Acute inflammation induced by the Escherichia coli lipopolysaccharide considerably increases the systemic and brain exposure of olanzapine after oral administration in mice
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
00179906
Ministry of Education, Youth, and Sports of the Czech Republic
University of Hradec Králové
Charles Universit
PubMed
40411815
PubMed Central
PMC12202309
DOI
10.1093/ijnp/pyaf036
PII: 8145614
Knihovny.cz E-zdroje
- Klíčová slova
- brain penetration, endotoxemia, lipopolysaccharide, olanzapine, pharmacokinetics,
- MeSH
- antipsychotika * farmakokinetika krev aplikace a dávkování MeSH
- aplikace orální MeSH
- benzodiazepiny * farmakokinetika krev aplikace a dávkování MeSH
- endotoxemie * metabolismus chemicky indukované MeSH
- lipopolysacharidy MeSH
- mozek * metabolismus účinky léků MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- olanzapin farmakokinetika MeSH
- zánět * chemicky indukované metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antipsychotika * MeSH
- benzodiazepiny * MeSH
- lipopolysacharidy MeSH
- olanzapin MeSH
BACKGROUND: A detailed understanding of alterations in olanzapine pharmacokinetics during acute inflammatory states, associated with infections, remains lacking. This study aimed to investigate the impact of endotoxemia on the pharmacokinetics of olanzapine and desmethylolanzapine (DMO) in mice. METHODS: C57BL/6N mice received an intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg) or saline (controls), followed 24 hours later by single oral or intravenous doses of olanzapine or intravenous DMO. Concentrations and unbound fractions of olanzapine and DMO were measured in the plasma and brain homogenates. RESULTS: In LPS-injected mice, the area under the concentration-time curve (AUCs) for olanzapine increased 3.8-fold in the plasma and 5.2-fold in brain homogenates, in consequence of a higher absolute bioavailability of olanzapine (+200%), a lower plasma clearance (-34%), and a higher brain penetration ratio for the unbound drug relative to controls (Kp,uu,brain 6.2 vs. 4.1). LPS attenuated the hepatic mRNA expression of cytochrome P450 1A2 and the metabolism of olanzapine to DMO. However, the AUC of plasma DMO increased by 140% due to a 4.8-fold decrease in the plasma clearance of DMO. The brain penetration of DMO was minimal (Kp,uu,brain ≤ 0.051). The LPS-injected mice exhibited a downregulation of the hepatic and ileal mRNA expression of P-glycoprotein (Abcb1a), whereas the expression of Abcb1a and Abcb1b in the brain was upregulated. CONCLUSIONS: Endotoxemia notably increases olanzapine concentrations in the plasma and brain following oral administration in mice. Further studies should clarify whether altered pharmacokinetics results in adverse effects in acutely infected patients taking oral olanzapine.
Department of Pharmacology Faculty of Medicine Charles University Hradec Kralove Czech Republic
Faculty Vivarium Faculty of Medicine Charles University Hradec Kralove Czech Republic
Zobrazit více v PubMed
Callaghan JT, Bergstrom RF, Ptak LR, Beasley CMO.. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999; 37:177–193. PubMed
Gex-Fabry M, Balant-Gorgia AE, Balant LP.. Therapeutic drug monitoring of olanzapine: the combined effect of age, gender, smoking, and comedication. Ther Drug Monit. 2003; 25:46–53. https://doi.org/ 10.1097/00007691-200302000-00007 PubMed DOI
Patel MX, Bowskill S, Couchman L, et al. Plasma olanzapine in relation to prescribed dose and other factors: data from a therapeutic drug monitoring service, 1999-2009. J Clin Psychopharmacol. 2011; 31:411–417. https://doi.org/ 10.1097/JCP.0b013e318221b408 PubMed DOI
