Tacrolimus exposure during the three-month period following allogeneic stem cell transplantation predicts overall survival
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
40351435
PubMed Central
PMC12061681
DOI
10.3389/fphar.2025.1517083
PII: 1517083
Knihovny.cz E-resources
- Keywords
- allogeneic stem cells, nonlinear mixed-effects model, pharmacokinetics, tacrolimus, transplantation,
- Publication type
- Journal Article MeSH
OBJECTIVES: The objective of this study was to investigate the relationship between both short-term and long-term tacrolimus exposure and overall survival after allogeneic stem cell transplantation and to propose individualized tacrolimus dosing based on the population pharmacokinetic model. STUDY DESIGN: Tacrolimus exposure during the first 3 months of therapy after transplantation was calculated using therapeutic drug monitoring data from all patients who underwent allogeneic stem cell transplantation from 2016 to 2018. The optimal upper level was determined using ROC analysis, and the impact of cutoff tacrolimus exposure values on overall survival of patients was assessed together with other transplant variables using multivariate analysis. The population pharmacokinetic model was developed using a nonlinear mixed-effects modeling method, and the optimal tacrolimus dose was proposed. RESULTS: A total of 86 patients were included in the outcome analyses. Except for the disease risk category, age ≥55 years, and female-to-male donor, tacrolimus exposures of the area under the curve of trough concentrations (AUCtc) ≥ 222 ng h/mL, ≥258 ng h/mL, and ≥160 ng h/mL during the whole three-month period, second month, and third month of therapy, respectively, were also found to be statistically significant for overall survival in univariate analysis. These AUCtc values were independent variables for overall survival in multivariate analysis, with RR of 3.01 (P = 0.0056), 3.22 (P = 0.0058), and 2.93 (P = 0.0184) for the whole three-month period, second month, and third month of therapy, respectively. The disease risk category (RR 7.11; P < 0.0001), age (RR 2.45; P = 0.0214), and non-myeloablative conditioning (RR 3.39; P = 0.0014) were also significant factors influencing survival in multivariate analysis. Tacrolimus volume of distribution was 127.1 L and was not affected by any of the tested covariates, whereas clearance decreased with age according to the equation CL = 7.94 × e - 0.0085 × age and was reduced by 23% in patients who underwent repeat transplantation. CONCLUSION: Except for the disease risk category, age, and non-myeloablative conditioning, exposure to tacrolimus is an independent predictor of overall survival and should not exceed trough levels of 10.7 ng/mL during the second month and 6.8 ng/mL during third month after transplantation. In order to reach this target, nomogram for estimation of the maximal initial tacrolimus daily dose was developed based on the population pharmacokinetic model.
See more in PubMed
Abraham R., Szer J., Bardy P., Grigg A. (1997). Early cyclosporine taper in high-risk sibling allogeneic bone marrow transplants. Bone Marrow Transpl. 20 (9), 773–777. 10.1038/sj.bmt.1700961 PubMed DOI
Bacigalupo A., Van Lint M. T., Occhini D., Gualandi F., Lamparelli T., Sogno G., et al. (1991). Increased risk of leukemia relapse with high-dose cyclosporine A after allogeneic marrow transplantation for acute leukemia. Blood 77 (7), 1423–1428. 10.1182/blood.v77.7.1423.1423 PubMed DOI
Becker A., Backman J. T., Itkonen O. (2020). Comparison of LC-MS/MS and chemiluminescent immunoassays for immunosuppressive drugs reveals organ dependent variation in blood cyclosporine a concentrations. Clin. Chim. Acta 508, 22–27. 10.1016/j.cca.2020.05.007 PubMed DOI
Bianchi M., Heim D., Lengerke C., Halter J., Gerull S., Kleber M., et al. (2019). Cyclosporine levels > 195 μg/L on day 10 post-transplant was associated with significantly reduced acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Ann. Hematol. 98 (4), 971–977. 10.1007/s00277-018-3577-1 PubMed DOI
