Analysis of quadruplex propensity of aptamer sequences
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
Ecole Polytechnique
Inserm
CNRS
Fondation de l'Ecole Polytechnique
Agence de l'Innovation de Défense
22-21903S
Czech Science Foundation
PubMed
40377215
PubMed Central
PMC12082452
DOI
10.1093/nar/gkaf424
PII: 8133626
Knihovny.cz E-resources
- MeSH
- SELEX Aptamer Technique MeSH
- Aptamers, Nucleotide * chemistry MeSH
- G-Quadruplexes * MeSH
- Guanine chemistry MeSH
- Nucleotide Motifs MeSH
- Base Sequence MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aptamers, Nucleotide * MeSH
- Guanine MeSH
Aptamers are short DNA or RNA sequences that can fold into unique three-dimensional structures, enabling them to bind specifically to target molecules with high affinity, similar to antibodies. A distinctive feature of many aptamers is their ability to adopt a G-quadruplex (G4) fold, a four-stranded structure formed by guanine-rich sequences. While G4 formation has been proposed or demonstrated for some aptamers, we aimed to investigate how frequently quadruplex-prone motifs emerge from the SELEX process. To achieve this, we examined quadruplex candidate sequences from the UTexas Aptamer Database, which contains over 1400 aptamer sequences extracted from 400 publications spanning several decades. We analyzed the G4 and i-motif propensity of these sequences. While no likely i-motif forming candidates were found, nearly 1/4 of DNA aptamers and 1/6 of RNA aptamers were predicted to form G4 structures. Interestingly, many motifs capable of forming G4 structures were not previously reported or suspected. Out of 311 sequences containing a potential stable G4 motif, only 53 of them (17%) reported the word "quadruplex" in the corresponding article. We experimentally tested G4 formation for 30 aptamer sequences and were able to confirm G4 formation for all the sequences with a G4Hunter score of 1.31 or more. These observations suggest the need to reevaluate G4 propensity among aptamer sequences.
Faculty of Chemistry Brno University of Technology Purkyňova 118 61200 Brno Czech Republic
Institute of Biophysics Czech Academy of Sciences Královopolská 135 61200 Brno Czech Republic
See more in PubMed
Toulmé J-J, Peyrin E, Ducongé F Nucleic acid aptamers. Methods. 2016; 97:1–2.10.1016/j.ymeth.2016.02.015. PubMed DOI
Domsicova M, Korcekova J, Poturnayova A et al. . New insights into aptamers: an alternative to antibodies in the detection of molecular biomarkers. Int J Mol Sci. 2024; 25:6833.10.3390/ijms25136833. PubMed DOI PMC
Stoltenburg R, Reinemann C, Strehlitz B SELEX–a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007; 24:381–403.10.1016/j.bioeng.2007.06.001. PubMed DOI
Egli M, Manoharan M Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 2023; 51:2529–73.10.1093/nar/gkad067. PubMed DOI PMC
Askari A, Kota S, Ferrell H et al. . UTexas Aptamer Database: the collection and long-term preservation of aptamer sequence information. Nucleic Acids Res. 2024; 52:D351–9.10.1093/nar/gkad959. PubMed DOI PMC
Yu H, Zhu J, Shen G et al. . Improving aptamer performance: key factors and strategies. Microchim Acta. 2023; 190:255.10.1007/s00604-023-05836-6. PubMed DOI
