• This record comes from PubMed

Acridine-Based Chalcone 1C and ABC Transporters

. 2025 Apr 27 ; 26 (9) : . [epub] 20250427

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
VEGA 1/0446/22 Grant Agency of the Ministry of the Education, Science, Research and Sport of the Slovak Republic
VVGS-2023-2754 VVGS UPJŠ 2024-2025 Interdisciplinary Research Projects for University Teachers, Researchers Under 35, and PhD Students
857560 European Union's Horizon 2020 Research and Innovation Programme
101136607 European Union's Horizon 2020 Research and Innovation Programme
LX22NPO5102 National Institute for Cancer Research (Programme EXCELES)
LM2023055 Ministry of Education, Youth and Sports of the Czech Republic
LM2018140 Ministry of Education, Youth and Sports of the Czech Republic

Chalcones, potential anticancer agents, have shown promise in the suppression of multidrug resistance due to the inhibition of drug efflux driven by certain adenosine triphosphate (ATP)-binding cassette (ABC) transporters. The gene and protein expression of chosen ABC transporters (multidrug resistance protein 1, ABCB1; multidrug resistance-associated protein 1, ABCC1; and breast cancer resistance protein, ABCG2) in human colorectal cancer cells (COLO 205 and COLO 320, which overexpress active ABCB1) was mainly studied in this work under the influence of a novel synthetic acridine-based chalcone, 1C. While gene expression dropped just at 24 h, compound 1C selectively suppressed colorectal cancer cell growth and greatly lowered ABCB1 protein levels in COLO 320 cells at 24, 48, and 72 h. It also reduced ABCC1 protein levels after 48 h. Molecular docking and ATPase tests show that 1C probably acts as an allosteric modulator of ABCB1. It also lowered galectin-1 (GAL1) expression in COLO 205 cells at 24 h. Functional tests on COLO cells revealed ABCB1 and ABCC1/2 to be major contributors to multidrug resistance in both. Overall, 1C transiently lowered GAL1 in COLO 205 while affecting important functional ABC transporters, mostly ABCB1 and to a lesser extent ABCC1 in COLO 320 cells. COLO 320's absence of GAL1 expression points to a possible yet unknown interaction between GAL1 and ABCB1.

See more in PubMed

Bray F., Laversanne M., Sung H., Ferlay J., Siegel R.L., Soerjomataram I., Jemal A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024;74:229–263. doi: 10.3322/caac.21834. PubMed DOI

Kumar A., Gautam V., Sandhu A., Rawat K., Sharma A., Saha L. Current and Emerging Therapeutic Approaches for Colorectal Cancer: A Comprehensive Review. World J. Gastrointest. Surg. 2023;15:495–519. doi: 10.4240/wjgs.v15.i4.495. PubMed DOI PMC

Fadlallah H., El Masri J., Fakhereddine H., Youssef J., Chemaly C., Doughan S., Abou-Kheir W. Colorectal Cancer: Recent Advances in Management and Treatment. World J. Clin. Oncol. 2024;15:1136–1156. doi: 10.5306/wjco.v15.i9.1136. PubMed DOI PMC

Bhattacharya R., Ye X.-C., Wang R., Ling X., McManus M., Fan F., Boulbes D., Ellis L.M. Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells. Cancer Res. 2016;76:3014–3024. doi: 10.1158/0008-5472.CAN-15-1605. PubMed DOI PMC

Bhattacharya R., Fan F., Wang R., Ye X., Xia L., Boulbes D., Ellis L.M. Intracrine VEGF Signalling Mediates Colorectal Cancer Cell Migration and Invasion. Br. J. Cancer. 2017;117:848–855. doi: 10.1038/bjc.2017.238. PubMed DOI PMC

Chen Z., Shi T., Zhang L., Zhu P., Deng M., Huang C., Hu T., Jiang L., Li J. Mammalian Drug Efflux Transporters of the ATP Binding Cassette (ABC) Family in Multidrug Resistance: A Review of the Past Decade. Cancer Lett. 2016;370:153–164. doi: 10.1016/j.canlet.2015.10.010. PubMed DOI

Marques A.V.L., Ruginsk B.E., Prado L.d.O., de Lima D.E., Daniel I.W., Moure V.R., Valdameri G. The Association of ABC Proteins with Multidrug Resistance in Cancer. Biochim. Biophys. Acta Mol. Cell Res. 2025;1872:119878. doi: 10.1016/j.bbamcr.2024.119878. PubMed DOI

Choi Y.H., Yu A.-M. ABC Transporters in Multidrug Resistance and Pharmacokinetics, and Strategies for Drug Development. Curr. Pharm. Des. 2014;20:793. doi: 10.2174/138161282005140214165212. PubMed DOI PMC

Bukowski K., Kciuk M., Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020;21:3233. doi: 10.3390/ijms21093233. PubMed DOI PMC

Ashique S., Bhowmick M., Pal R., Khatoon H., Kumar P., Sharma H., Garg A., Kumar S., Das U. Multi Drug Resistance in Colorectal Cancer- Approaches to Overcome, Advancements and Future Success. Adv. Cancer Biol. Metastasis. 2024;10:100114. doi: 10.1016/j.adcanc.2024.100114. DOI

Wang N., Wang Z., Peng C., You J., Shen J., Han S., Chen J. Dietary Compound Isoliquiritigenin Targets GRP78 to Chemosensitize Breast Cancer Stem Cells via β-Catenin/ABCG2 Signaling. Carcinogenesis. 2014;35:2544–2554. doi: 10.1093/carcin/bgu187. PubMed DOI

Skinner K.T., Palkar A.M., Hong A.L. Genetics of ABCB1 in Cancer. Cancers. 2023;15:4236. doi: 10.3390/cancers15174236. PubMed DOI PMC

Wang Q., Geng F., Zhou H., Chen Y., Du J., Zhang X., Song D., Zhao H. MDIG Promotes Cisplatin Resistance of Lung Adenocarcinoma by Regulating ABC Transporter Expression via Activation of the WNT/Β-catenin Signaling Pathway. Oncol. Lett. 2019;18:4294–4307. doi: 10.3892/ol.2019.10774. PubMed DOI PMC

