Nanodiamonds Interact with Primary Human Macrophages and Dendritic Cells Evoking a Vigorous Interferon Response
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40368637
PubMed Central
PMC12120995
DOI
10.1021/acsnano.4c18108
Knihovny.cz E-resources
- Keywords
- autophagy, dendritic cells, interferon, macrophages, nanodiamonds,
- MeSH
- Dendritic Cells * drug effects immunology MeSH
- Endosomes MeSH
- Interferon Type I * immunology MeSH
- Humans MeSH
- Lysosomes MeSH
- Macrophages * drug effects immunology MeSH
- Mice MeSH
- Nanodiamonds * MeSH
- Polyethylene Glycols MeSH
- RAW 264.7 Cells MeSH
- THP-1 Cells MeSH
- Toll-Like Receptors immunology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Interferon Type I * MeSH
- Nanodiamonds * MeSH
- Polyethylene Glycols MeSH
- Toll-Like Receptors MeSH
Nanodiamonds (NDs) display several attractive features rendering them useful for medical applications such as drug delivery. However, the interactions between NDs and the immune system remain poorly understood. Here, we investigated amino-, carboxyl-, and poly(ethylene glycol) (PEG)-terminated NDs with respect to primary human immune cells. We applied cytometry by time-of-flight (CyToF) to assess the impact on peripheral blood mononuclear cells at the single-cell level, and observed an expansion of plasmacytoid dendritic cells (pDCs) which are critically involved in antiviral responses. Subsequent experiments demonstrated that the NDs were actively internalized, leading to a vigorous type I interferon response involving endosomal Toll-like receptors. ND-NH2 and ND-COOH were more potent than ND-PEG, as evidenced by using TLR reporter cell lines. Computational studies demonstrated that NDs interacted with the ligand-binding domains of TLR7 and TLR9 with high affinity though this was less pronounced for ND-PEG. NDs with varying surface functionalities were also readily taken up by macrophages. To gain further insight, we performed RNA sequencing of a monocyte-like cell line exposed to NDs, and found that the phagosome maturation pathway was significantly affected. Indeed, evidence for lysosomal hyperacidification was obtained in dendritic cells and macrophages exposed to NDs. Moreover, using a reporter cell line, NDs were found to impinge on autophagic flux. However, NDs did not affect viability of any of the cell types studied. This study has shown that NDs subvert dendritic cells leading to an antiviral-like immune response. This has implications not only for drug delivery but also for anticancer vaccines using NDs.
Department of Applied Physics KTH Royal Institute of Technology 106 91 Stockholm Sweden
Department of Biomedical Sciences University of Padua Padua 351 29 Italy
Department of Biosciences and Nutrition Karolinska Institutet 148 13 Huddinge Sweden
Department of Laboratory Medicine Karolinska Institutet 141 52 Huddinge Sweden
Immunology Center of Georgia Augusta University Augusta Georgia 30912 United States
La Jolla Institute for Immunology San Diego California 92037 United States
Stem Cells and Metabolism Research Program University of Helsinki 00290 Helsinki Finland
See more in PubMed
Mochalin V. N., Shenderova O., Ho D., Gogotsi Y.. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012;7(1):11–23. doi: 10.1038/nnano.2011.209. PubMed DOI