Braidotti S., Curci D., Maestro A., Zanon D., Maximova N., Di Paolo A. (2024). Effect of early post-hematopoietic stem cell transplant tacrolimus concentration on transplant outcomes in pediatric recipients: one facility’s ten-year experience of immunosuppression with tacrolimus. Int. Immunopharmacol. 138, 112636. 10.1016/j.intimp.2024.112636 PubMed DOI
Craddock C., Nagra S., Peniket A., Brookes C., Buckley L., Nikolousis E., et al. (2010). Factors predicting long-term survival after T-cell depleted reduced intensity allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica 95 (6), 989–995. 10.3324/haematol.2009.013920 PubMed DOI PMC
The EBMT Handbook: hematopoietic cell transplantation and cellular therapies (2024). Cham(Switzerland): Springer International Publishing. 10.1007/978-3-031-44080-9 PubMed DOI
Gaies E., Salouage I., Sahnoun R., Trabelsi S., Jebabli N., Lakhal M., et al. (2011). Interaction between azole antifugals drugs and tacrolimus in four kidney transplant patients. J. Mycol. Med. 21 (1), 46–50. 10.1016/j.mycmed.2010.11.003 PubMed DOI
Ganetsky A., Shah A., Miano T. A., Hwang W. T., He J., Loren A. W., et al. (2016). Higher tacrolimus concentrations early after transplant reduce the risk of acute GvHD in reduced-intensity allogeneic stem cell transplantation. Bone Marrow Transpl. 51 (4), 568–572. 10.1038/bmt.2015.323 PubMed DOI PMC
Hagen P. A., Adams W., Smith S., Tsai S., Stiff P. (2019). Low mean post-transplantation tacrolimus levels in weeks 2-3 correlate with acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation from related and unrelated donors. Bone Marrow Transpl. 54 (1), 155–158. 10.1038/s41409-018-0267-5 PubMed DOI
Konstandi M., Johnson E. O. (2023). Age-related modifications in CYP-dependent drug metabolism: role of stress. Front. Endocrinol. (Lausanne) 14, 1143835. 10.3389/fendo.2023.1143835 PubMed DOI PMC
Levine D. M., Maine G. T., Armbruster D. A., Mussell C., Buchholz C., O'Connor G., et al. (2011). The need for standardization of tacrolimus assays. Clin. Chem. 57 (12), 1739–1747. 10.1373/clinchem.2011.172080 PubMed DOI
Malard F., Szydlo R. M., Brissot E., Chevallier P., Guillaume T., Delaunay J., et al. (2010). Impact of cyclosporine-A concentration on the incidence of severe acute graft-versus-host disease after allogeneic stem cell transplantation. Biol. Blood Marrow Transpl. 16 (1), 28–34. 10.1016/j.bbmt.2009.08.010 PubMed DOI
Mori T., Kato J., Shimizu T., Aisa Y., Nakazato T., Yamane A., et al. (2012). Effect of early posttransplantation tacrolimus concentration on the development of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation from unrelated donors. Biol. Blood Marrow Transpl. 18 (2), 229–234. 10.1016/j.bbmt.2011.06.008 PubMed DOI
Muller W. K., Dandara C., Manning K., Mhandire D., Ensor J., Barday Z., et al. (2020). CYP3A5 polymorphisms and their effects on tacrolimus exposure in an ethnically diverse South African renal transplant population. S Afr. Med. J. 110 (2), 159–166. 10.7196/SAMJ.2020.v110i2.13969 PubMed DOI
Nash R. A., Antin J. H., Karanes C., Fay J. W., Avalos B. R., Yeager A. M., et al. (2000). Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood 96 (6), 2062–2068. 10.1182/blood.V96.6.2062 PubMed DOI
Nash R. A., Johnston L., Parker P., McCune J. S., Storer B., Slattery J. T., et al. (2005). A phase I/II study of mycophenolate mofetil in combination with cyclosporine for prophylaxis of acute graft-versus-host disease after myeloablative conditioning and allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transpl. 11 (7), 495–505. 10.1016/j.bbmt.2005.03.006 PubMed DOI
Offer K., Kolb M., Jin Z., Bhatia M., Kung A. L., George D., et al. (2015). Efficacy of tacrolimus/mycophenolate mofetil as acute graft-versus-host disease prophylaxis and the impact of subtherapeutic tacrolimus levels in children after matched sibling donor allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transpl. 21 (3), 496–502. 10.1016/j.bbmt.2014.11.679 PubMed DOI
Pasternak A. L., Marcath L. A., Li Y., Nguyen V., Gersch C. L., Rae J. M., et al. (2022). Impact of pharmacogenetics on intravenous tacrolimus exposure and conversions to oral therapy. Transpl. Cell Ther. 28 (1), 19 e1–e7. 10.1016/j.jtct.2021.09.011 PubMed DOI
