PMC

PhosphoSitePlus® v6.7.5. https://www.phosphosite.org. Accessed 28 Oct 2024.

Budzyński MA, Puustinen MC, Joutsen J, Sistonen L. Uncoupling Stress-Inducible phosphorylation of heat shock factor 1 from its activation. Mol Cell Biol. 2015;35(14):2530–40. PubMed PMC

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. PubMed

Smith BJ, Yaffe MP. A mutation in the yeast heat-shock factor gene causes temperature-sensitive defects in both mitochondrial protein import and the cell cycle. Mol Cell Biol. 1991;11(5):2647–55. 10.1128/mcb.11.5.2647-2655.1991 PubMed PMC

Bruce JL, Chen C, Xie Y, Zhong R, Wang Yqun, Stevenson MA, et al. Activation of heat shock transcription factor 1 to a DNA binding form during the G1phase of the cell cycle. Cell Stress Chaperones. 1999;4(1):36–45. PubMed PMC

He L, Fox MH. Activation of heat-shock transcription factor 1 in heated chinese hamster ovary cells is dependent on the cell cycle and is inhibited by sodium vanadate. Radiat Res. 1999;151(3):283–92. 10.2307/3579940 PubMed

Venturi CB, Erkine AM, Gross DS. Cell cycle-dependent binding of yeast heat shock factor to nucleosomes. Mol Cell Biol. 2000;20(17):6435–48. 10.1128/MCB.20.17.6435-6448.2000. PubMed PMC

King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, Kirschner MW. A 20s complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to Cyclin B. Cell. 1995;81(2):279–88. PubMed

Kazemi-Sefat GE, Keramatipour M, Talebi S, Kavousi K, Sajed R, Kazemi-Sefat NA et al. The importance of CDC27 in cancer: molecular pathology and clinical aspects. Cancer Cell Int. 2021;21(1):160. 10.1186/s12935-021-01860-9. PubMed PMC

Lee YJ, Lee HJ, Lee JS, Jeoung D, Kang CM, Bae S et al. A novel function for HSF1-induced mitotic exit failure and genomic instability through direct interaction between HSF1 and Cdc20. Oncogene. 2008;27(21):2999–3009. 10.1038/sj.onc.1210966. PubMed

Lee YJ, Kim EH, Lee JS, Jeoung D, Bae S, Kwon SH, et al. HSF1 as a mitotic regulator: phosphorylation of HSF1 by Plk1 is essential for mitotic progression. Cancer Res. 2008;68(18):7550–60. PubMed

Taylor JH. Nucleic acid synthesis in relation to the cell division cycle. Ann NY Acad Sci. 1960;90(2):409–21. 10.1111/j.1749-6632.1960.tb23259.x. PubMed

Vihervaara A, Sergelius C, Vasara J, Blom MAH, Elsing AN, Roos-Mattjus P et al. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci. 2013;110(36). PubMed PMC

Delcuve GP, He S, Davie JR. Mitotic partitioning of transcription factors. J Cell Biochem. 2008;105(1):1–8. PubMed

Santagata S, Mendillo ML, Tang Y, chi, Subramanian A, Perley CC, Roche SP et al. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science (1979). 2013;341(6143). PubMed PMC

Stepanova L, Leng X, Parker SB, Harper JW. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 1996;10(12):1491–502. PubMed

Cutforth T. Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in drosophila. Cell. 1994;77(7):1027–36. PubMed

Muñoz MJ, Jimenez J. Genetic interactions between Hsp90 and the Cdc2 mitotic machineryin the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1999;261(2):242–50. PubMed

Antonova A, Hummel B, Khavaran A, Redhaber DM, Aprile-Garcia F, Rawat P, et al. Heat-Shock protein 90 controls the expression of cell-cycle genes by stabilizing metazoan-specific host-cell factor HCFC1. Cell Rep. 2019;29(6):1645–e16599. PubMed

Logan IR, McNeill HV, Cook S, Lu X, Meek DW, Fuller-Pace FV, et al. Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage. Nucleic Acids Res. 2009;37(9):2962–73. PubMed PMC

Li Q, Martinez JD. Loss of HSF1 results in defective Radiation-Induced G(2) arrest and DNA repair. Radiat Res. 2011;176(1):17–24. PubMed PMC

Hoang AT, Huang J, Rudra-Ganguly N, Zheng J, Powell WC, Rabindran SK, et al. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol. 2000;156(3):857–64. PubMed PMC