Merkel T. J., DeSimone J. M.. Dodging Drug-Resistant Cancer with Diamonds. Sci. Transl. Med. 2011;3(73):73ps8. doi: 10.1126/scitranslmed.3002137. PubMed DOI
Chang S. L. Y., Reineck P., Krueger A., Mochalin V. N.. Ultrasmall Nanodiamonds: Perspectives and Questions. ACS Nano. 2022;16(6):8513–8524. doi: 10.1021/acsnano.2c00197. PubMed DOI
Seaberg J., Clegg J. R., Bhattacharya R., Mukherjee P.. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. Mater. Today. 2023;62:190–224. doi: 10.1016/j.mattod.2022.11.007. PubMed DOI PMC
Setyawati M. I., Tay C. Y., Bay B. H., Leong D. T.. Gold Nanoparticles Induced Endothelial Leakiness Depends on Particle Size and Endothelial Cell Origin. ACS Nano. 2017;11(5):5020–5030. doi: 10.1021/acsnano.7b01744. PubMed DOI
Zhang Y., Elechalawar C. K., Yang W., Frickenstein A. N., Asfa S., Fung K. M., Murphy B. N., Dwivedi S. K., Rao G., Dey A., Wilhelm S., Bhattacharya R., Mukherjee P.. Disabling Partners in Crime: Gold Nanoparticles Disrupt Multicellular Communications Within the Tumor Microenvironment to Inhibit Ovarian Tumor Aggressiveness. Mater. Today. 2022;56:79–95. doi: 10.1016/j.mattod.2022.01.025. PubMed DOI PMC
Ho D., Wang C. H., Chow E. K.. Nanodiamonds: the Intersection of Nanotechnology, Drug Development, and Personalized Medicine. Sci. Adv. 2015;1(7):e1500439. doi: 10.1126/sciadv.1500439. PubMed DOI PMC
Chow E. K., Zhang X. Q., Chen M., Lam R., Robinson E., Huang H., Schaffer D., Osawa E., Goga A., Ho D.. Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment. Sci. Transl. Med. 2011;3(73):73ra21. doi: 10.1126/scitranslmed.3001713. PubMed DOI
Wang X., Low X. C., Hou W., Abdullah L. N., Toh T. B., Mohd Abdul Rashid M., Ho D., Chow E. K.. Epirubicin-Adsorbed Nanodiamonds Kill Chemoresistant Hepatic Cancer Stem Cells. ACS Nano. 2014;8(12):12151–12166. doi: 10.1021/nn503491e. PubMed DOI PMC
Wang H., Lee D. K., Chen K. Y., Chen J. Y., Zhang K., Silva A., Ho C. M., Ho D.. Mechanism-Independent Optimization of Combinatorial Nanodiamond and Unmodified Drug Delivery Using a Phenotypically Driven Platform Technology. ACS Nano. 2015;9(3):3332–3344. doi: 10.1021/acsnano.5b00638. PubMed DOI
Zhang P., Xiao Y., Sun X., Lin X., Koo S., Yaremenko A. V., Qin D., Kong N., Farokhzad O. C., Tao W.. Cancer Nanomedicine Toward Clinical Translation: Obstacles, Opportunities, and Future Prospects. Med. 2023;4(3):147–167. doi: 10.1016/j.medj.2022.12.001. PubMed DOI
Li J., Zhu Y., Li W., Zhang X., Peng Y., Huang Q.. Nanodiamonds as Intracellular Transporters of Chemotherapeutic Drug. Biomaterials. 2010;31(32):8410–8418. doi: 10.1016/j.biomaterials.2010.07.058. PubMed DOI
Faklaris O., Joshi V., Irinopoulou T., Tauc P., Sennour M., Girard H., Gesset C., Arnault J. C., Thorel A., Boudou J. P., Curmi P. A., Treussart F.. Photoluminescent Diamond Nanoparticles for Cell Labeling: Study of the Uptake Mechanism in Mammalian Cells. ACS Nano. 2009;3(12):3955–3962. doi: 10.1021/nn901014j. PubMed DOI
Paget V., Sergent J. A., Grall R., Altmeyer-Morel S., Girard H. A., Petit T., Gesset C., Mermoux M., Bergonzo P., Arnault J. C., Chevillard S.. Carboxylated Nanodiamonds are Neither Cytotoxic nor Genotoxic on Liver, Kidney, Intestine and Lung Human Cell Lines. Nanotoxicology. 2014;8(Suppl 1):46–56. doi: 10.3109/17435390.2013.855828. PubMed DOI