Citrome L, Stauffer VL, Chen L, et al. Olanzapine plasma concentrations after treatment with 10, 20, and 40 mg/d in patients with schizophrenia: an analysis of correlations with efficacy, weight gain, and prolactin concentration. J Clin Psychopharmacol. 2009; 29:278–283. https://doi.org/ 10.1097/JCP.0b013e3181a289cb PubMed DOI
Skogh E, Sjödin I, Josefsson M, Dahl ML.. High correlation between serum and cerebrospinal fluid olanzapine concentrations in patients with schizophrenia or schizoaffective disorder medicating with oral olanzapine as the only antipsychotic drug. J Clin Psychopharmacol. 2011; 31:4–9. https://doi.org/ 10.1097/JCP.0b013e318204d9e2 PubMed DOI
Uchida H, Takeuchi H, Graff-Guerrero A, et al. Dopamine D2 receptor occupancy and clinical effects: a systematic review and pooled analysis. J Clin Psychopharmacol. 2011; 31:497–502. https://doi.org/ 10.1097/JCP.0b013e3182214aad PubMed DOI
Hiemke C, Bergemann N, Clement HW, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry. 2018; 51:9–62. https://doi.org/ 10.1055/s-0043-116492 PubMed DOI
Wesner K, Hiemke C, Bergemann N, et al. Therapeutic reference range for olanzapine in schizophrenia: systematic review on blood concentrations, clinical effects, and dopamine receptor occupancy. J Clin Psychiatry. 2023; 84:22r14626. https://doi.org/ 10.4088/JCP.22r14626 PubMed DOI
Kassahun K, Mattiuz E, Nyhart E Jr, et al. Disposition and biotransformation of the antipsychotic agent olanzapine in humans. Drug Metab Dispos. 1997; 25:81–93. PubMed
Korprasertthaworn P, Polasek TM, Sorich MJ, et al. In vitro characterization of the human liver microsomal kinetics and reaction phenotyping of olanzapine metabolism. Drug Metab Dispos. 2015; 43:1806–1814. PubMed
Mao JH, Han L, Liu XQ, Jiao Z.. Significant predictors for olanzapine pharmacokinetics: a systematic review of population pharmacokinetic studies. Expert Rev Clin Pharmacol. 2023; 16:575–588. https://doi.org/ 10.1080/17512433.2023.2219055 PubMed DOI
Sun L, Mills R, Sadler BM, Rege B.. Population pharmacokinetics of olanzapine and samidorphan when administered in combination in healthy subjects and patients with schizophrenia. J Clin Pharmacol. 2021; 61:1430–1441. https://doi.org/ 10.1002/jcph.1911 PubMed DOI PMC
Jovanović M, Vučićević K, Miljković B.. Understanding variability in the pharmacokinetics of atypical antipsychotics—focus on clozapine, olanzapine and aripiprazole population models. Drug Metab Rev. 2020; 52:1–18. https://doi.org/ 10.1080/03602532.2020.1717517 PubMed DOI
Kolli P, Kelley G, Rosales M, Faden J, Serdenes R.. Olanzapine pharmacokinetics: a clinical review of current insights and remaining questions. Pharmgenomics Pers Med. 2023; 16:1097–1108. https://doi.org/ 10.2147/PGPM.S391401 PubMed DOI PMC
Moschny N, Hefner G, Grohmann R, et al. Therapeutic drug monitoring of second- and third-generation antipsychotic drugs-influence of smoking behavior and inflammation on pharmacokinetics. Pharmaceuticals (Basel). 2021; 14:514. https://doi.org/ 10.3390/ph14060514 PubMed DOI PMC
Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R; French Society of Pharmacology and Therapeutics. Inflammation is a major regulator of drug metabolizing enzymes and transporters: consequences for the personalization of drug treatment. Pharmacol Ther. 2020; 215:107627. https://doi.org/ 10.1016/j.pharmthera.2020.107627 PubMed DOI PMC
Wagner A, Shad MU.. Relationship between clozapine levels and acute inflammatory stress. Prim Care Companion CNS Disord. 2020; 22:19br02586. https://doi.org/ 10.4088/PCC.19br02586 PubMed DOI