Banerjee A., Pata J., Chaptal V., Boumendjel A., Falson P., Prasad R. Structure, Function, and Inhibition of Catalytically Asymmetric ABC Transporters: Lessons from the PDR Subfamily. Drug Resist. Updates. 2023;71:100992. doi: 10.1016/j.drup.2023.100992. PubMed DOI

Tian Y., Han X., Tian D. The Biological Regulation of ABCE1. IUBMB Life. 2012;64:795–800. doi: 10.1002/iub.1071. PubMed DOI

Gerovac M., Tampé R. Control of MRNA Translation by Versatile ATP-Driven Machines. Trends Biochem. Sci. 2019;44:167–180. doi: 10.1016/j.tibs.2018.11.003. PubMed DOI

Thomas C., Aller S.G., Beis K., Carpenter E.P., Chang G., Chen L., Dassa E., Dean M., Duong Van Hoa F., Ekiert D., et al. Structural and Functional Diversity Calls for a New Classification of ABC Transporters. FEBS Lett. 2020;594:3767–3775. doi: 10.1002/1873-3468.13935. PubMed DOI PMC

Wu C.-P., Hung C.-Y., Hsieh Y.-J., Murakami M., Huang Y.-H., Su T.-Y., Hung T.-H., Yu J.-S., Wu C.-P., Hung C.-Y., et al. ABCB1 and ABCG2 Overexpression Mediates Resistance to the Phosphatidylinositol 3-Kinase Inhibitor HS-173 in Cancer Cell Lines. Cells. 2023;12:1056. doi: 10.3390/cells12071056. PubMed DOI PMC

Fan W., Shao K., Luo M. Structural View of Cryo-Electron Microscopy-Determined ATP-Binding Cassette Transporters in Human Multidrug Resistance. Biomolecules. 2024;14:231. doi: 10.3390/biom14020231. PubMed DOI PMC

Kiełbowski K., Król M., Bakinowska E., Pawlik A. The Role of ABCB1, ABCG2, and SLC Transporters in Pharmacokinetic Parameters of Selected Drugs and Their Involvement in Drug–Drug Interactions. Membranes. 2024;14:223. doi: 10.3390/membranes14110223. PubMed DOI PMC

Wu C.-P., Hsiao S.-H., Wu Y.-S. Perspectives on Drug Repurposing to Overcome Cancer Multidrug Resistance Mediated by ABCB1 and ABCG2. Drug Resist. Updates. 2023;71:101011. doi: 10.1016/j.drup.2023.101011. PubMed DOI

Szebényi K., Füredi A., Bajtai E., Sama S.N., Csiszar A., Gombos B., Szabó P., Grusch M., Szakács G. Effective Targeting of Breast Cancer by the Inhibition of P-Glycoprotein Mediated Removal of Toxic Lipid Peroxidation Byproducts from Drug Tolerant Persister Cells. Drug Resist. Updates. 2023;71:101007. doi: 10.1016/j.drup.2023.101007. PubMed DOI

Muriithi W., Macharia L.W., Heming C.P., Echevarria J.L., Nyachieo A., Filho P.N., Neto V.M. ABC Transporters and the Hallmarks of Cancer: Roles in Cancer Aggressiveness beyond Multidrug Resistance. Cancer Biol. Med. 2020;17:253. doi: 10.20892/j.issn.2095-3941.2019.0284. PubMed DOI PMC

Wu C.P., Li Y.C., Murakami M., Hsiao S.H., Lee Y.C., Huang Y.H., Chang Y.T., Hung T.H., Wu Y.S., Ambudkar S.V. Furmonertinib, a Third-Generation EGFR Tyrosine Kinase Inhibitor, Overcomes Multidrug Resistance through Inhibiting ABCB1 and ABCG2 in Cancer Cells. Int. J. Mol. Sci. 2023;24:13972. doi: 10.3390/ijms241813972. PubMed DOI PMC

Karthikeyan S., Hoti S. Development of Fourth Generation ABC Inhibitors from Natural Products: A Novel Approach to Overcome Cancer Multidrug Resistance. Anti-Cancer Agents Med. Chem. 2015;15:605–615. doi: 10.2174/1871520615666150113103439. PubMed DOI

Duan C., Yu M., Xu J., Li B.-Y., Zhao Y., Kankala R.K. Overcoming Cancer Multi-Drug Resistance (MDR): Reasons, Mechanisms, Nanotherapeutic Solutions, and Challenges. Biomed. Pharmacother. 2023;162:114643. doi: 10.1016/j.biopha.2023.114643. PubMed DOI

Leite F.F., de Sousa N.F., de Oliveira B.H.M., Duarte G.D., Ferreira M.D.L., Scotti M.T., Filho J.M.B., Rodrigues L.C., de Moura R.O., Mendonça-Junior F.J.B., et al. Anticancer Activity of Chalcones and Its Derivatives: Review and In Silico Studies. Molecules. 2023;28:4009. doi: 10.3390/molecules28104009. PubMed DOI PMC

Sheikh K.A., Gupta A., Umar M., Ali R., Shaquiquzzaman M., Akhter M., Khan M.A., Kaleem M., Ambast P.K., Charan S., et al. Advances in Chalcone Derivatives: Unravelling Their Anticancer Potential through Structure-Activity Studies. J. Mol. Struct. 2024;1299:137154. doi: 10.1016/j.molstruc.2023.137154. DOI

Takac P., Kello M., Vilkova M., Vaskova J., Michalkova R., Mojzisova G., Mojzis J. Antiproliferative Effect of Acridine Chalcone Is Mediated by Induction of Oxidative Stress. Biomolecules. 2020;10:345. doi: 10.3390/biom10020345. PubMed DOI PMC

Rossi M., Pellegrino C., Rydzyk M.M., Farruggia G., de Biase D., Cetrullo S., D’Adamo S., Bisi A., Blasi P., Malucelli E., et al. Chalcones Induce Apoptosis, Autophagy and Reduce Spreading in Osteosarcoma 3D Models. Biomed. Pharmacother. 2024;179:117284. doi: 10.1016/j.biopha.2024.117284. PubMed DOI