Moore L., Yang J., Lan T. T., Osawa E., Lee D. K., Johnson W. D., Xi J., Chow E. K., Ho D.. Biocompatibility Assessment of Detonation Nanodiamond in Non-Human Primates and Rats Using Histological, Hematologic, and Urine Analysis. ACS Nano. 2016;10(8):7385–7400. doi: 10.1021/acsnano.6b00839. PubMed DOI
Gallud A., Delaval M., Kinaret P., Marwah V. S., Fortino V., Ytterberg J., Zubarev R., Skoog T., Kere J., Correia M., Loeschner K., Al-Ahmady Z., Kostarelos K., Ruiz J., Astruc D., Monopoli M., Handy R., Moya S., Savolainen K., Alenius H., Greco D., Fadeel B.. Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect. Adv. Sci. 2020;7(22):2002221. doi: 10.1002/advs.202002221. PubMed DOI PMC
Kinaret P. A. S., Ndika J., Ilves M., Wolff H., Vales G., Norppa H., Savolainen K., Skoog T., Kere J., Moya S., Handy R. D., Karisola P., Fadeel B., Greco D., Alenius H.. Toxicogenomic Profiling of 28 Nanomaterials in Mouse Airways. Adv. Sci. 2021;8(10):2004588. doi: 10.1002/advs.202004588. PubMed DOI PMC
Niora M., Lerche M. H., Dufva M., Berg-Sørensen K.. Quantitative Evaluation of the Cellular Uptake of Nanodiamonds by Monocytes and Macrophages. Small. 2023;19(11):2205429. doi: 10.1002/smll.202205429. PubMed DOI
Bhattacharya K., Kiliç G., Costa P. M., Fadeel B.. Cytotoxicity Screening and Cytokine Profiling of Nineteen Nanomaterials Enables Hazard Ranking and Grouping Based on Inflammogenic Potential. Nanotoxicology. 2017;11(6):809–826. PubMed
Tkach A. V., Shurin G. V., Shurin M. R., Kisin E. R., Murray A. R., Young S. H., Star A., Fadeel B., Kagan V. E., Shvedova A. A.. Direct Effects of Carbon Nanotubes on Dendritic Cells Induce Immune Suppression upon Pulmonary Exposure. ACS Nano. 2011;5(7):5755–5762. doi: 10.1021/nn2014479. PubMed DOI PMC
Tkach A. V., Yanamala N., Stanley S., Shurin M. R., Shurin G. V., Kisin E. R., Murray A. R., Pareso S., Khaliullin T., Kotchey G. P., Castranova V., Mathur S., Fadeel B., Star A., Kagan V. E., Shvedova A. A.. Graphene Oxide, but not Fullerenes, Targets Immunoproteasomes and Suppresses Antigen Presentation by Dendritic Cells. Small. 2013;9(9–10):1686–1690. doi: 10.1002/smll.201201546. PubMed DOI PMC
Tomić S., Janjetović K., Mihajlović D., Milenković M., Kravić-Stevović T., Marković Z., Todorović-Marković B., Spitalsky Z., Micusik M., Vučević D., Colić M., Trajković V.. Graphene Quantum Dots Suppress Proinflammatory T Cell Responses via Autophagy-Dependent Induction of Tolerogenic Dendritic Cells. Biomaterials. 2017;146:13–28. doi: 10.1016/j.biomaterials.2017.08.040. PubMed DOI
Fusco L., Avitabile E., Armuzza V., Orecchioni M., Istif A., Bedognetti D., Da Ros T., Delogu L. G.. Impact of the Surface Functionalization on Nanodiamond Biocompatibility: a Comprehensive View on Human Blood Immune Cells. Carbon. 2020;160:390–404. doi: 10.1016/j.carbon.2020.01.003. DOI
Lee D. K., Ha S., Jeon S., Jeong J., Kim D. J., Lee S. W., Cho W. S.. The sp 3 /sp 2 Carbon Ratio as a Modulator of In Vivo and In Vitro Toxicity of the Chemically Purified Detonation-Synthesized Nanodiamond via the Reactive Oxygen Species Generation. Nanotoxicology. 2020;14(9):1213–1226. doi: 10.1080/17435390.2020.1813825. PubMed DOI