Pfuhlmann B, Hiemke C, Unterecker S, et al. Toxic clozapine serum levels during inflammatory reactions. J Clin Psychopharmacol. 2009; 29:392–394. https://doi.org/ 10.1097/JCP.0b013e3181acd20b PubMed DOI
Hefner G, Shams ME, Unterecker S, Falter T, Hiemke C.. Inflammation and psychotropic drugs: the relationship between C-reactive protein and antipsychotic drug levels. Psychopharmacology (Berl). 2016; 233:1695–1705. https://doi.org/ 10.1007/s00213-015-3976-0 PubMed DOI
Zang YN, Dong F, Li AN, et al. The impact of smoking, sex, infection, and comedication administration on oral olanzapine: a population pharmacokinetic model in Chinese psychiatric patients. Eur J Drug Metab Pharmacokinet. 2021; 46:353–371. https://doi.org/ 10.1007/s13318-021-00673-5 PubMed DOI
Mattiuz E, Franklin R, Gillespie T, et al. Disposition and metabolism of olanzapine in mice, dogs, and rhesus monkeys. Drug Metab Dispos. 1997; 25:573–583. PubMed
Jaki T, Wolfsegger MJ.. A theoretical framework for estimation of AUCs in complete and incomplete sampling designs. Stat Biopharm Res. 2009; 1:176–184. https://doi.org/ 10.1198/sbr.2009.0025 DOI
Uehara S, Higuchi Y, Yoneda N, et al. The unique human N10-glucuronidated metabolite formation from olanzapine in chimeric NOG-TKm30 mice with humanized livers. Drug Metab Dispos. 2023; 51:480–491. https://doi.org/ 10.1124/dmd.122.001102 PubMed DOI
Schmitt U, Kirschbaum KM, Poller B, et al. In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes. Pharmacol Biochem Behav. 2012; 102:312–320. https://doi.org/ 10.1016/j.pbb.2012.04.002 PubMed DOI
Hattori-Usami N, Kaizaki-Mitsumoto A, Ashino T, Yamamoto M, Numazawa S.. Toxicity manifestations and sex differences due to MARTA olanzapine. J Toxicol Sci. 2023; 48:191–202. https://doi.org/ 10.2131/jts.48.191 PubMed DOI
Jianhui L, Rosenblatt-Velin N, Loukili N, et al. Endotoxin impairs cardiac hemodynamics by affecting loading conditions but not by reducing cardiac inotropism. Am J Physiol Heart Circ Physiol. 2010; 299:H492–H501. https://doi.org/ 10.1152/ajpheart.01135.2009 PubMed DOI PMC
de Lange ECM, Hammarlund Udenaes M.. Understanding the blood-brain barrier and beyond: challenges and opportunities for novel CNS therapeutics (2022). Clin Pharmacol Ther. 2022; 111:758–773. https://doi.org/ 10.1002/cpt.2545 PubMed DOI PMC
Aravagiri M, Teper Y, Marder SR.. Pharmacokinetics and tissue distribution of olanzapine in rats. Biopharm Drug Dispos. 1999; 20:369–377. https://doi.org/ 10.1002/1099-081x(199911)20:8<369::aid-bdd200>3.0.co;2-6 PubMed DOI
Loryan I, Melander E, Svensson M, et al. In-depth neuropharmacokinetic analysis of antipsychotics based on a novel approach to estimate unbound target-site concentration in CNS regions: link to spatial receptor occupancy. Mol Psychiatry. 2016; 21:1527–1536. https://doi.org/ 10.1038/mp.2015.229 PubMed DOI
Wang JS, Taylor R, Ruan Y, et al. Olanzapine penetration into brain is greater in transgenic Abcb1a P-glycoprotein-deficient mice than FVB1 (wild-type) animals. Neuropsychopharmacology. 2004; 29:551–557. PubMed
Abou El Ela A, Härtter S, Schmitt U, et al. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds—implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004; 56:967–975. https://doi.org/ 10.1211/0022357043969 PubMed DOI
Doran A, Obach RS, Smith BJ, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the Abcb1a/1b knockout mouse model. Drug Metab Dispos. 2005; 33:165–174. https://doi.org/ 10.1124/dmd.104.001230 PubMed DOI
