• This record comes from PubMed

Nanodiamonds Interact with Primary Human Macrophages and Dendritic Cells Evoking a Vigorous Interferon Response

. 2025 May 27 ; 19 (20) : 19057-19079. [epub] 20250514

Language English Country United States Media print-electronic

Document type Journal Article

Nanodiamonds (NDs) display several attractive features rendering them useful for medical applications such as drug delivery. However, the interactions between NDs and the immune system remain poorly understood. Here, we investigated amino-, carboxyl-, and poly(ethylene glycol) (PEG)-terminated NDs with respect to primary human immune cells. We applied cytometry by time-of-flight (CyToF) to assess the impact on peripheral blood mononuclear cells at the single-cell level, and observed an expansion of plasmacytoid dendritic cells (pDCs) which are critically involved in antiviral responses. Subsequent experiments demonstrated that the NDs were actively internalized, leading to a vigorous type I interferon response involving endosomal Toll-like receptors. ND-NH2 and ND-COOH were more potent than ND-PEG, as evidenced by using TLR reporter cell lines. Computational studies demonstrated that NDs interacted with the ligand-binding domains of TLR7 and TLR9 with high affinity though this was less pronounced for ND-PEG. NDs with varying surface functionalities were also readily taken up by macrophages. To gain further insight, we performed RNA sequencing of a monocyte-like cell line exposed to NDs, and found that the phagosome maturation pathway was significantly affected. Indeed, evidence for lysosomal hyperacidification was obtained in dendritic cells and macrophages exposed to NDs. Moreover, using a reporter cell line, NDs were found to impinge on autophagic flux. However, NDs did not affect viability of any of the cell types studied. This study has shown that NDs subvert dendritic cells leading to an antiviral-like immune response. This has implications not only for drug delivery but also for anticancer vaccines using NDs.

See more in PubMed

Mochalin V. N., Shenderova O., Ho D., Gogotsi Y.. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012;7(1):11–23. doi: 10.1038/nnano.2011.209. PubMed DOI

Merkel T. J., DeSimone J. M.. Dodging Drug-Resistant Cancer with Diamonds. Sci. Transl. Med. 2011;3(73):73ps8. doi: 10.1126/scitranslmed.3002137. PubMed DOI

Chang S. L. Y., Reineck P., Krueger A., Mochalin V. N.. Ultrasmall Nanodiamonds: Perspectives and Questions. ACS Nano. 2022;16(6):8513–8524. doi: 10.1021/acsnano.2c00197. PubMed DOI

Seaberg J., Clegg J. R., Bhattacharya R., Mukherjee P.. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. Mater. Today. 2023;62:190–224. doi: 10.1016/j.mattod.2022.11.007. PubMed DOI PMC

Setyawati M. I., Tay C. Y., Bay B. H., Leong D. T.. Gold Nanoparticles Induced Endothelial Leakiness Depends on Particle Size and Endothelial Cell Origin. ACS Nano. 2017;11(5):5020–5030. doi: 10.1021/acsnano.7b01744. PubMed DOI

Zhang Y., Elechalawar C. K., Yang W., Frickenstein A. N., Asfa S., Fung K. M., Murphy B. N., Dwivedi S. K., Rao G., Dey A., Wilhelm S., Bhattacharya R., Mukherjee P.. Disabling Partners in Crime: Gold Nanoparticles Disrupt Multicellular Communications Within the Tumor Microenvironment to Inhibit Ovarian Tumor Aggressiveness. Mater. Today. 2022;56:79–95. doi: 10.1016/j.mattod.2022.01.025. PubMed DOI PMC

Ho D., Wang C. H., Chow E. K.. Nanodiamonds: the Intersection of Nanotechnology, Drug Development, and Personalized Medicine. Sci. Adv. 2015;1(7):e1500439. doi: 10.1126/sciadv.1500439. PubMed DOI PMC

Chow E. K., Zhang X. Q., Chen M., Lam R., Robinson E., Huang H., Schaffer D., Osawa E., Goga A., Ho D.. Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment. Sci. Transl. Med. 2011;3(73):73ra21. doi: 10.1126/scitranslmed.3001713. PubMed DOI