Wculek S. K., Cueto F. J., Mujal A. M., Melero I., Krummel M. F., Sancho D.. Dendritic Cells in Cancer Immunology and Immunotherapy. Nat. Rev. Immunol. 2020;20(1):7–24. doi: 10.1038/s41577-019-0210-z. PubMed DOI
Cheng M., Shi H., Xu T., Jiang W., Zhong Tang B., Duo Y.. High-Dimensional Single-Cell Cartography Tracking of Immune Cells Subpopulation of Mice Peripheral Blood Treated with Gold Nanorods and Black Phosphorus Nanosheets. Nano Today. 2022;47:101666. doi: 10.1016/j.nantod.2022.101666. DOI
Gazzi A., Fusco L., Orecchioni M., Keshavan S., Shin Y., Grivel J.-C., Rinchai D., Ahmed E. I., Elhanani O., Furesi G., Rauner M., Keren L., Ley K., Casiraghi C., Bedognetti D., Fadeel B., Delogu L. G.. Immune Profiling and Tracking of Two-Dimensional Transition Metal Dichalcogenides in Cells and Tissues. Nano Today. 2024;54:102084. doi: 10.1016/j.nantod.2023.102084. DOI
Slezak A., Chang K., Hossainy S., Mansurov A., Rowan S. J., Hubbell J. A., Guler M. O.. Therapeutic Synthetic and Natural Materials for Immunoengineering. Chem. Soc. Rev. 2024;53(4):1789–1822. doi: 10.1039/D3CS00805C. PubMed DOI PMC
Malina T., Hirsch C., Rippl A., Panacek D., Polakova K., Sedajova V., Scheibe M., Zboril R., Wick P.. Safety Assessment of Graphene Acid and Cyanographene: Towards New Carbon-Based Nanomedicine. Carbon. 2023;211:118093. doi: 10.1016/j.carbon.2023.118093. DOI
Orecchioni M., Bordoni V., Fuoco C., Reina G., Lin H., Zoccheddu M., Yilmazer A., Zavan B., Cesareni G., Bedognetti D., Bianco A., Delogu L. G.. Toward High-Dimensional Single-Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune Cells by Single-Cell Mass Cytometry. Small. 2020;16(21):2000123. doi: 10.1002/smll.202000123. PubMed DOI
Orecchioni M., Bedognetti D., Newman L., Fuoco C., Spada F., Hendrickx W., Marincola F. M., Sgarrella F., Rodrigues A. F., Ménard-Moyon C., Cesareni G., Kostarelos K., Bianco A., Delogu L. G.. Single-Cell Mass Cytometry and Transcriptome Profiling Reveal the Impact of Graphene on Human Immune Cells. Nat. Commun. 2017;8(1):1109. doi: 10.1038/s41467-017-01015-3. PubMed DOI PMC
Andón F. T., Mukherjee S. P., Gessner I., Wortmann L., Xiao L., Hultenby K., Shvedova A. A., Mathur S., Fadeel B.. Hollow Carbon Spheres Trigger Inflammasome-Dependent IL-1β Secretion in Macrophages. Carbon. 2017;113:243–251. doi: 10.1016/j.carbon.2016.11.049. DOI
Colonna M., Trinchieri G., Liu Y. J.. Plasmacytoid Dendritic Cells in Immunity. Nat. Immunol. 2004;5(12):1219–1226. doi: 10.1038/ni1141. PubMed DOI
Suzuki H., Toyooka T., Ibuki Y.. Simple and Easy Method to Evaluate Uptake Potential of Nanoparticles in Mammalian Cells using a Flow Cytometric Light Scatter Analysis. Environ. Sci. Technol. 2007;41(8):3018–3024. doi: 10.1021/es0625632. PubMed DOI
Witasp E., Kupferschmidt N., Bengtsson L., Hultenby K., Smedman C., Paulie S., Garcia-Bennett A. E., Fadeel B.. Efficient Internalization of Mesoporous Silica Particles of Different Sizes by Primary Human Macrophages without Impairment of Macrophage Clearance of Apoptotic or Antibody-Opsonized Target Cells. Toxicol. Appl. Pharmacol. 2009;239(3):306–319. doi: 10.1016/j.taap.2009.06.011. PubMed DOI