Bułakowska A., Sławiński J., Hering A., Gucwa M., Ochocka J.R., Hałasa R., Balewski Ł., Stefanowicz-Hajduk J. New Chalcone Derivatives Containing 2,4-Dichlorobenzenesulfonamide Moiety with Anticancer and Antioxidant Properties. Int. J. Mol. Sci. 2023;25:274. doi: 10.3390/ijms25010274. PubMed DOI PMC

Kudličková Z., Michalková R., Salayová A., Ksiažek M., Vilková M., Bekešová S., Mojžiš J. Design, Synthesis, and Evaluation of Novel Indole Hybrid Chalcones and Their Antiproliferative and Antioxidant Activity. Molecules. 2023;28:6583. doi: 10.3390/molecules28186583. PubMed DOI PMC

Constantinescu T., Lungu C.N. Anticancer Activity of Natural and Synthetic Chalcones. Int. J. Mol. Sci. 2021;22:11306. doi: 10.3390/ijms222111306. PubMed DOI PMC

Michalkova R., Mirossay L., Kello M., Mojzisova G., Baloghova J., Podracka A., Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int. J. Mol. Sci. 2023;24:10354. doi: 10.3390/ijms241210354. PubMed DOI PMC

Lindamulage I.K., Vu H.-Y., Karthikeyan C., Knockleby J., Lee Y.-F., Trivedi P., Lee H. Novel Quinolone Chalcones Targeting Colchicine-Binding Pocket Kill Multidrug-Resistant Cancer Cells by Inhibiting Tubulin Activity and MRP1 Function. Sci. Rep. 2017;7:10298. doi: 10.1038/s41598-017-10972-0. PubMed DOI PMC

Silbermann K., Shah C.P., Sahu N.U., Juvale K., Stefan S.M., Kharkar P.S., Wiese M. Novel Chalcone and Flavone Derivatives as Selective and Dual Inhibitors of the Transport Proteins ABCB1 and ABCG2. Eur. J. Med. Chem. 2019;164:193–213. doi: 10.1016/j.ejmech.2018.12.019. PubMed DOI

Peña-Solórzano D., Scholler M., Bernhardt G., Buschauer A., König B., Ochoa-Puentes C. Tariquidar-Related Chalcones and Ketones as ABCG2 Modulators. ACS Med. Chem. Lett. 2018;9:854–859. doi: 10.1021/acsmedchemlett.8b00289. PubMed DOI PMC

Kaczor A., Szemerédi N., Kucwaj-Brysz K., Dąbrowska M., Starek M., Latacz G., Spengler G., Handzlik J. Computer-Aided Search for 5-Arylideneimidazolone Anticancer Agents Able To Overcome ABCB1-Based Multidrug Resistance. ChemMedChem. 2021;16:2386–2401. doi: 10.1002/cmdc.202100252. PubMed DOI

Gazdova M., Michalkova R., Kello M., Vilkova M., Kudlickova Z., Baloghova J., Mirossay L., Mojzis J. Chalcone-Acridine Hybrid Suppresses Melanoma Cell Progression via G2/M Cell Cycle Arrest, DNA Damage, Apoptosis, and Modulation of MAP Kinases Activity. Int. J. Mol. Sci. 2022;23:12266. doi: 10.3390/ijms232012266. PubMed DOI PMC

Takac P., Kello M., Pilatova M.B., Kudlickova Z., Vilkova M., Slepcikova P., Petik P., Mojzis J. New Chalcone Derivative Exhibits Antiproliferative Potential by Inducing G2/M Cell Cycle Arrest, Mitochondrial-Mediated Apoptosis and Modulation of MAPK Signalling Pathway. Chem. Biol. Interact. 2018;292:37–49. doi: 10.1016/j.cbi.2018.07.005. PubMed DOI

Čižmáriková M., Takáč P., Spengler G., Kincses A., Nové M., Vilková M., Mojžiš J. New Chalcone Derivative Inhibits ABCB1 in Multidrug Resistant T-Cell Lymphoma and Colon Adenocarcinoma Cells. Anticancer Res. 2019;39:6499–6505. doi: 10.21873/anticanres.13864. PubMed DOI

Bharathiraja P., Yadav P., Sajid A., Ambudkar S.V., Prasad N.R. Natural Medicinal Compounds Target Signal Transduction Pathways to Overcome ABC Drug Efflux Transporter-Mediated Multidrug Resistance in Cancer. Drug Resist. Updates. 2023;71:101004. doi: 10.1016/j.drup.2023.101004. PubMed DOI PMC

Dong J., Qin Z., Zhang W.-D., Cheng G., Yehuda A.G., Ashby C.R., Chen Z.-S., Cheng X.-D., Qin J.-J. Medicinal Chemistry Strategies to Discover P-Glycoprotein Inhibitors: An Update. Drug Resist. Updates. 2020;49:100681. doi: 10.1016/j.drup.2020.100681. PubMed DOI

Zhang X., Tan Y., Li T., Tan D., Fu B., Yang M., Chen Y., Cao M., Xuan C., Du Q., et al. Intercellular Adhesion Molecule-1 Suppresses TMZ Chemosensitivity in Acquired TMZ-Resistant Gliomas by Increasing Assembly of ABCB1 on the Membrane. Drug Resist. Updates. 2024;76:101112. doi: 10.1016/j.drup.2024.101112. PubMed DOI

Ganesan M., Kanimozhi G., Pradhapsingh B., Khan H.A., Alhomida A.S., Ekhzaimy A., Brindha G., Prasad N.R. Phytochemicals Reverse P-Glycoprotein Mediated Multidrug Resistance via Signal Transduction Pathways. Biomed. Pharmacother. 2021;139:111632. doi: 10.1016/j.biopha.2021.111632. PubMed DOI

Ceballos M.P., Rigalli J.P., Ceré L.I., Semeniuk M., Catania V.A., Ruiz M.L. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr. Med. Chem. 2019;26:1224–1250. doi: 10.2174/0929867325666180105103637. PubMed DOI