Poller B, Drewe J, Krähenbühl S, Huwyler J, Gutmann H.. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell Mol Neurobiol. 2010; 30:63–70. https://doi.org/ 10.1007/s10571-009-9431-1 PubMed DOI PMC
Pan W, Yu C, Hsuchou H, Kastin AJ.. The role of cerebral vascular NFkappaB in LPS-induced inflammation: differential regulation of efflux transporter and transporting cytokine receptors. Cell Physiol Biochem. 2010; 25:623–630. https://doi.org/ 10.1159/000315081 PubMed DOI PMC
Salkeni MA, Lynch JL, Otamis-Price T, Banks WA.. Lipopolysaccharide impairs blood–brain barrier P-Glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways. J Neuroimmune Pharm. 2009; 4:276–282. https://doi.org/ 10.1007/s11481-008-9138-y PubMed DOI PMC
Sun L, Yagoda S, Du Y, Von Moltke L.. Effect of hepatic and renal impairment on the pharmacokinetics of olanzapine and samidorphan given in combination as a bilayer tablet. Drug Des Devel Ther. 2019; 13:2941–2955. https://doi.org/ 10.2147/DDDT.S205000 PubMed DOI PMC
Zheng L, Yang H, Dallmann A, et al. Physiologically based pharmacokinetic modeling in pregnant women suggests minor decrease in maternal exposure to olanzapine. Front Pharmacol. 2022; 12:793346. https://doi.org/ 10.3389/fphar.2021.793346 PubMed DOI PMC
Gramignoli R, Ranade AR, Venkataramanan R, Strom SC.. Effects of pro-inflammatory cytokines on hepatic metabolism in primary human hepatocytes. Int J Mol Sci . 2022; 23:14880. https://doi.org/ 10.3390/ijms232314880 PubMed DOI PMC
Wang M, Feng J, Zhou D, Wang J.. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis. Eur J Med Res. 2023; 28:339. https://doi.org/ 10.1186/s40001-023-01301-5 PubMed DOI PMC
Seemann S, Zohles F, Lupp A.. Comprehensive comparison of three different animal models for systemic inflammation. J Biomed Sci. 2017; 24:60. https://doi.org/ 10.1186/s12929-017-0370-8 PubMed DOI PMC
Janosevic D, Myslinski J, McCarthy TW, et al. The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline. eLife. 2021; 10:62270. PubMed PMC
Hato T, Maier B, Syed F, et al. Bacterial sepsis triggers an antiviral response that causes translation shutdown. J Clin Invest. 2019; 129:296–309. https://doi.org/ 10.1172/JCI123284 PubMed DOI PMC
Williams JM, Duckworth CA, Watson AJ, et al. A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide. Dis Model Mech. 2013; 6:1388–1399. https://doi.org/ 10.1242/dmm.013284 PubMed DOI PMC
Molano Franco D, Arevalo-Rodriguez I, Roqué IFiguls M, Montero Oleas NG, Nuvials X, Zamora J.. Plasma interleukin-6 concentration for the diagnosis of sepsis in critically ill adults. Cochrane Database Syst Rev. 2019; 4:1–100. PubMed PMC
Kiers D, Koch RM, Hamers L, et al. Characterization of a model of systemic inflammation in humans in vivo elicited by continuous infusion of endotoxin. Sci Rep. 2017; 7:40149. https://doi.org/ 10.1038/srep40149 PubMed DOI PMC
Bretler T, Weisberg H, Koren O, Neuman H.. The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med. 2019; 17:112. https://doi.org/ 10.1186/s12916-019-1346-1 PubMed DOI PMC
Morgan AP, Crowley JJ, Nonneman RJ, et al. The antipsychotic olanzapine interacts with the gut microbiome to cause weight gain in mouse. PLoS One. 2014; 9:e115225. https://doi.org/ 10.1371/journal.pone.0115225 PubMed DOI PMC
Davey KJ, Cotter PD, O’Sullivan O, et al. Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry. 2013; 3:e309. https://doi.org/ 10.1038/tp.2013.83 PubMed DOI PMC
Cussotto S, Walsh J, Golubeva AV, et al. The gut microbiome influences the bioavailability of olanzapine in rats. EBioMedicine. 2021; 66:103307. https://doi.org/ 10.1016/j.ebiom.2021.103307 PubMed DOI PMC