Kunzmann A., Andersson B., Vogt C., Feliu N., Ye F., Gabrielsson S., Toprak M. S., Buerki-Thurnherr T., Laurent S., Vahter M., Krug H., Muhammed M., Scheynius A., Fadeel B.. Efficient Internalization of Silica-Coated Iron Oxide Nanoparticles of Different Sizes by Primary Human Macrophages and Dendritic Cells. Toxicol. Appl. Pharmacol. 2011;253(2):81–93. doi: 10.1016/j.taap.2011.03.011. PubMed DOI
Suarez-Kelly L. P., Campbell A. R., Rampersaud I. V., Bumb A., Wang M. S., Butchar J. P., Tridandapani S., Yu L., Rampersaud A. A., Carson W. E.. Fluorescent Nanodiamonds Engage Innate Immune Effector Cells: a Potential Vehicle for Targeted Anti-Tumor Immunotherapy. Nanomedicine. 2017;13(3):909–920. doi: 10.1016/j.nano.2016.12.005. PubMed DOI PMC
Gliga A. R., Di Bucchianico S., Lindvall J., Fadeel B., Karlsson H. L.. RNA-Sequencing Reveals Long-Term Effects of Silver Nanoparticles on Human Lung Cells. Sci. Rep. 2018;8(1):6668. doi: 10.1038/s41598-018-25085-5. PubMed DOI PMC
Gallud A., Klöditz K., Ytterberg J., Östberg N., Katayama S., Skoog T., Gogvadze V., Chen Y. Z., Xue D., Moya S., Ruiz J., Astruc D., Zubarev R., Kere J., Fadeel B.. Cationic Gold Nanoparticles Elicit Mitochondrial Dysfunction: a Multi-Omics Study. Sci. Rep. 2019;9(1):4366. doi: 10.1038/s41598-019-40579-6. PubMed DOI PMC
Mukherjee S. P., Gupta G., Klöditz K., Wang J., Rodrigues A. F., Kostarelos K., Fadeel B.. Next-Generation Sequencing Reveals Differential Responses to Acute Versus Long-Term Exposures to Graphene Oxide in Human Lung Cells. Small. 2020;16(21):1907686. doi: 10.1002/smll.201907686. PubMed DOI
Yoshimori T., Yamamoto A., Moriyama Y., Futai M., Tashiro Y.. Bafilomycin A1, a Specific Inhibitor of Vacuolar-Type H+-ATPase, Inhibits Acidification and Protein Degradation in Lysosomes of Cultured Cells. J. Biol. Chem. 1991;266(26):17707–17712. doi: 10.1016/S0021-9258(19)47429-2. PubMed DOI
Ballabio A., Bonifacino J. S.. Lysosomes as Dynamic Regulators of Cell and Organismal Homeostasis. Nat. Rev. Mol. Cell Biol. 2020;21(2):101–118. doi: 10.1038/s41580-019-0185-4. PubMed DOI
Eskelinen E. L., Tanaka Y., Saftig P.. At the Acidic Edge: Emerging Functions for Lysosomal Membrane Proteins. Trends Cell Biol. 2003;13(3):137–145. doi: 10.1016/S0962-8924(03)00005-9. PubMed DOI
Zhang J., Zeng W., Han Y., Lee W. R., Liou J., Jiang Y.. Lysosomal LAMP Proteins Regulate Lysosomal pH by Direct Inhibition of the TMEM175 Channel. Mol. Cell. 2023;83(14):2524–2539.e7. doi: 10.1016/j.molcel.2023.06.004. PubMed DOI PMC
Kim M., Chen C., Yaari Z., Frederiksen R., Randall E., Wollowitz J., Cupo C., Wu X., Shah J., Worroll D., Lagenbacher R. E., Goerzen D., Li Y. M., An H., Wang Y., Heller D. A.. Nanosensor-Based Monitoring of Autophagy-Associated Lysosomal Acidification In Vivo . Nat. Chem. Biol. 2023;19(12):1448–1457. doi: 10.1038/s41589-023-01364-9. PubMed DOI PMC
Keshavan S., Gupta G., Martin S., Fadeel B.. Multi-Walled Carbon Nanotubes Trigger Lysosome-Dependent Cell Death (Pyroptosis) in Macrophages but not in Neutrophils. Nanotoxicology. 2021;15(9):1125–1150. doi: 10.1080/17435390.2021.1988171. PubMed DOI
Ma X., Wu Y., Jin S., Tian Y., Zhang X., Zhao Y., Yu L., Liang X. J.. Gold Nanoparticles Induce Autophagosome Accumulation Through Size-Dependent Nanoparticle Uptake and Lysosome Impairment. ACS Nano. 2011;5(11):8629–8639. doi: 10.1021/nn202155y. PubMed DOI