Nakamura Y, Fujimoto M, Hayashida N, Takii R, Nakai A, Muto M. Silencing HSF1 by short hairpin RNA decreases cell proliferation and enhances sensitivity to hyperthermia in human melanoma cell lines. J Dermatol Sci. 2010;60(3):187–92. PubMed

Wang Y, Theriault JR, He H, Gong J, Calderwood SK. Expression of a dominant negative heat shock Factor-1 construct inhibits aneuploidy in prostate carcinoma cells**. J Biol Chem. 2004;279(31):32651–9. PubMed

Momonaka M, Hayashida K, Hayashida N. Unexpected Inhibition of cervical carcinoma cell proliferation by expression of heat shock transcription factor 1. Biomed Res Clin Pract. 2016;1(4).

Canonici A, Qadir Z, Conlon NT, Collins DM, O’Brien NA, Walsh N et al. The HSP90 inhibitor NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant breast cancer cells. Invest New Drugs. 2018;36(4):581–9. 10.1007/s10637-017-0556-7. PubMed

Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010;10(8):537–49. 10.1038/nrc2887. PubMed PMC

Huang HL, Hsing HW, Lai TC, Chen YW, Lee TR, Chan HT et al. Trypsin-induced proteome alteration during cell subculture in mammalian cells. J Biomed Sci. 2010;17(1):36. 10.1186/1423-0127-17-36. PubMed PMC

Vydra N, Toma A, Widlak W. Pleiotropic role of HSF1 in neoplastic transformation. Curr Cancer Drug Targets. 2014;14(2):144–55. PubMed PMC

Heimberger T, Andrulis M, Riedel S, Stühmer T, Schraud H, Beilhack A et al. The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma. Br J Haematol. 2013;160(4):465–76. 10.1111/bjh.12164. PubMed

Chuma M, Sakamoto N, Nakai A, Hige S, Nakanishi M, Natsuizaka M et al. Heat shock factor 1 accelerates hepatocellular carcinoma development by activating nuclear factor-κB/mitogen-activated protein kinase. Carcinogenesis. 2014;35(2):272–81. Available from: 10.1093/carcin/bgt343. PubMed

Dai C, Santagata S, Tang Z, Shi J, Cao J, Kwon H et al. Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest. 2012;122(10):3742–54. 10.1172/JCI62727. PubMed PMC

Dudeja V, Chugh RK, Sangwan V, Skube SJ, Mujumdar NR, Antonoff MB, et al. Prosurvival role of heat shock factor 1 in the pathogenesis of pancreatobiliary tumors. Am J Physiology-Gastrointest Liver Physiol. 2011;300(6):G948–55. PubMed PMC

Dai C, Whitesell L, Rogers AB, Lindquist S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 2007;130(6):1005–18. PubMed PMC

Fujimoto M, Takaki E, Takii R, Tan K, Prakasam R, Hayashida N, et al. RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol Cell. 2012;48(2):182–94. PubMed

Qu Z, Titus ASCLS, Xuan Z, D’Mello SR. Neuroprotection by heat shock Factor-1 (HSF1) and trimerization-deficient mutant identifies novel alterations in gene expression. Sci Rep. 2018;8(1):17255. PubMed PMC

Neef DW, Jaeger AM, Thiele DJ. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov. 2011;10(12):930–44. PubMed PMC

Jiang S, Tu K, Fu Q, Schmitt DC, Zhou L, Lu N, et al. Multifaceted roles of HSF1 in cancer. Tumor Biol. 2015;36(7):4923–31. PubMed

Engerud H, Tangen IL, Berg A, Kusonmano K, Halle MK, Øyan AM et al. High level of HSF1 associates with aggressive endometrial carcinoma and suggests potential for HSP90 inhibitors. Br J Cancer. 2014;111(1):78–84. 10.1038/bjc.2014.262. PubMed PMC

Santagata S, Hu R, Lin NU, Mendillo ML, Collins LC, Hankinson SE et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci. 2011;108(45):18378–83. PubMed PMC

Powell CD, Paullin TR, Aoisa C, Menzie CJ, Ubaldini A, Westerheide SD. The heat shock transcription factor HSF1 induces ovarian cancer epithelial-mesenchymal transition in a 3D spheroid growth model. PLoS ONE. 2016;11(12):e0168389. PubMed PMC