Chandola C, Kalme S, Casteleijn MG et al. . Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci. 2016; 41:535–61.10.1007/s12038-016-9632-y. PubMed DOI
Shaban SM, Kim D-H Recent advances in aptamer sensors. Sensors. 2021; 21:979.10.3390/s21030979. PubMed DOI PMC
Joshi R, Janagama H, Dwivedi HP et al. . Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes. 2009; 23:20–8.10.1016/j.mcp.2008.10.006. PubMed DOI
Suh SH, Jaykus L-A Nucleic acid aptamers for capture and detection of Listeria spp. J Biotechnol. 2013; 167:454–61.10.1016/j.jbiotec.2013.07.027. PubMed DOI
Nimjee SM, White RR, Becker RC et al. . Aptamers as therapeutics. Annu Rev Pharmacol Toxicol. 2017; 57:61–79.10.1146/annurev-pharmtox-010716-104558. PubMed DOI PMC
Gragoudas ES, Adamis AP, Cunningham ET et al. . Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004; 351:2805–16.10.1056/NEJMoa042760. PubMed DOI
Mullard A FDA approves second RNA aptamer. Nat Rev Drug Discov. 2023; 22:774.10.1038/d41573-023-00148-z. PubMed DOI
Mergny J-L, Sen D DNA quadruple helices in nanotechnology. Chem Rev. 2019; 119:6290–325.10.1021/acs.chemrev.8b00629. PubMed DOI
Nicholson DA, Nesbitt DJ Kinetic and thermodynamic control of G-quadruplex polymorphism by Na+ and K+ cations. J Phys Chem B. 2023; 127:6842–55.10.1021/acs.jpcb.3c01001. PubMed DOI
Fujii T, Podbevšek P, Plavec J et al. . Effects of metal ions and cosolutes on G-quadruplex topology. J Inorg Biochem. 2017; 166:190–8.10.1016/j.jinorgbio.2016.09.001. PubMed DOI
Macaya RF, Schultze P, Smith FW et al. . Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci USA. 1993; 90:3745–9.10.1073/pnas.90.8.3745. PubMed DOI PMC
Bates PJ, Reyes-Reyes EM, Malik MT et al. . G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: uses and mechanisms. Biochim Biophys Gen Sub. 2017; 1861:1414–28.10.1016/j.bbagen.2016.12.015. PubMed DOI
Brázda V, Kolomazník J, Lýsek J et al. . G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019; 35:3493–5.10.1093/bioinformatics/btz087. PubMed DOI PMC
Bedrat A, Lacroix L, Mergny J-L Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016; 44:1746–59.10.1093/nar/gkw006. PubMed DOI PMC
Sahakyan AB, Chambers VS, Marsico G et al. . Machine learning model for sequence-driven DNA G-quadruplex formation. Sci Rep. 2017; 7:14535.10.1038/s41598-017-14017-4. PubMed DOI PMC
Gruber AR, Lorenz R, Bernhart SH et al. . The Vienna RNA Websuite. Nucleic Acids Res. 2008; 36:W70–4.10.1093/nar/gkn188. PubMed DOI PMC
Luo Y, Granzhan A, Verga D et al. . FRET-MC: a fluorescence melting competition assay for studying G4 structures in vitro. Biopolymers. 2021; 112:e23415.10.1002/bip.23415. PubMed DOI
Luo Y, Granzhan A, Marquevielle J et al. . Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie. 2023; 214:5–23.10.1016/j.biochi.2022.12.019. PubMed DOI
Mergny J-L, Li J, Lacroix L et al. . Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 2005; 33:e138.10.1093/nar/gni134. PubMed DOI PMC
Esnault C, Magat T, Zine El Aabidine A et al. . G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet. 2023; 55:1359–69.10.1038/s41588-023-01437-4. PubMed DOI
Platella C, Riccardi C, Montesarchio D et al. . G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochim Biophys Gen Sub. 2017; 1861:1429–47.10.1016/j.bbagen.2016.11.027. PubMed DOI PMC