Wang X., Low X. C., Hou W., Abdullah L. N., Toh T. B., Mohd Abdul Rashid M., Ho D., Chow E. K.. Epirubicin-Adsorbed Nanodiamonds Kill Chemoresistant Hepatic Cancer Stem Cells. ACS Nano. 2014;8(12):12151–12166. doi: 10.1021/nn503491e. PubMed DOI PMC

Wang H., Lee D. K., Chen K. Y., Chen J. Y., Zhang K., Silva A., Ho C. M., Ho D.. Mechanism-Independent Optimization of Combinatorial Nanodiamond and Unmodified Drug Delivery Using a Phenotypically Driven Platform Technology. ACS Nano. 2015;9(3):3332–3344. doi: 10.1021/acsnano.5b00638. PubMed DOI

Zhang P., Xiao Y., Sun X., Lin X., Koo S., Yaremenko A. V., Qin D., Kong N., Farokhzad O. C., Tao W.. Cancer Nanomedicine Toward Clinical Translation: Obstacles, Opportunities, and Future Prospects. Med. 2023;4(3):147–167. doi: 10.1016/j.medj.2022.12.001. PubMed DOI

Li J., Zhu Y., Li W., Zhang X., Peng Y., Huang Q.. Nanodiamonds as Intracellular Transporters of Chemotherapeutic Drug. Biomaterials. 2010;31(32):8410–8418. doi: 10.1016/j.biomaterials.2010.07.058. PubMed DOI

Faklaris O., Joshi V., Irinopoulou T., Tauc P., Sennour M., Girard H., Gesset C., Arnault J. C., Thorel A., Boudou J. P., Curmi P. A., Treussart F.. Photoluminescent Diamond Nanoparticles for Cell Labeling: Study of the Uptake Mechanism in Mammalian Cells. ACS Nano. 2009;3(12):3955–3962. doi: 10.1021/nn901014j. PubMed DOI

Paget V., Sergent J. A., Grall R., Altmeyer-Morel S., Girard H. A., Petit T., Gesset C., Mermoux M., Bergonzo P., Arnault J. C., Chevillard S.. Carboxylated Nanodiamonds are Neither Cytotoxic nor Genotoxic on Liver, Kidney, Intestine and Lung Human Cell Lines. Nanotoxicology. 2014;8(Suppl 1):46–56. doi: 10.3109/17435390.2013.855828. PubMed DOI

Moore L., Yang J., Lan T. T., Osawa E., Lee D. K., Johnson W. D., Xi J., Chow E. K., Ho D.. Biocompatibility Assessment of Detonation Nanodiamond in Non-Human Primates and Rats Using Histological, Hematologic, and Urine Analysis. ACS Nano. 2016;10(8):7385–7400. doi: 10.1021/acsnano.6b00839. PubMed DOI

Gallud A., Delaval M., Kinaret P., Marwah V. S., Fortino V., Ytterberg J., Zubarev R., Skoog T., Kere J., Correia M., Loeschner K., Al-Ahmady Z., Kostarelos K., Ruiz J., Astruc D., Monopoli M., Handy R., Moya S., Savolainen K., Alenius H., Greco D., Fadeel B.. Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect. Adv. Sci. 2020;7(22):2002221. doi: 10.1002/advs.202002221. PubMed DOI PMC

Kinaret P. A. S., Ndika J., Ilves M., Wolff H., Vales G., Norppa H., Savolainen K., Skoog T., Kere J., Moya S., Handy R. D., Karisola P., Fadeel B., Greco D., Alenius H.. Toxicogenomic Profiling of 28 Nanomaterials in Mouse Airways. Adv. Sci. 2021;8(10):2004588. doi: 10.1002/advs.202004588. PubMed DOI PMC

Niora M., Lerche M. H., Dufva M., Berg-Sørensen K.. Quantitative Evaluation of the Cellular Uptake of Nanodiamonds by Monocytes and Macrophages. Small. 2023;19(11):2205429. doi: 10.1002/smll.202205429. PubMed DOI