Pidala J., Kim J., Jim H., Kharfan-Dabaja M. A., Nishihori T., Fernandez H. F., et al. (2012). A randomized phase II study to evaluate tacrolimus in combination with sirolimus or methotrexate after allogeneic hematopoietic cell transplantation. Haematologica 97 (12), 1882–1889. 10.3324/haematol.2012.067140 PubMed DOI PMC
Ratanatharathorn V., Nash R. A., Przepiorka D., Devine S. M., Klein J. L., Weisdorf D., et al. (1998). Phase III study comparing methotrexate and tacrolimus (prograf, FK506) with methotrexate and cyclosporine for graft-versus-host disease prophylaxis after HLA-identical sibling bone marrow transplantation. Blood 92 (7), 2303–2314. PubMed
Schmalter A. K., Ngoya M., Galimard J. E., Bazarbachi A., Finke J., Kroger N., et al. (2024). Continuously improving outcome over time after second allogeneic stem cell transplantation in relapsed acute myeloid leukemia: an EBMT registry analysis of 1540 patients. Blood Cancer J. 14 (1), 76. 10.1038/s41408-024-01060-4 PubMed DOI PMC
Schmid C., Schleuning M., Schwerdtfeger R., Hertenstein B., Mischak-Weissinger E., Bunjes D., et al. (2006). Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 108 (3), 1092–1099. 10.1182/blood-2005-10-4165 PubMed DOI
Sharma N., Zhao Q., Ni B., Elder P., Puto M., Benson D. M., et al. (2021). Effect of early post-transplantation tacrolimus concentration on the risk of acute graft-versus-host disease in allogenic stem cell transplantation. Cancers (Basel) 13 (4), 613. 10.3390/cancers13040613 PubMed DOI PMC
Sikma M. A., Hunault C. C., Huitema A. D. R., De Lange D. W., Van Maarseveen E. M. (2020). Clinical pharmacokinetics and impact of hematocrit on monitoring and dosing of tacrolimus early after Heart and Lung transplantation. Clin. Pharmacokinet. 59 (4), 403–408. 10.1007/s40262-019-00846-1 PubMed DOI PMC
Sikma M. A., van Maarseveen E. M., van de Graaf E. A., Kirkels J. H., Verhaar M. C., Donker D. W., et al. (2015). Pharmacokinetics and toxicity of tacrolimus early after Heart and Lung transplantation. Am. J. Transpl. 15 (9), 2301–2313. 10.1111/ajt.13309 PubMed DOI
Sima M., Pokorna P., Hronova K., Slanar O. (2015). Effect of co-medication on the pharmacokinetic parameters of phenobarbital in asphyxiated newborns. Physiol. Res. 64 (Suppl. 4), S513–S519. 10.33549/physiolres.933213 PubMed DOI
Tian J. X., Zhang P., Miao W. J., Wang X. D., Liu X. O., Liao Y. X., et al. (2019). Tacrolimus levels in the prophylaxis of acute graft-versus-host disease in the Chinese early after hematopoietic stem cell transplantation. Ther. Drug Monit. 41 (5), 620–627. 10.1097/FTD.0000000000000645 PubMed DOI
Torlen J., Ringden O., Garming-Legert K., Ljungman P., Winiarski J., Remes K., et al. (2016). A prospective randomized trial comparing cyclosporine/methotrexate and tacrolimus/sirolimus as graft-versus-host disease prophylaxis after allogeneic hematopoietic stem cell transplantation. Haematologica 101 (11), 1417–1425. 10.3324/haematol.2016.149294 PubMed DOI PMC
van den Brink M. R., Velardi E., Perales M. A. (2015). Immune reconstitution following stem cell transplantation. Hematol. Am. Soc. Hematol. Educ. Program 2015, 215–219. 10.1182/asheducation-2015.1.215 PubMed DOI
Vanhove T., Bouwsma H., Hilbrands L., Swen J. J., Spriet I., Annaert P., et al. (2017). Determinants of the magnitude of interaction between tacrolimus and voriconazole/posaconazole in solid organ recipients. Am. J. Transpl. 17 (9), 2372–2380. 10.1111/ajt.14232 PubMed DOI
Venkataramanan R., Swaminathan A., Prasad T., Jain A., Zuckerman S., Warty V., et al. (1995). Clinical pharmacokinetics of tacrolimus. Clin. Pharmacokinet. 29 (6), 404–430. 10.2165/00003088-199529060-00003 PubMed DOI
Wong R., Shahjahan M., Wang X., Thall P. F., De Lima M., Khouri I., et al. (2005). Prognostic factors for outcomes of patients with refractory or relapsed acute myelogenous leukemia or myelodysplastic syndromes undergoing allogeneic progenitor cell transplantation. Biol. Blood Marrow Transpl. 11 (2), 108–114. 10.1016/j.bbmt.2004.10.008 PubMed DOI
Yoshikawa N., Ehara Y., Yamada Y., Matsusaki Y., Shimoda K., Ikeda R. (2025). Time in therapeutic range of tacrolimus in allogeneic hematopoietic stem cell transplant recipients is associated with acute graft-versus-host disease prophylaxis. Sci. Rep. 15 (1), 3364. 10.1038/s41598-025-87801-2 PubMed DOI PMC