Harazono Y., Kho D.H., Balan V., Nakajima K., Hogan V., Raz A. Extracellular Galectin-3 Programs Multidrug Resistance through Na+/K+-ATPase and P-Glycoprotein Signaling. Oncotarget. 2015;6:19592–19604. doi: 10.18632/oncotarget.4285. PubMed DOI PMC

Luo W., Song L., Chen X.-L., Zeng X.-F., Wu J.-Z., Zhu C.-R., Huang T., Tan X.-P., Lin X.-M., Yang Q., et al. Identification of Galectin-1 as a Novel Mediator for Chemoresistance in Chronic Myeloid Leukemia Cells. Oncotarget. 2016;7:26709–26723. doi: 10.18632/oncotarget.8489. PubMed DOI PMC

Carabias P., Espelt M.V., Bacigalupo M.L., Rojas P., Sarrias L., Rubin A., Saffioti N.A., Elola M.T., Rossi J.P., Wolfenstein-Todel C., et al. Galectin-1 Confers Resistance to Doxorubicin in Hepatocellular Carcinoma Cells through Modulation of P-Glycoprotein Expression. Cell Death Dis. 2022;13:79. doi: 10.1038/s41419-022-04520-6. PubMed DOI PMC

Wang F., Lv P., Gu Y., Li L., Ge X., Guo G. Galectin-1 Knockdown Improves Drug Sensitivity of Breast Cancer by Reducing P-Glycoprotein Expression through Inhibiting the Raf-1/AP-1 Signaling Pathway. Oncotarget. 2017;8:25097–25106. doi: 10.18632/oncotarget.15341. PubMed DOI PMC

Sethi A., Sasikala K., Jakkula P., Gadde D., Sanam S., Qureshi I.A., Talla V., Alvala M. Design, Synthesis and Computational Studies Involving Indole-Coumarin Hybrids as Galectin-1 Inhibitors. Chem. Pap. 2021;75:2791–2805. doi: 10.1007/s11696-021-01534-w. DOI

Luís C., Costa R., Rodrigues I., Castela Â., Coelho P., Guerreiro S., Gomes J., Reis C., Soares R. Xanthohumol and 8-Prenylnaringenin Reduce Type 2 Diabetes–Associated Oxidative Stress by Downregulating Galectin-3. Porto Biomed. J. 2019;4:e23. doi: 10.1016/j.pbj.0000000000000023. PubMed DOI PMC

Vilková M., Michalková R., Kello M., Sabolová D., Takáč P., Kudličková Z., Garberová M., Tvrdoňová M., Béres T., Mojžiš J. Discovery of Novel Acridine-Chalcone Hybrids with Potent DNA Binding and Antiproliferative Activity against MDA-MB-231 and MCF-7 Cells. Med. Chem. Res. 2022;31:1323–1338. doi: 10.1007/s00044-022-02911-0. DOI

Salanci Š., Vilková M., Martinez L., Mirossay L., Michalková R., Mojžiš J. The Induction of G2/M Phase Cell Cycle Arrest and Apoptosis by the Chalcone Derivative 1C in Sensitive and Resistant Ovarian Cancer Cells Is Associated with ROS Generation. Int. J. Mol. Sci. 2024;25:7541. doi: 10.3390/ijms25147541. PubMed DOI PMC

Michalkova R., Mirossay L., Gazdova M., Kello M., Mojzis J. Molecular Mechanisms of Antiproliferative Effects of Natural Chalcones. Cancers. 2021;13:2730. doi: 10.3390/cancers13112730. PubMed DOI PMC

Sakagami H., Masuda Y., Tomomura M., Yokose S., Uesawa Y., Ikezoe N., Asahara D., Takao K., Kanamoto T., Terakubo S., et al. Quantitative Structure-Cytotoxicity Relationship of Chalcones. Anticancer Res. 2017;37:1091–1098. doi: 10.21873/anticanres.11421. PubMed DOI

Michalkova R., Kello M., Kudlickova Z., Gazdova M., Mirossay L., Mojzisova G., Mojzis J. Programmed Cell Death Alterations Mediated by Synthetic Indole Chalcone Resulted in Cell Cycle Arrest, DNA Damage, Apoptosis and Signaling Pathway Modulations in Breast Cancer Model. Pharmaceutics. 2022;14:503. doi: 10.3390/pharmaceutics14030503. PubMed DOI PMC

Mendez-Callejas G., Piñeros-Avila M., Celis C.A., Torrenegra R., Espinosa-Benitez A., Pestana-Nobles R., Yosa-Reyes J. Natural 2′,4-Dihydroxy-4′,6′-Dimethoxy Chalcone Isolated from Chromolaena Tacotana Inhibits Breast Cancer Cell Growth through Autophagy and Mitochondrial Apoptosis. Plants. 2024;13:570. doi: 10.3390/plants13050570. PubMed DOI PMC

Mendez-Callejas G., Piñeros-Avila M., Yosa-Reyes J., Pestana-Nobles R., Torrenegra R., Camargo-Ubate M.F., Bello-Castro A.E., Celis C.A. A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena Tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins. Int. J. Mol. Sci. 2023;24:15185. doi: 10.3390/ijms242015185. PubMed DOI PMC

Kashmiry A.A., Ibrahim N.S., Mohamed M.F., Abdelhamid I.A. Novel α-Cyano-Indolyl Chalcones as Anti-Cancer Candidates, Induce G1/S Cell Cycle Arrest and Sequentially Activate Caspases-7, 8, and 9 in Breast Carcinoma. Polycycl. Aromat. Compd. 2024:1–20. doi: 10.1080/10406638.2024.2412818. DOI

Ragheb M.A., Abdelrashid H.E., Elzayat E.M., Abdelhamid I.A., Soliman M.H. Novel Cyanochalcones as Potential Anticancer Agents: Apoptosis, Cell Cycle Arrest, DNA Binding, and Molecular Docking Studies. J. Biomol. Struct. Dyn. 2024:1–19. doi: 10.1080/07391102.2024.2316764. PubMed DOI