Liu H, Zheng K, He Y et al. . RNA G-quadruplex formation in defined sequence in living cells detected by bimolecular fluorescence complementation. Chem Sci. 2016; 7:4573–81.10.1039/C5SC03946K. PubMed DOI PMC
Yett A, Lin LY, Beseiso D et al. . N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J Porphyrins Phthalocyanines. 2019; 23:1195–215.10.1142/S1088424619300179. PubMed DOI PMC
del Villar-Guerra R, Trent JO, Chaires JB G-quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew Chem Int Ed. 2018; 57:7171–5.10.1002/anie.201709184. PubMed DOI PMC
Zhao C, Ren J, Qu X G-quadruplexes form ultrastable parallel structures in deep eutectic solvent. Langmuir. 2013; 29:1183–91.10.1021/la3043186. PubMed DOI
Kypr J, Kejnovská I, Renčiuk D et al. . Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009; 37:1713–25.10.1093/nar/gkp026. PubMed DOI PMC
Chen J, Cheng M, Salgado GF et al. . The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology. Nucleic Acids Res. 2021; 49:9548–59.10.1093/nar/gkab681. PubMed DOI PMC
Guerra-Pérez N, Ramos E, García-Hernández M et al. . Molecular and functional characterization of ssDNA aptamers that specifically bind Leishmania infantum PABP. PLoS One. 2015; 10:e0140048.10.1371/journal.pone.0140048. PubMed DOI PMC
Low SY, Hill JE, Peccia J A DNA aptamer recognizes the asp f 1 allergen of Aspergillus fumigatus. Biochem Biophys Res Commun. 2009; 386:544–8.10.1016/j.bbrc.2009.06.089. PubMed DOI PMC
Eissa S, Zourob M In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens Bioelectron. 2017; 91:169–74.10.1016/j.bios.2016.12.020. PubMed DOI
Elshafey R, Siaj M, Zourob M In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers. Anal Chem. 2014; 86:9196–203.10.1021/ac502157g. PubMed DOI
Cheng M, Qiu D, Tamon L et al. . Thermal and pH stabilities of i-DNA: confronting in vitroexperiments with models and In-cell NMR data. Angew Chem Int Ed. 2021; 60:10286–94.10.1002/anie.202016801. PubMed DOI
Tsvetkov V, Mir B, Alieva R et al. . Unveiling the unusual i-motif-derived architecture of a DNA aptamer exhibiting high affinity for influenza A virus. Nucleic Acids Res. 2025; 53:gkae1282.10.1093/nar/gkae1282. PubMed DOI PMC
Saccà B, Lacroix L, Mergny J-L The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides. Nucleic Acids Res. 2005; 33:1182–92.10.1093/nar/gki257. PubMed DOI PMC
Puig Lombardi E, Londoño-Vallejo A A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020; 48:1–15.10.1093/nar/gkz1097. PubMed DOI PMC
Thiel WH, Bair T, Wyatt Thiel K et al. . Nucleotide bias observed with a short SELEX RNA aptamer library. Nucleic Acid Ther. 2011; 21:253–63.10.1089/nat.2011.0288. PubMed DOI PMC
Kohlberger M, Gadermaier G SELEX: critical factors and optimization strategies for successful aptamer selection. Biotech App Biochem. 2022; 69:1771–92.10.1002/bab.2244. PubMed DOI PMC
Lucas JK, Gruenke PR, Burke DH Minimizing amplification bias during reverse transcription for in vitro selections. RNA. 2023; 29:1301–15.10.1261/rna.079650.123. PubMed DOI PMC
Brazda V, Kolomaznik J, Mergny J-L et al. . G4Killer web application: a tool to design G-quadruplex mutations. Bioinformatics. 2020; 36:3246–7.10.1093/bioinformatics/btaa057. PubMed DOI PMC