Cui Z., Zhang Y., Xia K., Yan Q., Kong H., Zhang J., Zuo X., Shi J., Wang L., Zhu Y., Fan C.. Nanodiamond Autophagy Inhibitor Allosterically Improves the Arsenical-Based Therapy of Solid Tumors. Nat. Commun. 2018;9(1):4347. doi: 10.1038/s41467-018-06749-2. PubMed DOI PMC
Chen N., Han Y., Luo Y., Zhou Y., Hu X., Yu Y., Xie X., Yin M., Sun J., Zhong W., Zhao Y., Song H., Fan C.. Nanodiamond-Based Non-Canonical Autophagy Inhibitor Synergistically Induces Cell Death in Oxygen-Deprived Tumors. Mater. Horiz. 2018;5:1204–1210. doi: 10.1039/C8MH00993G. DOI
Casey J. R., Grinstein S., Orlowski J.. Sensors and Regulators of Intracellular pH. Nat. Rev. Mol. Cell Biol. 2010;11(1):50–61. doi: 10.1038/nrm2820. PubMed DOI
Zhu Y., Li W., Zhang Y., Li J., Liang L., Zhang X., Chen N., Sun Y., Chen W., Tai R., Fan C., Huang Q.. Excessive Sodium Ions Delivered into Cells by Nanodiamonds: Implications for Tumor Therapy. Small. 2012;8(11):1771–1779. doi: 10.1002/smll.201102539. PubMed DOI
Zhu Y., Zhang Y., Shi G., Yang J., Zhang J., Li W., Li A., Tai R., Fang H., Fan C., Huang Q.. Nanodiamonds act as Trojan Horse for Intracellular Delivery of Metal Ions to Trigger Cytotoxicity. Part. Fibre Toxicol. 2015;12:2. doi: 10.1186/s12989-014-0075-z. PubMed DOI PMC
Uzhytchak M., Smolková B., Lunova M., Frtús A., Jirsa M., Dejneka A., Lunov O.. Lysosomal Nanotoxicity: Impact of Nanomedicines on Lysosomal Function. Adv. Drug Delivery Rev. 2023;197:114828. doi: 10.1016/j.addr.2023.114828. PubMed DOI
Swiecki M., Colonna M.. The Multifaceted Biology of Plasmacytoid Dendritic Cells. Nat. Rev. Immunol. 2015;15(8):471–485. doi: 10.1038/nri3865. PubMed DOI PMC
Lee H. K., Lund J. M., Ramanathan B., Mizushima N., Iwasaki A.. Autophagy-Dependent Viral Recognition by Plasmacytoid Dendritic Cells. Science. 2007;315(5817):1398–1401. doi: 10.1126/science.1136880. PubMed DOI
Wu Y. T., Tan H. L., Shui G., Bauvy C., Huang Q., Wenk M. R., Ong C. N., Codogno P., Shen H. M.. Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase. J. Biol. Chem. 2010;285(14):10850–10861. doi: 10.1074/jbc.M109.080796. PubMed DOI PMC
Mauthe M., Orhon I., Rocchi C., Zhou X., Luhr M., Hijlkema K. J., Coppes R. P., Engedal N., Mari M., Reggiori F.. Chloroquine Inhibits Autophagic Flux by Decreasing Autophagosome-Lysosome Fusion. Autophagy. 2018;14(8):1435–1455. doi: 10.1080/15548627.2018.1474314. PubMed DOI PMC
Sharma S., tenOever B. R., Grandvaux N., Zhou G. P., Lin R., Hiscott J.. Triggering the Interferon Antiviral Response Through an IKK-Related Pathway. Science. 2003;300(5622):1148–1151. doi: 10.1126/science.1081315. PubMed DOI
Cao Z., Yang X., Yang W., Chen F., Jiang W., Zhan S., Jiang F., Li J., Ye C., Lang L., Zhang S., Feng Z., Lai X., Liu Y., Mao L., Cai H., Teng Y., Xie J.. Modulation of Dendritic Cell Function via Nanoparticle-Induced Cytosolic Calcium Changes. ACS Nano. 2024;18(10):7618–7632. doi: 10.1021/acsnano.4c00550. PubMed DOI PMC
Anees F., Montoya D. A., Pisetsky D. S., Payne C. K.. DNA Corona on Nanoparticles Leads to an Enhanced Immunostimulatory Effect with Implications for Autoimmune Diseases. Proc. Natl. Acad. Sci. U.S.A. 2024;121(11):e2319634121. doi: 10.1073/pnas.2319634121. PubMed DOI PMC