Zeid M.M., El-Badry O.M., Elmeligie S., Hassan R.A. Design, Synthesis, and Molecular Docking of Novel Miscellaneous Chalcones as P38α Mitogen-Activated Protein Kinase Inhibitors. Chem. Biodivers. 2024;21:e202400077. doi: 10.1002/cbdv.202400077. PubMed DOI

Xu S., Chen M., Chen W., Hui J., Ji J., Hu S., Zhou J., Wang Y., Liang G. Chemopreventive Effect of Chalcone Derivative, L2H17, in Colon Cancer Development. BMC Cancer. 2015;15:870. doi: 10.1186/s12885-015-1901-x. PubMed DOI PMC

Tronina T., Bartmańska A., Popłoński J., Rychlicka M., Sordon S., Filip-Psurska B., Milczarek M., Wietrzyk J., Huszcza E. Prenylated Flavonoids with Selective Toxicity against Human Cancers. Int. J. Mol. Sci. 2023;24:7408. doi: 10.3390/ijms24087408. PubMed DOI PMC

Bradshaw-Pierce E.L., Pitts T.M., Tan A.-C., McPhillips K., West M., Gustafson D.L., Halsey C., Nguyen L., Lee N.V., Kan J.L.C., et al. Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in Vitro and in Vivo Models of Colorectal Cancer. Front. Pharmacol. 2013;4:22. doi: 10.3389/fphar.2013.00022. PubMed DOI PMC

The Human Protein Atlas ABCB1. [(accessed on 3 March 2025)]. Available online: https://www.proteinatlas.org/ensg00000085563-abcb1/cell+line.

Komoto T.T., Bernardes T.M., Mesquita T.B., Bortolotto L.F.B., Silva G., Bitencourt T.A., Baek S.J., Marins M., Fachin A.L. Chalcones Repressed the AURKA and MDR Proteins Involved in Metastasis and Multiple Drug Resistance in Breast Cancer Cell Lines. Molecules. 2018;23:2018. doi: 10.3390/molecules23082018. PubMed DOI PMC

Li J., Zheng L., Yan M., Wu J., Liu Y., Tian X., Jiang W., Zhang L., Wang R. Activity and Mechanism of Flavokawain A in Inhibiting P-Glycoprotein Expression in Paclitaxel Resistance of Lung Cancer. Oncol. Lett. 2020;19:379–387. doi: 10.3892/ol.2019.11069. PubMed DOI PMC

Cai C.-Y., Zhang W., Wang J.-Q., Lei Z.-N., Zhang Y.-K., Wang Y.-J., Gupta P., Tan C.-P., Wang B., Chen Z.-S. Biological Evaluation of Non-Basic Chalcone CYB-2 as a Dual ABCG2/ABCB1 Inhibitor. Biochem. Pharmacol. 2020;175:113848. doi: 10.1016/j.bcp.2020.113848. PubMed DOI

Yang Z., Wang Y., Ablise M., Maimaiti A., Mutalipu Z., Yan T., Liu Z.-Y., Aihaiti A. Design, Synthesis, and Ex Vivo Anti-Drug Resistant Cervical Cancer Activity of Novel Molecularly Targeted Chalcone Derivatives. Bioorg. Chem. 2024;149:107498. doi: 10.1016/j.bioorg.2024.107498. PubMed DOI

Seelig A., Li-Blatter X. P-Glycoprotein (ABCB1)—Weak Dipolar Interactions Provide the Key to Understanding Allocrite Recognition, Binding, and Transport. Cancer Drug Resist. 2022;6:1–29. doi: 10.20517/cdr.2022.59. PubMed DOI PMC

Rahman H., Ware M.J., Sajid A., Lusvarghi S., Durell S.R., Ambudkar S.V. Residues from Homologous Transmembrane Helices 4 and 10 Are Critical for P-Glycoprotein (ABCB1)-Mediated Drug Transport. Cancers. 2023;15:3459. doi: 10.3390/cancers15133459. PubMed DOI PMC

Chang C., Bahadduri P.M., Polli J.E., Swaan P.W., Ekins S. Rapid Identification of P-Glycoprotein Substrates and Inhibitors. Drug Metab. Dispos. 2006;34:1976–1984. doi: 10.1124/dmd.106.012351. PubMed DOI

Seelig A. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacother. apy of Cancers. Front. Oncol. 2020;10:576559. doi: 10.3389/fonc.2020.576559. PubMed DOI PMC

Nabekura T., Hiroi T., Kawasaki T., Uwai Y. Effects of Natural Nuclear Factor-Kappa B Inhibitors on Anticancer Drug Efflux Transporter Human P-Glycoprotein. Biomed. Pharmacother. 2015;70:140–145. doi: 10.1016/j.biopha.2015.01.007. PubMed DOI

Rajagopal K., Kalusalingam A., Bharathidasan A.R., Sivaprakash A., Shanmugam K., Sundaramoorthy M., Byran G. In Silico Drug Design of Anti-Breast Cancer Agents. Molecules. 2023;28:4175. doi: 10.3390/molecules28104175. PubMed DOI PMC

Montanari F., Ecker G.F. Prediction of Drug–ABC-Transporter Interaction—Recent Advances and Future Challenges. Adv. Drug Deliv. Rev. 2015;86:17–26. doi: 10.1016/j.addr.2015.03.001. PubMed DOI PMC

Schäfer J., Klösgen V.J., Omer E.A., Kadioglu O., Mbaveng A.T., Kuete V., Hildebrandt A., Efferth T. In Silico and In Vitro Identification of P-Glycoprotein Inhibitors from a Library of 375 Phytochemicals. Int. J. Mol. Sci. 2023;24:10240. doi: 10.3390/ijms241210240. PubMed DOI PMC

Wankhede Y.S., Khairnar V.V., Patil A.R., Darekar A.B. Drug Discovery Tools and In Silico Techniques: A Review. Int. J. Pharm. Sci. Rev. Res. 2024;84:63–72. doi: 10.47583/ijpsrr.2024.v84i07.009. DOI

Marques S.M., Šupolíková L., Molčanová L., Šmejkal K., Bednar D., Slaninová I. Screening of Natural Compounds as P-Glycoprotein Inhibitors against Multidrug Resistance. Biomedicines. 2021;9:357. doi: 10.3390/biomedicines9040357. PubMed DOI PMC

Ferreira R.J., Ferreira M.-J.U., dos Santos D.J.V.A. Molecular Docking Characterizes Substrate-Binding Sites and Efflux Modulation Mechanisms within P-Glycoprotein. J. Chem. Inf. Model. 2013;53:1747–1760. doi: 10.1021/ci400195v. PubMed DOI

Zhao X., Di J., Luo D., Vaishnav Y., Kamal, Nuralieva N., Verma D., Verma P., Verma S. Recent Developments of P-Glycoprotein Inhibitors and Its Structure–Activity Relationship (SAR) Studies. Bioorg. Chem. 2024;143:106997. doi: 10.1016/j.bioorg.2023.106997. PubMed DOI

Dong J., Yuan L., Hu C., Cheng X., Qin J.-J. Strategies to Overcome Cancer Multidrug Resistance (MDR) through Targeting P-Glycoprotein (ABCB1): An Updated Review. Pharmacol. Ther. 2023;249:108488. doi: 10.1016/j.pharmthera.2023.108488. PubMed DOI

Xing J., Huang S., Heng Y., Mei H., Pan X. Computational Insights into Allosteric Conformational Modulation of P-Glycoprotein by Substrate and Inhibitor Binding. Molecules. 2020;25:6006. doi: 10.3390/molecules25246006. PubMed DOI PMC

Fang Y., Liang F., Xia M., Cao W., Pan S., Wu T., Xu X. Structure-Activity Relationship and Mechanism of Flavonoids on the Inhibitory Activity of P-Glycoprotein (P-Gp)-Mediated Transport of Rhodamine123 and Daunorubicin in P-Gp Overexpressed Human Mouth Epidermal Carcinoma (KB/MDR) Cells. Food Chem. Toxicol. 2021;155:112381. doi: 10.1016/j.fct.2021.112381. PubMed DOI

Bonito C.A., Ferreira R.J., Ferreira M.-J.U., Durães F., Sousa E., Gillet J.-P., Cordeiro M.N.D.S., dos Santos D.J.V.A. Probing the Allosteric Modulation of P-Glycoprotein: A Medicinal Chemistry Approach Toward the Identification of Noncompetitive P-Gp Inhibitors. ACS Omega. 2023;8:11281–11287. doi: 10.1021/acsomega.2c08273. PubMed DOI PMC

Sajid A., Rahman H., Ambudkar S.V. Advances in the Structure, Mechanism and Targeting of Chemoresistance-Linked ABC Transporters. Nat. Rev. Cancer. 2023;23:762–779. doi: 10.1038/s41568-023-00612-3. PubMed DOI

Thomas C., Tampé R. Structural and Mechanistic Principles of ABC Transporters. Annu. Rev. Biochem. 2020;89:605–636. doi: 10.1146/annurev-biochem-011520-105201. PubMed DOI

Liu M., Yin H., Qian X., Dong J., Qian Z., Miao J. Xanthohumol, a Prenylated Chalcone from Hops, Inhibits the Viability and Stemness of Doxorubicin-Resistant MCF-7/ADR Cells. Molecules. 2016;22:36. doi: 10.3390/molecules22010036. PubMed DOI PMC

Zhou J.-X., Wink M. Reversal of Multidrug Resistance in Human Colon Cancer and Human Leukemia Cells by Three Plant Extracts and Their Major Secondary Metabolites. Medicines. 2018;5:123. doi: 10.3390/medicines5040123. PubMed DOI PMC

Navarro P., Martínez-Bosch N., Blidner A.G., Rabinovich G.A. Impact of Galectins in Resistance to Anticancer Therapies. Clin. Cancer Res. 2020;26:6086–6101. doi: 10.1158/1078-0432.CCR-18-3870. PubMed DOI

Corral J.M., Puerto-Nevado L.d., Cedeño M., Río-Vilariño A., Mahillo-Fernández I., Galeano C., Baños N., García-Foncillas J., Dómine M., Cebrián A. Galectin-1, a Novel Promising Target for Outcome Prediction and Treatment in SCLC. Biomed. Pharmacother. 2022;156:113987. doi: 10.1016/j.biopha.2022.113987. PubMed DOI

Lau L.S., Mohammed N.B.B., Dimitroff C.J. Decoding Strategies to Evade Immunoregulators Galectin-1, -3, and -9 and Their Ligands as Novel Therapeutics in Cancer Immunotherapy. Int. J. Mol. Sci. 2022;23:15554. doi: 10.3390/ijms232415554. PubMed DOI PMC

Bannoud N., Stupirski J.C., Cagnoni A.J., Hockl P.F., Pérez Sáez J.M., García P.A., Mahmoud Y.D., Gambarte Tudela J., Scheidegger M.A., Marshall A., et al. Circulating Galectin-1 Delineates Response to Bevacizumab in Melanoma Patients and Reprograms Endothelial Cell Biology. Proc. Natl. Acad. Sci. USA. 2023;120:2214350120. doi: 10.1073/pnas.2214350120. PubMed DOI PMC

Carvalho L.V.d.N., Assis R.A., Montenegro C., da Rosa M.M., Pereira M.C., Pitta M.G.d.R., de Melo Rêgo M.J.B. Galectin Plasmatic Levels Reveal a Cluster Associated with Disease Aggressiveness and Kidney Damage in Multiple Myeloma Patients. Int. J. Mol. Sci. 2024;25:13499. doi: 10.3390/ijms252413499. PubMed DOI PMC

Herman K.D., Holyer I., Humphries D.C., Adamska A., Roper J.A., Peterson K., Zetterberg F.R., Pedersen A., MacKinnon A.C., Slack R.J. Galectin-1 Induces the Production of Immune-Suppressive Cytokines in Human and Mouse T Cells. Int. J. Mol. Sci. 2024;25:11948. doi: 10.3390/ijms252211948. PubMed DOI PMC

Mimura S., Morishita A., Oura K., Takuma K., Nakahara M., Tadokoro T., Fujita K., Tani J., Kobara H. Galectins and Liver Diseases. Int. J. Mol. Sci. 2025;26:790. doi: 10.3390/ijms26020790. PubMed DOI PMC

Wu K.L., Chen H.H., Pen C.T., Yeh W.L., Huang E.Y., Hsiao C.C., Yang K.D. Circulating Galectin-1 and 90K/Mac-2BP Correlated with the Tumor Stages of Patients with Colorectal Cancer. BioMed Res. Int. 2015;2015:306964. doi: 10.1155/2015/306964. PubMed DOI PMC

Cagnoni A.J., Giribaldi M.L., Blidner A.G., Cutine A.M., Gatto S.G., Morales R.M., Salatino M., Abba M.C., Croci D.O., Mariño K.V., et al. Galectin-1 Fosters an Immunosuppressive Microenvironment in Colorectal Cancer by Reprogramming CD8+ Regulatory T Cells. Proc. Natl. Acad. Sci. USA. 2021;118:e2102950118. doi: 10.1073/pnas.2102950118. PubMed DOI PMC

Peng K.-Y., Jiang S.-S., Lee Y.-W., Tsai F.-Y., Chang C.-C., Chen L.-T., Yen B.L. Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers. Front. Oncol. 2021;11:716055. doi: 10.3389/fonc.2021.716055. PubMed DOI PMC

Lee Y.-K., Lin T.-H., Chang C.-F., Lo Y.-L. Galectin-3 Silencing Inhibits Epirubicin-Induced ATP Binding Cassette Transporters and Activates the Mitochondrial Apoptosis Pathway via β-Catenin/GSK-3β Modulation in Colorectal Carcinoma. PLoS ONE. 2013;8:e82478. doi: 10.1371/journal.pone.0082478. PubMed DOI PMC

Dings R., Miller M., Griffin R., Mayo K. Galectins as Molecular Targets for Therapeutic Intervention. Int. J. Mol. Sci. 2018;19:905. doi: 10.3390/ijms19030905. PubMed DOI PMC

Goud N.S., Bhattacharya A. Human Galectin-1 in Multiple Cancers: A Privileged Molecular Target in Oncology. Mini-Rev. Med. Chem. 2021;21:2169–2186. doi: 10.2174/1389557521666210217093815. PubMed DOI

Laderach D.J., Compagno D. Inhibition of Galectins in Cancer: Biological Challenges for Their Clinical Application. Front. Immunol. 2023;13:1104625. doi: 10.3389/fimmu.2022.1104625. PubMed DOI PMC

Tarighat S.S., Fei F., Joo E.J., Abdel-Azim H., Yang L., Geng H., Bum-Erdene K., Grice I.D., von Itzstein M., Blanchard H., et al. Overcoming Microenvironment-Mediated Chemoprotection through Stromal Galectin-3 Inhibition in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2021;22:12167. doi: 10.3390/ijms222212167. PubMed DOI PMC

Upreti M., Jyoti A., Johnson S.E., Swindell E.P., Napier D., Sethi P., Chan R., Feddock J.M., Weiss H.L., O’Halloran T.V., et al. Radiation-Enhanced Therapeutic Targeting of Galectin-1 Enriched Malignant Stroma in Triple Negative Breast Cancer. Oncotarget. 2016;7:41559–41574. doi: 10.18632/oncotarget.9490. PubMed DOI PMC

Nambiar D.K., Aguilera T., Cao H., Kwok S., Kong C., Bloomstein J., Wang Z., Rangan V.S., Jiang D., von Eyben R., et al. Galectin-1–Driven T Cell Exclusion in the Tumor Endothelium Promotes Immunotherapy Resistance. J. Clin. Investig. 2019;129:5553–5567. doi: 10.1172/JCI129025. PubMed DOI PMC

The Human Protein Atlas LGALS1. [(accessed on 3 March 2025)]. Available online: https://www.proteinatlas.org/ensg00000100097-lgals1/cell+line.

Astorgues-Xerri L., Riveiro M.E., Tijeras-Raballand A., Serova M., Rabinovich G.A., Bieche I., Vidaud M., de Gramont A., Martinet M., Cvitkovic E., et al. OTX008, a Selective Small-Molecule Inhibitor of Galectin-1, Downregulates Cancer Cell Proliferation, Invasion and Tumour Angiogenesis. Eur. J. Cancer. 2014;50:2463–2477. doi: 10.1016/j.ejca.2014.06.015. PubMed DOI

Kocibalova Z., Guzyova M., Borovska I., Messingerova L., Copakova L., Sulova Z., Breier A. Development of Multidrug Resistance in Acute Myeloid Leukemia Is Associated with Alterations of the LPHN1/GAL-9/TIM-3 Signaling Pathway. Cancers. 2021;13:3629. doi: 10.3390/cancers13143629. PubMed DOI PMC

Abudu O., Nguyen D., Millward I., Manning J.E., Wahid M., Lightfoot A., Marcon F., Merard R., Margielewska-Davies S., Roberts K., et al. Interplay in Galectin Expression Predicts Patient Outcomes in a Spatially Restricted Manner in PDAC. Biomed. Pharmacother. 2024;172:116283. doi: 10.1016/j.biopha.2024.116283. PubMed DOI

EFLUXX-ID® Green Multidrug Resistance Assay Kit. [(accessed on 3 March 2025)]. Available online: https://www.enzo.com/product/efluxx-id-green-multidrug-resistance-assay-kit/

Lebedeva I.V., Pande P., Patton W.F. Sensitive and Specific Fluorescent Probes for Functional Analysis of the Three Major Types of Mammalian ABC Transporters. PLoS ONE. 2011;6:e22429. doi: 10.1371/journal.pone.0022429. PubMed DOI PMC

Krawczenko A., Bielawska-Pohl A., Wojtowicz K., Jura R., Paprocka M., Wojdat E., Kozłowska U., Klimczak A., Grillon C., Kieda C., et al. Expression and Activity of Multidrug Resistance Proteins in Mature Endothelial Cells and Their Precursors: A Challenging Correlation. PLoS ONE. 2017;12:e0172371. doi: 10.1371/journal.pone.0172371. PubMed DOI PMC