Bhattacharya K., Kiliç G., Costa P. M., Fadeel B.. Cytotoxicity Screening and Cytokine Profiling of Nineteen Nanomaterials Enables Hazard Ranking and Grouping Based on Inflammogenic Potential. Nanotoxicology. 2017;11(6):809–826. PubMed

Tkach A. V., Shurin G. V., Shurin M. R., Kisin E. R., Murray A. R., Young S. H., Star A., Fadeel B., Kagan V. E., Shvedova A. A.. Direct Effects of Carbon Nanotubes on Dendritic Cells Induce Immune Suppression upon Pulmonary Exposure. ACS Nano. 2011;5(7):5755–5762. doi: 10.1021/nn2014479. PubMed DOI PMC

Tkach A. V., Yanamala N., Stanley S., Shurin M. R., Shurin G. V., Kisin E. R., Murray A. R., Pareso S., Khaliullin T., Kotchey G. P., Castranova V., Mathur S., Fadeel B., Star A., Kagan V. E., Shvedova A. A.. Graphene Oxide, but not Fullerenes, Targets Immunoproteasomes and Suppresses Antigen Presentation by Dendritic Cells. Small. 2013;9(9–10):1686–1690. doi: 10.1002/smll.201201546. PubMed DOI PMC

Tomić S., Janjetović K., Mihajlović D., Milenković M., Kravić-Stevović T., Marković Z., Todorović-Marković B., Spitalsky Z., Micusik M., Vučević D., Colić M., Trajković V.. Graphene Quantum Dots Suppress Proinflammatory T Cell Responses via Autophagy-Dependent Induction of Tolerogenic Dendritic Cells. Biomaterials. 2017;146:13–28. doi: 10.1016/j.biomaterials.2017.08.040. PubMed DOI

Fusco L., Avitabile E., Armuzza V., Orecchioni M., Istif A., Bedognetti D., Da Ros T., Delogu L. G.. Impact of the Surface Functionalization on Nanodiamond Biocompatibility: a Comprehensive View on Human Blood Immune Cells. Carbon. 2020;160:390–404. doi: 10.1016/j.carbon.2020.01.003. DOI

Lee D. K., Ha S., Jeon S., Jeong J., Kim D. J., Lee S. W., Cho W. S.. The sp 3 /sp 2 Carbon Ratio as a Modulator of In Vivo and In Vitro Toxicity of the Chemically Purified Detonation-Synthesized Nanodiamond via the Reactive Oxygen Species Generation. Nanotoxicology. 2020;14(9):1213–1226. doi: 10.1080/17435390.2020.1813825. PubMed DOI

Wculek S. K., Cueto F. J., Mujal A. M., Melero I., Krummel M. F., Sancho D.. Dendritic Cells in Cancer Immunology and Immunotherapy. Nat. Rev. Immunol. 2020;20(1):7–24. doi: 10.1038/s41577-019-0210-z. PubMed DOI

Cheng M., Shi H., Xu T., Jiang W., Zhong Tang B., Duo Y.. High-Dimensional Single-Cell Cartography Tracking of Immune Cells Subpopulation of Mice Peripheral Blood Treated with Gold Nanorods and Black Phosphorus Nanosheets. Nano Today. 2022;47:101666. doi: 10.1016/j.nantod.2022.101666. DOI

Gazzi A., Fusco L., Orecchioni M., Keshavan S., Shin Y., Grivel J.-C., Rinchai D., Ahmed E. I., Elhanani O., Furesi G., Rauner M., Keren L., Ley K., Casiraghi C., Bedognetti D., Fadeel B., Delogu L. G.. Immune Profiling and Tracking of Two-Dimensional Transition Metal Dichalcogenides in Cells and Tissues. Nano Today. 2024;54:102084. doi: 10.1016/j.nantod.2023.102084. DOI

Slezak A., Chang K., Hossainy S., Mansurov A., Rowan S. J., Hubbell J. A., Guler M. O.. Therapeutic Synthetic and Natural Materials for Immunoengineering. Chem. Soc. Rev. 2024;53(4):1789–1822. doi: 10.1039/D3CS00805C. PubMed DOI PMC