Turabekova M., Rasulev B., Theodore M., Jackman J., Leszczynska D., Leszczynski J.. Immunotoxicity of Nanoparticles: a Computational Study Suggests that CNTs and C60 Fullerenes Might be Recognized as Pathogens by Toll-like Receptors. Nanoscale. 2014;6(7):3488–3495. doi: 10.1039/C3NR05772K. PubMed DOI
Mukherjee S. P., Bondarenko O., Kohonen P., Andón F. T., Brzicová T., Gessner I., Mathur S., Bottini M., Calligari P., Stella L., Kisin E., Shvedova A., Autio R., Salminen-Mankonen H., Lahesmaa R., Fadeel B.. Macrophage Sensing of Single-Walled Carbon Nanotubes via Toll-Like Receptors. Sci. Rep. 2018;8(1):1115. doi: 10.1038/s41598-018-19521-9. PubMed DOI PMC
Reizis B.. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity. 2019;50(1):37–50. doi: 10.1016/j.immuni.2018.12.027. PubMed DOI PMC
Henault J., Martinez J., Riggs J. M., Tian J., Mehta P., Clarke L., Sasai M., Latz E., Brinkmann M. M., Iwasaki A., Coyle A. J., Kolbeck R., Green D. R., Sanjuan M. A.. Noncanonical Autophagy is Required for Type I Interferon Secretion in Response to DNA-Immune Complexes. Immunity. 2012;37(6):986–997. doi: 10.1016/j.immuni.2012.09.014. PubMed DOI PMC
Trombetta E. S., Ebersold M., Garrett W., Pypaert M., Mellman I.. Activation of Lysosomal Function During Dendritic Cell Maturation. Science. 2003;299(5611):1400–1403. doi: 10.1126/science.1080106. PubMed DOI
Delamarre L., Pack M., Chang H., Mellman I., Trombetta E. S.. Differential Lysosomal Proteolysis in Antigen-Presenting Cells Determines Antigen Fate. Science. 2005;307(5715):1630–1634. doi: 10.1126/science.1108003. PubMed DOI
Rettig L., Haen S. P., Bittermann A. G., von Boehmer L., Curioni A., Krämer S. D., Knuth A., Pascolo S.. Particle Size and Activation Threshold: a New Dimension of Danger Signaling. Blood. 2010;115(22):4533–4541. doi: 10.1182/blood-2009-11-247817. PubMed DOI
Kranz L. M., Diken M., Haas H., Kreiter S., Loquai C., Reuter K. C., Meng M., Fritz D., Vascotto F., Hefesha H., Grunwitz C., Vormehr M., Hüsemann Y., Selmi A., Kuhn A. N., Buck J., Derhovanessian E., Rae R., Attig S., Diekmann J., Jabulowsky R. A., Heesch S., Hassel J., Langguth P., Grabbe S., Huber C., Türeci Ö., Sahin U.. Systemic RNA Delivery to Dendritic Cells Exploits Antiviral Defence for Cancer Immunotherapy. Nature. 2016;534(7607):396–401. doi: 10.1038/nature18300. PubMed DOI
De Vries J., Figdor C.. Immunotherapy: Cancer Vaccine Triggers Antiviral-Type Defences. Nature. 2016;534(7607):329–331. doi: 10.1038/nature18443. PubMed DOI
Kon E., Ad-El N., Hazan-Halevy I., Stotsky-Oterin L., Peer D.. Targeting Cancer with mRNA-Lipid Nanoparticles: Key Considerations and Future Prospects. Nat. Rev. Clin. Oncol. 2023;20(11):739–754. doi: 10.1038/s41571-023-00811-9. PubMed DOI
Amoozgar Z., Goldberg M. S.. Targeting Myeloid Cells Using Nanoparticles to Improve Cancer Immunotherapy. Adv. Drug Delivery Rev. 2015;91:38–51. doi: 10.1016/j.addr.2014.09.007. PubMed DOI
Peng G., Fadeel B.. Understanding the Bidirectional Interactions Between Two-Dimensional Materials, Microorganisms, and the Immune System. Adv. Drug Delivery Rev. 2022;188:114422. doi: 10.1016/j.addr.2022.114422. PubMed DOI
Alexander E., Leong K. W.. Nanodiamonds in Biomedical Research: Therapeutic Applications and Beyond. PNAS Nexus. 2024;3(5):198. doi: 10.1093/pnasnexus/pgae198. PubMed DOI PMC