Wang L, Brooks AN, Fan J, Wan Y, Gambe R, Li S, et al. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell. 2016;30(5):750–63. PubMed PMC

Min JN, Huang L, Zimonjic DB, Moskophidis D, Mivechi NF. Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Oncogene. 2007;26(35):5086–97. 10.1038/sj.onc.1210317. PubMed

Jin X, Moskophidis D, Mivechi NF. Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab. 2011;14(1):91–103. PubMed PMC

Gabai VL, Meng L, Kim G, Mills TA, Benjamin IJ, Sherman MY. Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HuR. Mol Cell Biol. 2012;32(5):929–40. 10.1128/MCB.05921-11. PubMed PMC

Xi C, Hu Y, Buckhaults P, Moskophidis D, Mivechi NF. Heat shock factor Hsf1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis. J Biol Chem. 2012;287(42):35646–57. PubMed PMC

Nakamura Y, Fujimoto M, Fukushima S, Nakamura A, Hayashida N, Takii R et al. Heat shock factor 1 is required for migration and invasion of human melanoma in vitro and in vivo. Cancer Lett. 2014;354(2):329–35. 10.1016/j.canlet.2014.08.029 PubMed

Fang F, Chang R, Yang L. Heat shock factor 1 promotes invasion and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer. 2012;118(7):1782–94. 10.1002/cncr.26482. PubMed

Toma-Jonik A, Widlak W, Korfanty J, Cichon T, Smolarczyk R, Gogler-Piglowska A et al. Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation. Cell Signal. 2015;27(2):394–401. 10.1016/j.cellsig.2014.11.029 PubMed

Scott KL, Nogueira C, Heffernan TP, van Doorn R, Dhakal S, Hanna JA, et al. Proinvasion metastasis drivers in early-stage melanoma are oncogenes. Cancer Cell. 2011;20(1):92–103. PubMed PMC

Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell. 2012;150(3):549–62. PubMed PMC

Guettouche T, Boellmann F, Lane WS, Voellmy R. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 2005;6(1):4. 10.1186/1471-2091-6-4. PubMed PMC

Carpenter RL, Paw I, Dewhirst MW, Lo HW. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to slug overexpression and epithelial–mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene. 2015;34(5):546–57. PubMed PMC

Moreno R, Banerjee S, Jackson AW, Quinn J, Baillie G, Dixon JE, et al. The stress-responsive kinase DYRK2 activates heat shock factor 1 promoting resistance to proteotoxic stress. Cell Death Differ. 2021;28(5):1563–78. PubMed PMC

Calderwood SK, Wang Y, Xie X, Khaleque MA, Chou SD, Murshid A et al. Signal transduction pathways leading to heat shock transcription. Sign Transduct Insights. 2010;2. PubMed PMC

Xu J, Shi Q, Xu W, Zhou Q, Shi R, Ma Y, et al. Metabolic enzyme PDK3 forms a positive feedback loop with transcription factor HSF1 to drive chemoresistance. Theranostics. 2019;9(10):2999–3013. PubMed PMC

Zhao YH, Zhou M, Liu H, Ding Y, Khong HT, Yu D, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene. 2009;28(42):3689–701. PubMed

Stankiewicz AR, Livingstone AM, Mohseni N, Mosser DD. Regulation of heat-induced apoptosis by Mcl-1 degradation and its Inhibition by Hsp70. Cell Death Differ. 2009;16(4):638–47. PubMed

KLEIN SD. Heat-shock protein 70 attenuates nitric oxide-induced apoptosis in RAW macrophages by preventing cytochrome C release. Biochem J. 2002;362(3):635. PubMed PMC

Kalinowska M, Garncarz W, Pietrowska M, Garrard WT, Widlak P. Regulation of the human apoptotic DNase/RNase endonuclease G: involvement of Hsp70 and ATP. Apoptosis. 2005;10(4):821–30. PubMed

Gao F, Hu X, yang, Xie X, jie, Xu Q, yuan, Wang Y ping, Liu X, bao et al. Heat shock protein 90 protects rat mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis via the PI3K/Akt and ERK1/2 pathways. J Zhejiang Univ Sci B. 2010;11(8):608–17. PubMed PMC

Hockemeyer K, Sakellaropoulos T, Chen X, Ivashkiv O, Sirenko M, Zhou H, et al. The stress response regulator HSF1 modulates natural killer cell anti-tumour immunity. Nat Cell Biol. 2024;26(10):1734–44. PubMed

Grunberg N, Pevsner-Fischer M, Goshen-Lago T, Diment J, Stein Y, Lavon H, et al. Cancer-associated fibroblasts promote aggressive gastric cancer phenotypes via heat shock factor 1–mediated secretion of extracellular vesicles. Cancer Res. 2021;81(7):1639–53. PubMed PMC

Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18(6):345–60. 10.1038/nrm.2017.20. PubMed

Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, et al. Quantitative analysis of Hsp90-Client interactions reveals principles of substrate recognition. Cell. 2012;150(5):987–1001. PubMed PMC

Picard D. October. picardLab - the Hsp90 machine interactome. https://www.picard.ch/downloads/. Accessed 16 Oct 2024.

Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci. 2000;97(20):10832–7. PubMed PMC

Ahsan A, Ramanand SG, Whitehead C, Hiniker SM, Rehemtulla A, Pratt WB et al. Wild-type EGFR is stabilized by direct interaction with HSP90 in cancer cells and tumors. Neoplasia. 2012;14(8):670-IN1. 10.1593/neo.12986 PubMed PMC

Schulz R, Streller F, Scheel AH, Rüschoff J, Reinert MC, Dobbelstein M et al. HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis. 2014;5(1):e980–e980. 10.1038/cddis.2013.508. PubMed PMC

Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T et al. FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol. 2015;17(3):322–32. 10.1038/ncb3121. PubMed PMC

Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Experimental Clin Cancer Res. 2011;30(1):87. PubMed PMC

Regeling A, Imhann F, Volders HH, Blokzijl T, Bloks VW, Weersma RK, et al. HSPA6 is an ulcerative colitis susceptibility factor that is induced by cigarette smoke and protects intestinal epithelial cells by stabilizing anti-apoptotic Bcl-XL. Biochim Biophys Acta (BBA) Mol Basis Dis. 2016;1862(4):788–96. PubMed

Jacobs AT, Marnett LJ. HSF1-mediated BAG3 expression attenuates apoptosis in 4-Hydroxynonenal-treated colon cancer cells via stabilization of Anti-apoptotic Bcl-2 proteins. J Biol Chem. 2009;284(14):9176–83. PubMed PMC

Antonietti P, Linder B, Hehlgans S, Mildenberger IC, Burger MC, Fulda S, et al. Interference with the HSF1/HSP70/BAG3 pathway primes glioma cells to matrix detachment and BH3 mimetic–induced apoptosis. Mol Cancer Ther. 2017;16(1):156–68. PubMed

Li K, Deng X, Feng G, Chen Y. Knockdown of Bcl-2-associated athanogene-3 can enhance the efficacy of BGJ398 via suppressing migration and inducing apoptosis in gastric cancer. Dig Dis Sci. 2021;66(9):3036–44. PubMed

Ghosh JC, Siegelin MD, Dohi T, Altieri DC. Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res. 2010;70(22):8988–93. PubMed PMC

Benderska N, Ivanovska J, Rau TT, Schulze-Luehrmann J, Mohan S, Chakilam S et al. DAPK-HSF1 interaction as a new positive feedback loop for TNF-induced apoptosis in colorectal cancer cells. J Cell Sci. 2014. PubMed

Janus P, Toma-Jonik A, Vydra N, Mrowiec K, Korfanty J, Chadalski M, et al. Pro-death signaling of cytoprotective heat shock factor 1: upregulation of NOXA leading to apoptosis in heat-sensitive cells. Cell Death Differ. 2020;27(7):2280–92. PubMed PMC

Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Br J Pharmacol. 2016;173(6):970–9. PubMed PMC

Kang H, Oh T, Bahk YY, Kim GH, Kan SY, Shin DH, et al. HSF1 regulates mevalonate and cholesterol biosynthesis pathways. Cancers (Basel). 2019;11(9):1363. PubMed PMC

Eroglu B, Pang J, Jin X, Xi C, Moskophidis D, Mivechi NF. HSF1-Mediated control of cellular energy metabolism and mTORC1 activation drive acute T-cell lymphoblastic leukemia progression. Mol Cancer Res. 2020;18(3):463–76. PubMed PMC

Su KH, Dai S, Tang Z, Xu M, Dai C. Heat shock factor 1 is a direct antagonist of AMP-activated protein kinase. Mol Cell. 2019;76(4):546–e5618. PubMed PMC

Levy NS, Chung S, Furneaux H, Levy AP. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem. 1998;273(11):6417–23. PubMed

Holmes B, Benavides-Serrato A, Freeman RS, Landon KA, Bashir T, Nishimura RN, et al. mTORC2/AKT/HSF1/HuR constitute a feed-forward loop regulating rictor expression and tumor growth in glioblastoma. Oncogene. 2018;37(6):732–43. PubMed PMC

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our Understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174–86. PubMed PMC

Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 2014;158(3):564–78. PubMed PMC

Liao Y, Xue Y, Zhang L, Feng X, Liu W, Zhang G. Higher heat shock factor 1 expression in tumor stroma predicts poor prognosis in esophageal squamous cell carcinoma patients. J Transl Med. 2015;13(1):338. PubMed PMC

Wang Q, Zhang Y, Zhu L, Pan L, Yu M, Shen W, et al. Heat shock factor 1 in cancer-associated fibroblasts is a potential prognostic factor and drives progression of oral squamous cell carcinoma. Cancer Sci. 2019;110(5):1790–803. PubMed PMC

Lancaster GI, Febbraio MA. Exosome-dependent trafficking of HSP70. J Biol Chem. 2005;280(24):23349–55. PubMed

Saito RF, Machado CML, Lomba ALO, Otake AH, Rangel MC. Heat shock proteins mediate intercellular communications within the tumor microenvironment through extracellular vesicles. Appl Biosci. 2024;3(1):45–58.

Zhou Q, Guan XY, Li Y. Roles of heat shock proteins in tumor immune microenvironment. Visualized Cancer Med. 2024;5:3.

Jacobs C, Shah S, Lu WC, Ray H, Wang J, Hockaden N, et al. HSF1 inhibits antitumor immune activity in breast cancer by suppressing CCL5 to block CD8 + T-cell recruitment. Cancer Res. 2024;84(2):276–90. PubMed PMC

Tang Z, Dai S, He Y, Doty RA, Shultz LD, Sampson SB, et al. MEK guards proteome stability and inhibits Tumor-Suppressive amyloidogenesis via HSF1. Cell. 2015;160(4):729–44. PubMed PMC

Gumilar KE, Chin Y, Ibrahim IH, Tjokroprawiro BA, Yang JY, Zhou M, et al. Heat shock factor 1 inhibition: a novel anti-cancer strategy with promise for precision oncology. Cancers (Basel). 2023;15(21):5167. PubMed PMC

Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16(9):543–52. 10.1038/nrg3978. PubMed PMC

Dong B, Jaeger AM, Hughes PF, Loiselle DR, Hauck JS, Fu Y et al. Targeting therapy-resistant prostate cancer via a direct inhibitor of the human heat shock transcription factor 1. Sci Transl Med. 2020;12(574). PubMed PMC

Nuvectis Pharma Inc. A phase 1 clinical study of NXP800 in subjects with advanced cancers and expansion in subjects with ovarian cancer. Identifier NCT05226507. 2021.https://clinicaltrials.gov/study/NCT05226507#contacts. Accessed 15 Feb 2025.

Workman P, Clarke PA, Te Poele R, Powers M, Box G, De Billy E, et al. Discovery and validation of biomarkers to support clinical development of NXP800: a first-in-class orally active, small-molecule HSF1 pathway inhibitor. Eur J Cancer. 2022;174:S35.

Cheeseman MD, Chessum NEA, Rye CS, Pasqua AE, Tucker MJ, Wilding B, et al. Discovery of a chemical probe bisamide (CCT251236): an orally bioavailable efficacious Pirin ligand from a heat shock transcription factor 1 (HSF1) phenotypic screen. J Med Chem. 2017;60(1):180–201. PubMed PMC

Powers MV, Sharp SY, Lampraki EM, Roe T, Pellegrino L, Taskinen M, et al. Abstract LB234: activation of the integrated stress response by the developmental HSF1 pathway inhibitor NXP800. Cancer Res. 2023;83(8Supplement):LB234–234.

Li ZN, Luo Y. HSP90 inhibitors and cancer: prospects for use in targeted therapies (Review). Oncol Rep. 2022;49(1):6. PubMed PMC

Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14(7):417–33. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...