Malina T., Hirsch C., Rippl A., Panacek D., Polakova K., Sedajova V., Scheibe M., Zboril R., Wick P.. Safety Assessment of Graphene Acid and Cyanographene: Towards New Carbon-Based Nanomedicine. Carbon. 2023;211:118093. doi: 10.1016/j.carbon.2023.118093. DOI

Orecchioni M., Bordoni V., Fuoco C., Reina G., Lin H., Zoccheddu M., Yilmazer A., Zavan B., Cesareni G., Bedognetti D., Bianco A., Delogu L. G.. Toward High-Dimensional Single-Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune Cells by Single-Cell Mass Cytometry. Small. 2020;16(21):2000123. doi: 10.1002/smll.202000123. PubMed DOI

Orecchioni M., Bedognetti D., Newman L., Fuoco C., Spada F., Hendrickx W., Marincola F. M., Sgarrella F., Rodrigues A. F., Ménard-Moyon C., Cesareni G., Kostarelos K., Bianco A., Delogu L. G.. Single-Cell Mass Cytometry and Transcriptome Profiling Reveal the Impact of Graphene on Human Immune Cells. Nat. Commun. 2017;8(1):1109. doi: 10.1038/s41467-017-01015-3. PubMed DOI PMC

Andón F. T., Mukherjee S. P., Gessner I., Wortmann L., Xiao L., Hultenby K., Shvedova A. A., Mathur S., Fadeel B.. Hollow Carbon Spheres Trigger Inflammasome-Dependent IL-1β Secretion in Macrophages. Carbon. 2017;113:243–251. doi: 10.1016/j.carbon.2016.11.049. DOI

Colonna M., Trinchieri G., Liu Y. J.. Plasmacytoid Dendritic Cells in Immunity. Nat. Immunol. 2004;5(12):1219–1226. doi: 10.1038/ni1141. PubMed DOI

Suzuki H., Toyooka T., Ibuki Y.. Simple and Easy Method to Evaluate Uptake Potential of Nanoparticles in Mammalian Cells using a Flow Cytometric Light Scatter Analysis. Environ. Sci. Technol. 2007;41(8):3018–3024. doi: 10.1021/es0625632. PubMed DOI

Witasp E., Kupferschmidt N., Bengtsson L., Hultenby K., Smedman C., Paulie S., Garcia-Bennett A. E., Fadeel B.. Efficient Internalization of Mesoporous Silica Particles of Different Sizes by Primary Human Macrophages without Impairment of Macrophage Clearance of Apoptotic or Antibody-Opsonized Target Cells. Toxicol. Appl. Pharmacol. 2009;239(3):306–319. doi: 10.1016/j.taap.2009.06.011. PubMed DOI

Kunzmann A., Andersson B., Vogt C., Feliu N., Ye F., Gabrielsson S., Toprak M. S., Buerki-Thurnherr T., Laurent S., Vahter M., Krug H., Muhammed M., Scheynius A., Fadeel B.. Efficient Internalization of Silica-Coated Iron Oxide Nanoparticles of Different Sizes by Primary Human Macrophages and Dendritic Cells. Toxicol. Appl. Pharmacol. 2011;253(2):81–93. doi: 10.1016/j.taap.2011.03.011. PubMed DOI

Suarez-Kelly L. P., Campbell A. R., Rampersaud I. V., Bumb A., Wang M. S., Butchar J. P., Tridandapani S., Yu L., Rampersaud A. A., Carson W. E.. Fluorescent Nanodiamonds Engage Innate Immune Effector Cells: a Potential Vehicle for Targeted Anti-Tumor Immunotherapy. Nanomedicine. 2017;13(3):909–920. doi: 10.1016/j.nano.2016.12.005. PubMed DOI PMC

Gliga A. R., Di Bucchianico S., Lindvall J., Fadeel B., Karlsson H. L.. RNA-Sequencing Reveals Long-Term Effects of Silver Nanoparticles on Human Lung Cells. Sci. Rep. 2018;8(1):6668. doi: 10.1038/s41598-018-25085-5. PubMed DOI PMC

Gallud A., Klöditz K., Ytterberg J., Östberg N., Katayama S., Skoog T., Gogvadze V., Chen Y. Z., Xue D., Moya S., Ruiz J., Astruc D., Zubarev R., Kere J., Fadeel B.. Cationic Gold Nanoparticles Elicit Mitochondrial Dysfunction: a Multi-Omics Study. Sci. Rep. 2019;9(1):4366. doi: 10.1038/s41598-019-40579-6. PubMed DOI PMC

Mukherjee S. P., Gupta G., Klöditz K., Wang J., Rodrigues A. F., Kostarelos K., Fadeel B.. Next-Generation Sequencing Reveals Differential Responses to Acute Versus Long-Term Exposures to Graphene Oxide in Human Lung Cells. Small. 2020;16(21):1907686. doi: 10.1002/smll.201907686. PubMed DOI

Yoshimori T., Yamamoto A., Moriyama Y., Futai M., Tashiro Y.. Bafilomycin A1, a Specific Inhibitor of Vacuolar-Type H+-ATPase, Inhibits Acidification and Protein Degradation in Lysosomes of Cultured Cells. J. Biol. Chem. 1991;266(26):17707–17712. doi: 10.1016/S0021-9258(19)47429-2. PubMed DOI

Ballabio A., Bonifacino J. S.. Lysosomes as Dynamic Regulators of Cell and Organismal Homeostasis. Nat. Rev. Mol. Cell Biol. 2020;21(2):101–118. doi: 10.1038/s41580-019-0185-4. PubMed DOI

Eskelinen E. L., Tanaka Y., Saftig P.. At the Acidic Edge: Emerging Functions for Lysosomal Membrane Proteins. Trends Cell Biol. 2003;13(3):137–145. doi: 10.1016/S0962-8924(03)00005-9. PubMed DOI

Zhang J., Zeng W., Han Y., Lee W. R., Liou J., Jiang Y.. Lysosomal LAMP Proteins Regulate Lysosomal pH by Direct Inhibition of the TMEM175 Channel. Mol. Cell. 2023;83(14):2524–2539.e7. doi: 10.1016/j.molcel.2023.06.004. PubMed DOI PMC

Kim M., Chen C., Yaari Z., Frederiksen R., Randall E., Wollowitz J., Cupo C., Wu X., Shah J., Worroll D., Lagenbacher R. E., Goerzen D., Li Y. M., An H., Wang Y., Heller D. A.. Nanosensor-Based Monitoring of Autophagy-Associated Lysosomal Acidification In Vivo . Nat. Chem. Biol. 2023;19(12):1448–1457. doi: 10.1038/s41589-023-01364-9. PubMed DOI PMC

Keshavan S., Gupta G., Martin S., Fadeel B.. Multi-Walled Carbon Nanotubes Trigger Lysosome-Dependent Cell Death (Pyroptosis) in Macrophages but not in Neutrophils. Nanotoxicology. 2021;15(9):1125–1150. doi: 10.1080/17435390.2021.1988171. PubMed DOI

Ma X., Wu Y., Jin S., Tian Y., Zhang X., Zhao Y., Yu L., Liang X. J.. Gold Nanoparticles Induce Autophagosome Accumulation Through Size-Dependent Nanoparticle Uptake and Lysosome Impairment. ACS Nano. 2011;5(11):8629–8639. doi: 10.1021/nn202155y. PubMed DOI

Cui Z., Zhang Y., Xia K., Yan Q., Kong H., Zhang J., Zuo X., Shi J., Wang L., Zhu Y., Fan C.. Nanodiamond Autophagy Inhibitor Allosterically Improves the Arsenical-Based Therapy of Solid Tumors. Nat. Commun. 2018;9(1):4347. doi: 10.1038/s41467-018-06749-2. PubMed DOI PMC

Chen N., Han Y., Luo Y., Zhou Y., Hu X., Yu Y., Xie X., Yin M., Sun J., Zhong W., Zhao Y., Song H., Fan C.. Nanodiamond-Based Non-Canonical Autophagy Inhibitor Synergistically Induces Cell Death in Oxygen-Deprived Tumors. Mater. Horiz. 2018;5:1204–1210. doi: 10.1039/C8MH00993G. DOI

Casey J. R., Grinstein S., Orlowski J.. Sensors and Regulators of Intracellular pH. Nat. Rev. Mol. Cell Biol. 2010;11(1):50–61. doi: 10.1038/nrm2820. PubMed DOI

Zhu Y., Li W., Zhang Y., Li J., Liang L., Zhang X., Chen N., Sun Y., Chen W., Tai R., Fan C., Huang Q.. Excessive Sodium Ions Delivered into Cells by Nanodiamonds: Implications for Tumor Therapy. Small. 2012;8(11):1771–1779. doi: 10.1002/smll.201102539. PubMed DOI

Zhu Y., Zhang Y., Shi G., Yang J., Zhang J., Li W., Li A., Tai R., Fang H., Fan C., Huang Q.. Nanodiamonds act as Trojan Horse for Intracellular Delivery of Metal Ions to Trigger Cytotoxicity. Part. Fibre Toxicol. 2015;12:2. doi: 10.1186/s12989-014-0075-z. PubMed DOI PMC

Uzhytchak M., Smolková B., Lunova M., Frtús A., Jirsa M., Dejneka A., Lunov O.. Lysosomal Nanotoxicity: Impact of Nanomedicines on Lysosomal Function. Adv. Drug Delivery Rev. 2023;197:114828. doi: 10.1016/j.addr.2023.114828. PubMed DOI

Swiecki M., Colonna M.. The Multifaceted Biology of Plasmacytoid Dendritic Cells. Nat. Rev. Immunol. 2015;15(8):471–485. doi: 10.1038/nri3865. PubMed DOI PMC

Lee H. K., Lund J. M., Ramanathan B., Mizushima N., Iwasaki A.. Autophagy-Dependent Viral Recognition by Plasmacytoid Dendritic Cells. Science. 2007;315(5817):1398–1401. doi: 10.1126/science.1136880. PubMed DOI

Wu Y. T., Tan H. L., Shui G., Bauvy C., Huang Q., Wenk M. R., Ong C. N., Codogno P., Shen H. M.. Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase. J. Biol. Chem. 2010;285(14):10850–10861. doi: 10.1074/jbc.M109.080796. PubMed DOI PMC

Mauthe M., Orhon I., Rocchi C., Zhou X., Luhr M., Hijlkema K. J., Coppes R. P., Engedal N., Mari M., Reggiori F.. Chloroquine Inhibits Autophagic Flux by Decreasing Autophagosome-Lysosome Fusion. Autophagy. 2018;14(8):1435–1455. doi: 10.1080/15548627.2018.1474314. PubMed DOI PMC

Sharma S., tenOever B. R., Grandvaux N., Zhou G. P., Lin R., Hiscott J.. Triggering the Interferon Antiviral Response Through an IKK-Related Pathway. Science. 2003;300(5622):1148–1151. doi: 10.1126/science.1081315. PubMed DOI

Cao Z., Yang X., Yang W., Chen F., Jiang W., Zhan S., Jiang F., Li J., Ye C., Lang L., Zhang S., Feng Z., Lai X., Liu Y., Mao L., Cai H., Teng Y., Xie J.. Modulation of Dendritic Cell Function via Nanoparticle-Induced Cytosolic Calcium Changes. ACS Nano. 2024;18(10):7618–7632. doi: 10.1021/acsnano.4c00550. PubMed DOI PMC

Anees F., Montoya D. A., Pisetsky D. S., Payne C. K.. DNA Corona on Nanoparticles Leads to an Enhanced Immunostimulatory Effect with Implications for Autoimmune Diseases. Proc. Natl. Acad. Sci. U.S.A. 2024;121(11):e2319634121. doi: 10.1073/pnas.2319634121. PubMed DOI PMC