Ngo KH, Liew CW, Lattmann S et al. . Crystal structures of an HIV-1 integrase aptamer: formation of a water-mediated A•G•G•G•G pentad in an interlocked G-quadruplex. Biochem Biophys Res Commun. 2022; 613:153–8.10.1016/j.bbrc.2022.04.020. PubMed DOI
Niazi JH, Lee SJ, Gu MB Single-stranded DNA aptamers specific for antibiotics tetracyclines. Bioorg Med Chem. 2008; 16:7245–53.10.1016/j.bmc.2008.06.033. PubMed DOI
de la Renaud Faverie A, Hamon F, Di Primo C et al. . Nucleic acids targeted to drugs: SELEX against a quadruplex ligand. Biochimie. 2011; 93:1357–67.10.1016/j.biochi.2011.05.022. PubMed DOI
Allali-Hassani A, Pereira MP, Navani NK et al. . Isolation of DNA aptamers for CDP-ribitol synthase, and characterization of their inhibitory and structural properties. ChemBioChem. 2007; 8:2052–7.10.1002/cbic.200700257. PubMed DOI
Li P, Zhou L, Yu Y et al. . Characterization of DNA aptamers generated against the soft-shelled turtle iridovirus with antiviral effects. BMC Vet Res. 2015; 11:245.10.1186/s12917-015-0559-6. PubMed DOI PMC
Ji D, Yuan J-H, Chen S-B et al. . Selective targeting of parallel G-quadruplex structure using L-RNA aptamer. Nucleic Acids Res. 2023; 51:11439–52.10.1093/nar/gkad900. PubMed DOI PMC
Bourdon S, Herviou P, Dumas L et al. . QUADRatlas: the RNA G-quadruplex and RG4-binding proteins database. Nucleic Acids Res. 2023; 51:D240–7.10.1093/nar/gkac782. PubMed DOI PMC
Brázda V, Hároníková L, Liao JCC et al. . DNA and RNA quadruplex-binding proteins. Int J Mol Sci. 2014; 15:17493–517.10.3390/ijms151017493. PubMed DOI PMC
Luo Y, Živković ML, Wang J et al. . A sodium/potassium switch for G4-prone G/C-rich sequences. Nucleic Acids Res. 2024; 52:448–61.10.1093/nar/gkad1073. PubMed DOI PMC
Ansari N, Ghazvini K, Ramezani M et al. . Selection of DNA aptamers against mycobacterium tuberculosis Ag85A, and its application in a graphene oxide-based fluorometric assay. Microchim Acta. 2018; 185:21.10.1007/s00604-017-2550-3. PubMed DOI
Shahdordizadeh M, Taghdisi SM, Sankian M et al. . Design, isolation and evaluation of the binding efficiency of a DNA aptamer against interleukin 2 receptor alpha, in vitro. Int Immunopharmacol. 2017; 53:96–104.10.1016/j.intimp.2017.10.011. PubMed DOI
Graham JC, Zarbl H Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells. PLoS One. 2012; 7:e36103.10.1371/journal.pone.0036103. PubMed DOI PMC
Zhang Y, Wu F, Wang M et al. . Single-stranded DNA aptamer targeting and neutralization of anti-D alloantibody: a potential therapeutic strategy for haemolytic diseases caused by Rhesus alloantibody. Blood Transfus. 2018; 16:184–92. PubMed PMC
Fukusaki E, Kato T, Maeda H et al. . DNA aptamers that bind to chitin. Bioorg Med Chem Lett. 2000; 10:423–5.10.1016/S0960-894X(00)00013-5. PubMed DOI
Ninomiya K, Kaneda K, Kawashima S et al. . Cell-SELEX based selection and characterization of DNA aptamer recognizing human hepatocarcinoma. Bioorg Med Chem Lett. 2013; 23:1797–802.10.1016/j.bmcl.2013.01.040. PubMed DOI
Waybrant B, Pearce TR, Wang P et al. . Development and characterization of an aptamer binding ligand of fractalkine using domain targeted SELEX. Chem Commun. 2012; 48:10043–5.10.1039/c2cc34217k. PubMed DOI
Wang T, Rahimizadeh K, Veedu RN Development of a novel DNA oligonucleotide targeting low-density lipoprotein receptor. Mol Ther Nucleic Acids. 2020; 19:190–8.10.1016/j.omtn.2019.11.004. PubMed DOI PMC