Malina T., Hamawandi B., Toprak M. S., Chen L., Björk J., Zhou J., Rosen J., Fadeel B.. Tuning the Transformation and Cellular Signaling of 2D Titanium Carbide MXenes Using a Natural Antioxidant. Matter. 2024;7(1):191–215. doi: 10.1016/j.matt.2023.10.026. DOI
Feliu N., Walter M. V., Montanez M. I., Kunzmann A., Hult A., Nyström A., Malkoch M., Fadeel B.. Stability and Biocompatibility of a Library of Polyester Dendrimers in Comparison to Polyamidoamine Dendrimers. Biomaterials. 2012;33(7):1970–1981. doi: 10.1016/j.biomaterials.2011.11.054. PubMed DOI
Amir E. A. D., Davis K. L., Tadmor M. D., Simonds E. F., Levine J. H., Bendall S. C., Shenfeld D. K., Krishnaswamy S., Nolan G. P., Peer D.. viSNE Enables Visualization of High Dimensional Single-Cell Data and Reveals Phenotypic Heterogeneity of Leukemia. Nat. Biotechnol. 2013;31(6):545–552. doi: 10.1038/nbt.2594. PubMed DOI PMC
Peng G., Keshavan S., Delogu L., Shin Y., Casiraghi C., Fadeel B.. Two-Dimensional Transition Metal Dichalcogenides Trigger Trained Immunity in Human Macrophages through Epigenetic and Metabolic Pathways. Small. 2022;18(20):2107816. doi: 10.1002/smll.202107816. PubMed DOI
Gallud A., Bondarenko O., Feliu N., Kupferschmidt N., Atluri R., Garcia-Bennett A., Fadeel B.. Macrophage Activation Status Determines the Internalization of Mesoporous Silica Particles: Exploring the Role of Different Pattern Recognition Receptors. Biomaterials. 2017;121:28–40. doi: 10.1016/j.biomaterials.2016.12.029. PubMed DOI
Kimura S., Noda T., Yoshimori T.. Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3. Autophagy. 2007;3(5):452–460. doi: 10.4161/auto.4451. PubMed DOI
Islam S., Kjällquist U., Moliner A., Zajac P., Fan J. B., Lönnerberg P., Linnarsson S.. Highly Multiplexed and Strand-Specific Single-Cell RNA 5′ End Sequencing. Nat. Protoc. 2012;7(5):813–828. doi: 10.1038/nprot.2012.022. PubMed DOI
Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S. L.. TopHat2: Accurate Alignment of Transcriptomes in the Presence of Insertions, Deletions and Gene Fusions. Genome Biol. 2013;14(4):R36. doi: 10.1186/gb-2013-14-4-r36. PubMed DOI PMC
Katayama S., Töhönen V., Linnarsson S., Kere J.. SAMstrt: Statistical Test for Differential Expression in Single-Cell Transcriptome with Spike-In Normalization. Bioinformatics. 2013;29(22):2943–2945. doi: 10.1093/bioinformatics/btt511. PubMed DOI PMC
Krämer A., Green J., Pollard J. Jr., Tugendreich S.. Causal Analysis Approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A. W., Kavukcuoglu K., Kohli P., Hassabis D.. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Downs R. T., Hall-Wallace M.. The American Mineralogist Crystal Structure Database. Am. Mineral. 2003;88:247–250.
Zhang Z., Ohto U., Shibata T., Taoka M., Yamauchi Y., Sato R., Shukla N. M., David S. A., Isobe T., Miyake K., Shimizu T.. Structural Analyses of Toll-like Receptor 7 Reveal Detailed RNA Sequence Specificity and Recognition Mechanism of Agonistic Ligands. Cell Rep. 2018;25(12):3371–3381. doi: 10.1016/j.celrep.2018.11.081. PubMed DOI
Trott O., Olson A. J.. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J.. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009;30(16):2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC