Beyond TREC: Pivotal role of tandem TREC/KREC assay in Czech SCID NBS pilot programme
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
Masarykova Univerzita
Všeobecná Fakultní Nemocnice v Praze
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
40321024
PubMed Central
PMC12050992
DOI
10.1111/pai.70100
Knihovny.cz E-resources
- Keywords
- IGLL1, KREC, SCID, TREC, XLA, agammaglobulinemia, dried blood spot, screening, severe combined immunodeficiency,
- MeSH
- Agammaglobulinemia diagnosis MeSH
- B-Lymphocytes immunology MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Neonatal Screening * methods MeSH
- Pilot Projects MeSH
- Receptors, Antigen, T-Cell * genetics MeSH
- Severe Combined Immunodeficiency * diagnosis genetics epidemiology MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Infant, Newborn MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- Receptors, Antigen, T-Cell * MeSH
BACKGROUND: Severe combined immunodeficiency (SCID) is a fatal but treatable inborn error of immunity (IEI). Newborn screening (NBS) using T-cell receptor excision circles (TREC) has been adopted globally, with very few countries incorporating kappa recombination excision circles (KREC) to also detect early B-cell development disorders, such as X-linked agammaglobulinemia (XLA). OBJECTIVE: To evaluate the effectiveness of a 2-year pilot SCID NBS program in the Czech Republic, emphasising the utility of combined TREC/KREC screening. METHODS: Between January 2022 and December 2023, a dual TREC/KREC NBS pilot was conducted across the Czech Republic, alongside spinal muscular atrophy (SMA) screening. Approximately 200,000 newborns were screened using quantitative real-time PCR on dried blood spots collected 48-72 h after birth. RESULTS: The pilot referred 58 newborns, identifying 21 cases of IEI, including two SCID cases, with an overall incidence of TREC/KREC screenable IEI of 10.5/100,000 newborns. SCID incidence was 1/100,000. KREC screening proved invaluable, detecting 10 cases of congenital agammaglobulinemia including novel non-XLA forms, which increased the estimated incidence of agammaglobulinemia in the Czech Republic sixfold. Over one-third of low KREC results were linked to maternal immunosuppression. CONCLUSION: The Czech pilot demonstrated the effectiveness of integrated TREC/KREC NBS in detecting both T- and B-cell immunodeficiencies. As of 2024, SCID and SMA screening are included in the nationwide NBS, with KREC screening significantly improving early detection of B-cell disorders.
Centre for Cardiovascular Surgery and Transplantation Brno Czech Republic
CLIP Childhood Leukaemia Investigation Prague Prague Czech Republic
Department of Pediatrics University Hospital Brno Brno Czech Republic
See more in PubMed
Verbsky JW, Baker MW, Grossman WJ, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008‐2011). J Clin Immunol. 2012;32:82‐88. PubMed
Amatuni GS, Currier RJ, Church JA, et al. Newborn screening for severe combined immunodeficiency and T‐cell lymphopenia in California, 2010‐2017. Pediatrics. 2019;143(2):e20182300. doi:10.1542/peds.2018-2300 PubMed DOI PMC
Howley E, Golwala Z, Buckland M, et al. Impact of newborn screening for SCID on the management of congenital athymia. J Allergy Clin Immunol. 2024;153:330‐334. PubMed PMC
Marakhonov AV, Efimova IY, Mukhina AA, et al. Newborn screening for severe T and B cell lymphopenia using TREC/KREC detection: a large‐scale pilot study of 202,908 newborns. J Clin Immunol. 2024;44:93. PubMed
Ricci S, Guarnieri V, Capitanini F, et al. Expanded newborn screening for inborn errors of immunity: the experience of Tuscany. J Allergy Clin Immunol Pract. 2024;12:1622‐1630.e4. PubMed
Speckmann C, Nennstiel U, Hönig M, et al. Prospective newborn screening for SCID in Germany: a first analysis by the pediatric immunology working group (API). J Clin Immunol. 2023;43:965‐978. PubMed PMC
Boyarchuk O, Yarema N, Kravets V, et al. Newborn screening for severe combined immunodeficiency: the results of the first pilot TREC and KREC study in Ukraine with involving of 10,350 neonates. Front Immunol. 2022;13:999664. PubMed PMC
Argudo‐Ramírez A, Martín‐Nalda A, de González Aledo‐Castillo JM, et al. Newborn screening for SCID. Experience in Spain (Catalonia). Int J Neonatal Screen. 2021;7(3):46. doi:10.3390/ijns7030046 PubMed DOI PMC
Audrain M, Thomas C. Neonatal screening for SCID: the french experience. Int J Neonatal Screen. 2021;7:42. PubMed PMC
Giżewska M, Durda K, Winter T, et al. Newborn screening for SCID and other severe primary immunodeficiency in the polish‐German transborder area: experience from the first 14 months of collaboration. Front Immunol. 2020;11:1948. PubMed PMC
Göngrich C, Ekwall O, Sundin M, et al. First year of TREC‐based national SCID screening in Sweden. Screening. 2021;7(3):59. doi:10.3390/ijns7030059 PubMed DOI PMC
Blom M, Bredius RGM, Weijman G, et al. Introducing newborn screening for severe combined immunodeficiency (SCID) in the Dutch neonatal screening program. Screening. 2018;4(4):40. doi:10.3390/ijns4040040 PubMed DOI PMC
Blom M, Soomann M, Soler‐Palacín P, et al. Newborn screening for SCID and severe T lymphocytopenia in Europe. J Allergy Clin Immunol. 2025;155(2):377‐386. doi:10.1016/j.jaci.2024.10.018 PubMed DOI
Český Statistický Úřad . Pohyb obyvatelstva ‐ rok 2023. 2023. Accessed July 8, 2024. https://csu.gov.cz/rychle‐informace/pohyb‐obyvatelstva‐rok‐2023
Mustillo PJ, Sullivan KE, Chinn IK, et al. Clinical practice guidelines for the immunological Management of Chromosome 22q11.2 deletion syndrome and other defects in thymic development. J Clin Immunol. 2023;43:247‐270. doi:10.1007/s10875-022-01418-y PubMed DOI PMC
Bosticardo M, Yamazaki Y, Cowan J, et al. Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis. Am J Hum Genet. 2019;105:549‐561. PubMed PMC
Moses A, Bhalla P, Thompson A, et al. Comprehensive phenotypic analysis of diverse FOXN1 variants. J Allergy Clin Immunol. 2023;152:1273‐1291.e15. PubMed PMC
Collins C, Sharpe E, Silber A, Kulke S, Hsieh EWY. Congenital Athymia: genetic etiologies, clinical manifestations, diagnosis, and treatment. J Clin Immunol. 2021;41:881‐895. PubMed PMC
Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet. 2003;362:1366‐1373. PubMed
Kreins AY, Maio S, Dhalla F. Inborn errors of thymic stromal cell development and function. Semin Immunopathol. 2021;43:85‐100. PubMed PMC
Bloomfield M, Klocperk A, Schneiderová H, et al. The expansion of national newborn screening marks an advancement in diagnosing patients with severe inborn errors of immunity. Cesk Pediatr. 2024;79:136‐141.
Janda A, Sedlacek P, Mejstrikova E, et al. Unrelated partially matched lymphocyte infusions in a patient with complete DiGeorge/CHARGE syndrome. Pediatr Transplant. 2007;11:441‐447. PubMed
Klocperk A, Šedivá A. První transplantace thymu v České republice jako nová terapeutická možnost pro pacienty s kompletním syndromem DiGeorge. Alergie. 2019;4:200‐205.
Squire JD, Joshi AY. Response to mRNA COVID‐19 vaccination in three XLA patients. Vaccine. 2022;40:5299‐5301. PubMed PMC
Liu Y, Wu Y, Lam K‐T, Lee PP‐W, Tu W, Lau Y‐L. Dendritic and T cell response to influenza is normal in the patients with X‐linked agammaglobulinemia. J Clin Immunol. 2012;32:421‐429. PubMed PMC
van Leeuwen LPM, Geurts vanKessel CH, Ellerbroek PM, et al. Immunogenicity of the mRNA‐1273 COVID‐19 vaccine in adult patients with inborn errors of immunity. J Allergy Clin Immunol. 2022;149(6):1949‐1957. doi:10.1016/j.jaci.2022.04.002 PubMed DOI PMC
Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014;58:e44‐e100. PubMed
Appendix A‐25: Vaccination of persons with primary immunodeficiencies. n.d. Accessed December 29, 2022 https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/appendices/a/immuno‐table.pdf
Martire B, Azzari C, Badolato R, et al. Vaccination in immunocompromised host: recommendations of Italian primary immunodeficiency network centers (IPINET). Vaccine. 2018;36:3541‐3554. PubMed
Soomann M, Bily V, Elgizouli M, et al. Variants in IGLL1 cause a broad phenotype from agammaglobulinemia to transient hypogammaglobulinemia. J Allergy Clin Immunol. 2024;154(5):1313‐1324.e7. doi:10.1016/j.jaci.2024.08.002 PubMed DOI
Ramos BC, Aranda CS, Sobrinho AO, Sole D, Condino‐Neto A. TRECs/KRECs: beyond the diagnosis of severe combined immunodeficiency. J Clin Immunol. 2023;43:80‐81. PubMed
Puck JM, Gennery AR. Establishing newborn screening for SCID in the USA: experience in California. Screening. 2021;7(4):72. doi:10.3390/ijns7040072 PubMed DOI PMC
Chien YH, Chiang SC, Chang KL, et al. Incidence of severe combined immunodeficiency through newborn screening in a Chinese population. J Formos Med Assoc. 2015;114(1):12‐16. doi:10.1016/j.jfma.2012.10.020 PubMed DOI
Campbell IM, Sheppard SE, Crowley TB, et al. What is new with 22q? An update from the 22q and you Center at the Children's Hospital of Philadelphia. Am J Med Genet A. 2018;176(10):2058‐2069. doi:10.1002/ajmg.a.40637 PubMed DOI PMC
Abolhassani H, Hirbod‐Mobarakeh A, Shahinpour S, et al. Mortality and morbidity in patients with X‐linked agammaglobulinaemia. Allergol Immunopathol. 2015;43:62‐66. PubMed
Currier R, Puck JM. SCID newborn screening: what we've learned. J Allergy Clin Immunol. 2021;147:417‐426. PubMed PMC
Barbaro M, Ohlsson A, Borte S, et al. Newborn screening for severe primary immunodeficiency diseases in Sweden—a 2‐year pilot TREC and KREC screening study. J Clin Immunol. 2017;37:51‐60. PubMed PMC
Lougaris V, Soresina A, Baronio M, et al. Long‐term follow‐up of 168 patients with X‐linked agammaglobulinemia reveals increased morbidity and mortality. J Allergy Clin Immunol. 2020;146:429‐437. PubMed
Hernandez‐Trujillo V, Zhou C, Scalchunes C, et al. A registry study of 240 patients with X‐linked agammaglobulinemia living in the USA. J Clin Immunol. 2023;43:1468‐1477. PubMed PMC
Bahal S, Zinicola M, Moula SE, et al. Hematopoietic stem cell gene editing rescues B‐cell development in X‐linked agammaglobulinemia. J Allergy Clin Immunol. 2024;154:195‐208.e8. PubMed PMC
Sun D, Heimall JR, Greenhawt MJ, Bunin NJ, Shaker MS, Romberg N. Cost utility of lifelong immunoglobulin replacement therapy vs hematopoietic stem cell transplant to treat agammaglobulinemia. JAMA Pediatr. 2022;176:176‐184. PubMed PMC
Elsink K, van Montfrans JM, van Gijn ME, et al. Cost and impact of early diagnosis in primary immunodeficiency disease: a literature review. Clin Immunol. 2020;213:108359. PubMed
Nishimura A, Uppuluri R, Raj R, et al. An international survey of allogeneic hematopoietic cell transplantation for X‐linked agammaglobulinemia. J Clin Immunol. 2023;43:1827‐1839. doi:10.1007/s10875-023-01551-2 PubMed DOI
Kwan A, Abraham RS, Currier R, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729‐738. PubMed PMC
van der Spek J, Groenwold RHH, van der Burg M, van Montfrans JM. TREC based newborn screening for severe combined immunodeficiency disease: a systematic review. J Clin Immunol. 2015;35:416‐430. PubMed PMC
Thomas C, Durand‐Zaleski I, Frenkiel J, et al. Clinical and economic aspects of newborn screening for severe combined immunodeficiency: DEPISTREC study results. Clin Immunol. 2019;202:33‐39. PubMed
Trück J, Prader S, Natalucci G, et al. Swiss newborn screening for severe T and B cell deficiency with a combined TREC/KREC assay ‐ management recommendations. Swiss Med Wkly. 2020;150:w20254. PubMed
Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol. 2017;139:733‐742. PubMed PMC
Dorsey MJ, Wright NAM, Chaimowitz NS, et al. Infections in infants with SCID: isolation, infection screening, and prophylaxis in PIDTC centers. J Clin Immunol. 2021;41:38‐50. PubMed PMC
Lankester AC, Neven B, Mahlaoui N, et al. Hematopoietic cell transplantation in severe combined immunodeficiency: the SCETIDE 2006‐2014 European cohort. J Allergy Clin Immunol. 2022;149:1744‐1754.e8. PubMed
Pai S‐Y, Logan BR, Griffith LM, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371(5):434‐446. doi:10.1056/NEJMoa1401177 PubMed DOI PMC
Thakar MS, Logan BR, Puck JM, et al. Measuring the effect of newborn screening on survival after haematopoietic cell transplantation for severe combined immunodeficiency: a 36‐year longitudinal study from the primary immune deficiency treatment consortium. Lancet. 2023;402:129‐140. PubMed PMC
Blom M, Pico‐Knijnenburg I, Imholz S, et al. Second tier testing to reduce the number of non‐actionable secondary findings and false‐positive referrals in newborn screening for severe combined immunodeficiency. J Clin Immunol. 2021;41:1762‐1773. PubMed PMC
Kutsa O, Andrews SM, Mallonee E, et al. Parental coping with uncertainties along the severe combined immunodeficiency journey. Orphanet J Rare Dis. 2022;17:390. PubMed PMC