Turabekova M., Rasulev B., Theodore M., Jackman J., Leszczynska D., Leszczynski J.. Immunotoxicity of Nanoparticles: a Computational Study Suggests that CNTs and C60 Fullerenes Might be Recognized as Pathogens by Toll-like Receptors. Nanoscale. 2014;6(7):3488–3495. doi: 10.1039/C3NR05772K. PubMed DOI

Mukherjee S. P., Bondarenko O., Kohonen P., Andón F. T., Brzicová T., Gessner I., Mathur S., Bottini M., Calligari P., Stella L., Kisin E., Shvedova A., Autio R., Salminen-Mankonen H., Lahesmaa R., Fadeel B.. Macrophage Sensing of Single-Walled Carbon Nanotubes via Toll-Like Receptors. Sci. Rep. 2018;8(1):1115. doi: 10.1038/s41598-018-19521-9. PubMed DOI PMC

Reizis B.. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity. 2019;50(1):37–50. doi: 10.1016/j.immuni.2018.12.027. PubMed DOI PMC

Henault J., Martinez J., Riggs J. M., Tian J., Mehta P., Clarke L., Sasai M., Latz E., Brinkmann M. M., Iwasaki A., Coyle A. J., Kolbeck R., Green D. R., Sanjuan M. A.. Noncanonical Autophagy is Required for Type I Interferon Secretion in Response to DNA-Immune Complexes. Immunity. 2012;37(6):986–997. doi: 10.1016/j.immuni.2012.09.014. PubMed DOI PMC

Trombetta E. S., Ebersold M., Garrett W., Pypaert M., Mellman I.. Activation of Lysosomal Function During Dendritic Cell Maturation. Science. 2003;299(5611):1400–1403. doi: 10.1126/science.1080106. PubMed DOI

Delamarre L., Pack M., Chang H., Mellman I., Trombetta E. S.. Differential Lysosomal Proteolysis in Antigen-Presenting Cells Determines Antigen Fate. Science. 2005;307(5715):1630–1634. doi: 10.1126/science.1108003. PubMed DOI

Rettig L., Haen S. P., Bittermann A. G., von Boehmer L., Curioni A., Krämer S. D., Knuth A., Pascolo S.. Particle Size and Activation Threshold: a New Dimension of Danger Signaling. Blood. 2010;115(22):4533–4541. doi: 10.1182/blood-2009-11-247817. PubMed DOI

Kranz L. M., Diken M., Haas H., Kreiter S., Loquai C., Reuter K. C., Meng M., Fritz D., Vascotto F., Hefesha H., Grunwitz C., Vormehr M., Hüsemann Y., Selmi A., Kuhn A. N., Buck J., Derhovanessian E., Rae R., Attig S., Diekmann J., Jabulowsky R. A., Heesch S., Hassel J., Langguth P., Grabbe S., Huber C., Türeci Ö., Sahin U.. Systemic RNA Delivery to Dendritic Cells Exploits Antiviral Defence for Cancer Immunotherapy. Nature. 2016;534(7607):396–401. doi: 10.1038/nature18300. PubMed DOI

De Vries J., Figdor C.. Immunotherapy: Cancer Vaccine Triggers Antiviral-Type Defences. Nature. 2016;534(7607):329–331. doi: 10.1038/nature18443. PubMed DOI

Kon E., Ad-El N., Hazan-Halevy I., Stotsky-Oterin L., Peer D.. Targeting Cancer with mRNA-Lipid Nanoparticles: Key Considerations and Future Prospects. Nat. Rev. Clin. Oncol. 2023;20(11):739–754. doi: 10.1038/s41571-023-00811-9. PubMed DOI

Amoozgar Z., Goldberg M. S.. Targeting Myeloid Cells Using Nanoparticles to Improve Cancer Immunotherapy. Adv. Drug Delivery Rev. 2015;91:38–51. doi: 10.1016/j.addr.2014.09.007. PubMed DOI

Peng G., Fadeel B.. Understanding the Bidirectional Interactions Between Two-Dimensional Materials, Microorganisms, and the Immune System. Adv. Drug Delivery Rev. 2022;188:114422. doi: 10.1016/j.addr.2022.114422. PubMed DOI