Kosztyu P., Dolezel P., Vaclavikova R., Mlejnek P. Can the Assessment of ABCB1 Gene Expression Predict Its Function in Vitro? Eur. J. Haematol. 2015;95:150–159. doi: 10.1111/ejh.12470. PubMed DOI

Shchulkin A.V., Abalenikhina Y.V., Kosmachevskaya O.V., Topunov A.F., Yakusheva E.N. Regulation of P-Glycoprotein during Oxidative Stress. Antioxidants. 2024;13:215. doi: 10.3390/antiox13020215. PubMed DOI PMC

Nair D.G., Weiskirchen R. Advanced In Vitro Models for Preclinical Drug Safety: Recent Progress and Prospects. Curr. Issues Mol. Biol. 2024;47:7. doi: 10.3390/cimb47010007. PubMed DOI PMC

Rudrapal M., Khan J., Dukhyil A.A.B., Alarousy R.M.I.I., Attah E.I., Sharma T., Khairnar S.J., Bendale A.R. Chalcone Scaffolds, Bioprecursors of Flavonoids: Chemistry, Bioactivities, and Pharmacokinetics. Molecules. 2021;26:7177. doi: 10.3390/molecules26237177. PubMed DOI PMC

Szabó E., Kulin A., Jezsó B., Kucsma N., Sarkadi B., Várady G. Selective Fluorescent Probes for High-Throughput Functional Diagnostics of the Human Multidrug Transporter P-Glycoprotein (ABCB1) Int. J. Mol. Sci. 2022;23:10599. doi: 10.3390/ijms231810599. PubMed DOI PMC

Hellewell L., Bhakta S. Chalcones, Stilbenes and Ketones Have Anti-Infective Properties via Inhibition of Bacterial Drug-Efflux and Consequential Synergism with Antimicrobial Agents. Access Microbiol. 2020;2:acmi000105. doi: 10.1099/acmi.0.000105. PubMed DOI PMC

Freitas T.S., Xavier J.C., Pereira R.L.S., Rocha J.E., Campina F.F., de Araújo Neto J.B., Silva M.M.C., Barbosa C.R.S., Marinho E.S., Nogueira C.E.S., et al. In Vitro and in Silico Studies of Chalcones Derived from Natural Acetophenone Inhibitors of NorA and MepA Multidrug Efflux Pumps in Staphylococcus Aureus. Microb. Pathog. 2021;161:105286. doi: 10.1016/j.micpath.2021.105286. PubMed DOI

Le M.-T., Trinh D.-T.T., Ngo T.-D., Tran-Nguyen V.-K., Nguyen D.-N., Hoang T., Nguyen H.-M., Do T.-G.-S., Mai T.T., Tran T.-D., et al. Chalcone Derivatives as Potential Inhibitors of P-Glycoprotein and NorA: An In Silico and In Vitro Study. BioMed Res. Int. 2022;26:9982453. doi: 10.1155/2022/9982453. PubMed DOI PMC

Silva J., Esmeraldo Rocha J., da Cunha Xavier J., Sampaio de Freitas T., Douglas Melo Coutinho H., Nogueira Bandeira P., Rodrigues de Oliveira M., Nunes da Rocha M., Machado Marinho E., de Kassio Vieira Monteiro N., et al. Antibacterial and Antibiotic Modifying Activity of Chalcone (2E)-1-(4′-Aminophenyl)-3-(4-Methoxyphenyl)-Prop-2-En-1-One in Strains of Staphylococcus Aureus Carrying NorA and MepA Efflux Pumps: In Vitro and in Silico Approaches. Microb. Pathog. 2022;169:105664. doi: 10.1016/j.micpath.2022.105664. PubMed DOI

Rezende-Júnior L.M., Andrade L.M.d.S., Leal A.L.A.B., Mesquita A.B.d.S., Santos A.L.P.d.A.d., Neto J.d.S.L., Siqueira-Júnior J.P., Nogueira C.E.S., Kaatz G.W., Coutinho H.D.M., et al. Chalcones Isolated from Arrabidaea Brachypoda Flowers as Inhibitors of NorA and MepA Multidrug Efflux Pumps of Staphylococcus Aureus. Antibiotics. 2020;9:351. doi: 10.3390/antibiotics9060351. PubMed DOI PMC

Zheng Y., Ma Y., Xiong Q., Zhu K., Weng N., Zhu Q. The Role of Artificial Intelligence in the Development of Anticancer Therapeutics from Natural Polyphenols: Current Advances and Future Prospects. Pharmacol. Res. 2024;208:107381. doi: 10.1016/j.phrs.2024.107381. PubMed DOI

Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: Protein Structure and Function Prediction. Nat. Methods. 2015;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC

Bolton E.E., Chen J., Kim S., Han L., He S., Shi W., Simonyan V., Sun Y., Thiessen P.A., Wang J., et al. PubChem3D: A New Resource for Scientists. J. Cheminform. 2011;3:32. doi: 10.1186/1758-2946-3-32. PubMed DOI PMC

Jakalian A., Bush B.L., Jack D.B., Bayly C.I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method. J. Comput. Chem. 2000;21:132–146. doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P. PubMed DOI

Jakalian A., Jack D.B., Bayly C.I. Fast, Efficient Generation of High-quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation. J. Comput. Chem. 2002;23:1623–1641. doi: 10.1002/jcc.10128. PubMed DOI

Case Ross C., Walker D.A., Darden Junmei Wang T. Amber 2016 Reference Manual Principal Contributors to the Current Codes. [(accessed on 10 December 2024)]. Available online: https://ambermd.org/doc12/Amber16.pdf.

Sanner M. Python: A Programming Language for Software Integration and Development. J. Mol. Graph. Model. 1999;7:57–61. PubMed

Trott O., Olson A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Re: [PyMOL] PyMOL 2.3 Released|PyMOL Molecular Graphics System. [(accessed on 10 December 2024)]. Available online: https://sourceforge.net/p/pymol/mailman/message/36586593/

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...