Alexander E., Leong K. W.. Nanodiamonds in Biomedical Research: Therapeutic Applications and Beyond. PNAS Nexus. 2024;3(5):198. doi: 10.1093/pnasnexus/pgae198. PubMed DOI PMC

Malina T., Hamawandi B., Toprak M. S., Chen L., Björk J., Zhou J., Rosen J., Fadeel B.. Tuning the Transformation and Cellular Signaling of 2D Titanium Carbide MXenes Using a Natural Antioxidant. Matter. 2024;7(1):191–215. doi: 10.1016/j.matt.2023.10.026. DOI

Feliu N., Walter M. V., Montanez M. I., Kunzmann A., Hult A., Nyström A., Malkoch M., Fadeel B.. Stability and Biocompatibility of a Library of Polyester Dendrimers in Comparison to Polyamidoamine Dendrimers. Biomaterials. 2012;33(7):1970–1981. doi: 10.1016/j.biomaterials.2011.11.054. PubMed DOI

Amir E. A. D., Davis K. L., Tadmor M. D., Simonds E. F., Levine J. H., Bendall S. C., Shenfeld D. K., Krishnaswamy S., Nolan G. P., Peer D.. viSNE Enables Visualization of High Dimensional Single-Cell Data and Reveals Phenotypic Heterogeneity of Leukemia. Nat. Biotechnol. 2013;31(6):545–552. doi: 10.1038/nbt.2594. PubMed DOI PMC

Peng G., Keshavan S., Delogu L., Shin Y., Casiraghi C., Fadeel B.. Two-Dimensional Transition Metal Dichalcogenides Trigger Trained Immunity in Human Macrophages through Epigenetic and Metabolic Pathways. Small. 2022;18(20):2107816. doi: 10.1002/smll.202107816. PubMed DOI

Gallud A., Bondarenko O., Feliu N., Kupferschmidt N., Atluri R., Garcia-Bennett A., Fadeel B.. Macrophage Activation Status Determines the Internalization of Mesoporous Silica Particles: Exploring the Role of Different Pattern Recognition Receptors. Biomaterials. 2017;121:28–40. doi: 10.1016/j.biomaterials.2016.12.029. PubMed DOI

Kimura S., Noda T., Yoshimori T.. Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3. Autophagy. 2007;3(5):452–460. doi: 10.4161/auto.4451. PubMed DOI

Islam S., Kjällquist U., Moliner A., Zajac P., Fan J. B., Lönnerberg P., Linnarsson S.. Highly Multiplexed and Strand-Specific Single-Cell RNA 5′ End Sequencing. Nat. Protoc. 2012;7(5):813–828. doi: 10.1038/nprot.2012.022. PubMed DOI

Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S. L.. TopHat2: Accurate Alignment of Transcriptomes in the Presence of Insertions, Deletions and Gene Fusions. Genome Biol. 2013;14(4):R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Katayama S., Töhönen V., Linnarsson S., Kere J.. SAMstrt: Statistical Test for Differential Expression in Single-Cell Transcriptome with Spike-In Normalization. Bioinformatics. 2013;29(22):2943–2945. doi: 10.1093/bioinformatics/btt511. PubMed DOI PMC

Krämer A., Green J., Pollard J. Jr., Tugendreich S.. Causal Analysis Approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A. W., Kavukcuoglu K., Kohli P., Hassabis D.. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Downs R. T., Hall-Wallace M.. The American Mineralogist Crystal Structure Database. Am. Mineral. 2003;88:247–250.

Zhang Z., Ohto U., Shibata T., Taoka M., Yamauchi Y., Sato R., Shukla N. M., David S. A., Isobe T., Miyake K., Shimizu T.. Structural Analyses of Toll-like Receptor 7 Reveal Detailed RNA Sequence Specificity and Recognition Mechanism of Agonistic Ligands. Cell Rep. 2018;25(12):3371–3381. doi: 10.1016/j.celrep.2018.11.081. PubMed DOI

Trott O., Olson A. J.. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J.. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009;30(16):2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...