Nickel-Catalyzed Regioselective Access to Dibenzo[b,e]Azepinones: Mechanistic Study, Docking, and Biophysical Exploration of Binding Interactions with Human Hemoglobin
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
TAR/2023/000045
Science and Engineering Research Board
SBV/IRC/SEED MONEY/167/2023
Intramural Seed Money Research Committee, SBV
PubMed
40418128
DOI
10.1002/asia.202500030
Knihovny.cz E-zdroje
- Klíčová slova
- DFT, Dibenzo[b,e]azepin‐6‐ones, Human hemoglobin, Intramolecular acetylene hydroarylation, Nickel catalysis,
- MeSH
- azepiny * chemie chemická syntéza metabolismus MeSH
- hemoglobiny * chemie metabolismus MeSH
- katalýza MeSH
- lidé MeSH
- molekulární struktura MeSH
- nikl * chemie MeSH
- simulace molekulového dockingu * MeSH
- stereoizomerie MeSH
- teorie funkcionálu hustoty MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azepiny * MeSH
- hemoglobiny * MeSH
- nikl * MeSH
A nickel-catalyzed intramolecular acetylene hydroarylation process has been described to produce dibenzo[b,e]azepin-6-one derivatives in an effective, regioselective manner. This procedure demonstrates a broad substrate scope and exceptional tolerance to various functional groups. Mechanistic insights were confirmed through the use of the density functional theory method. Selective synthesized compounds were subjected to biophysical analysis such as UV-vis absorption spectroscopy, fluorescence spectroscopy, stoichiometric analysis, thermal melting, and circular dichroism spectroscopic analysis revealing strong binding affinity to exploit their interactions with human hemoglobin (Hb). Additionally, molecular docking studies provided insights into the interactions between the synthesized molecule and human Hb.
Zobrazit více v PubMed
a) F. Borsini, G. Volterra, C. Cutrufo, M. Furio, A. Meli, Arzneimittelforschung 1989, 39, 475–479;
b) V. Pestellini, M. Ghelardoni, A. Giolitti, G. Volterra, M. Furio, A. Meli, Eur. Pat. 1983, EP 89322.
G. Viti, D. Giannotti, M. Altamura, R. Ricci, G. Volterra, A. Lecci, F. Borsini, V. Pestellini, Eur. J. Med. Chem. 1993, 28, 439.
a) G. L. Garay, J. Muchowski, M. Annu, Rep. Med. Chem. 1985, 20, 93.
b) T. de Boer, F. Nefkens, A. V. Helvoirt, A. M. L. V. Delft, J. Pharmacol. Exp. Ther. 1996, 277, 852;
c) E. Elenko, A. C. Miller, P. E. Murray III., Patent US 20170095465 A1, 2017;
d) C. A. Thorn, J. Moon, C. A. Bourbonais, J. Harms, J. R. Edgerton, E. Stark, S. J. Steyn, C. R. Butter, J. T. Lazzaro, R. E. O'Connor, M. Popiolek, ACS Chem. Neursci. 2019, 10, 1753.
R. Samineni, C. R. C. Bandi, P. Srihari, G. Mehta, Org. Lett. 2016, 18, 6184.
A. Kling, G. Backfisch, J. Delzer, H. Geneste, C. Graef, U. Holzenkamp, W. Hornberger, U. E. W. Lange, A. Lauterbach, H. Mack, W. Seitz, T. Subkowski, Bioorg. Med. Chem. Lett. 2002, 12, 441.
a) A. Das, A. Maiti, M. Kundu, K. K. Roy, I. Ansary, Synthesis 2019, 51, 3231–3240;
b) K. C. Majumdar, S. Samanta, T. Ghosh, Synthesis 2012, 44, 1711–1717.
a) J. O. Jilek, J. Pomykacek, E. Svatek, V. Seidlova, M. Rajsner, K. Pelz, B. Hoch, M. Protiva, Collect. Czech. Chem. Commun. 1965, 30, 445–462;
b) A. Perico, A. Triolo, G. Viti, C. Mannucci, G. Caviglioli, A. Cocchini, V. Pestellini, P. Paoli, P. Dapporto, J. Pharm. Sci. 1994, 83, 137–142;
c) K. C. Majumdar, S. Chakravorty, T. Ghosh, B. Sridhar, Synlett 2009, 19, 3127–3130;
d) J. K. Laha, P. U. Shah, K. P. Jethava, Chem. Commun. 2013, 49, 7623–7625.
R. A. Bunce, J. E. Schammerhorn, J. Het. Chem. 2006, 43, 1031.
J. K. Laha, P. U. Shah, K. P. Jethava, Chem. Commun. 2013, 49, 7623.
a) U. S. Mandal, S. S. Ahamed, R. Lo, D. Manna, T. Ghosh, ACSO. 2024, 9, 46148–46156;
b) U. S. Mandal, S. S. Ahamed, T. Ghosh, Synthesis 2025, 57, 1721–1732.
P. O. Ananikov, ACS Catal. 2015, 5, 1964–1971.
M. Yuan, Q. Nong, H. Guo, Y. Li, H. Tian, J. Zhang, L. Liu, B. He, L. Hu, G. Jiang, Sci. Total Environ. 2025, 958, 177700.
S. Singh, P. Gopi, P. Sharma, M. S. S. Rani, P. Pandya, M. S. Ali, Biochem. Biophys. Res. Commun. 2024, 736, 150896.
M. D. Burman, S. Bag, S. Ghosal, M. Mukherjee, G. Pramanik, S. Bhowmik, ACSO. 2024, 9, 21668–21679.
A. Leggio, E. L. Belsito, G. de Luca, M. L. Di Gioia, V. Leotta, E. Romio, C. Siciliano, A. Liguori, RSC Adv. 2016, 6, 34468–34475.
M. Hamada, K. Adachi, H. Hikawa, Y. Yokoyama, Chem. Pharm. Bull. 2012, 60, 1395–1398.
M. Cao, Y. Tang, Y. Luo, F. Gu, Y. Zhu, X. Liu, C. Yan, W. Hu, S. Wang, X. Chao, H. Xu, Cancer Lett 2024, 582, 216590.
M. Suhail, Sci. Rep. 2024, 14, 1861.
a) Y. S. Ceylan, R. L. M. Gieseking, Phys. Chem. Chem. Phys. 2021, 23, 17287–17299;
b) S. Mondal, S. Debnath, B. Das, Tetrahedron 2015, 71, 476e486.
I. F. Ardoiz, D. J. Nelson, F. Maseras, Chem. ‐Eur. J. 2017, 23, 16728.
N. Bagheri, H. Chen, M. Rabasovic, J. Widengren, Sci. Rep. 2024, 14, 6464.
T. J. Dathees, G. Narmatha, G. Prabakaran, S. Seenithurai, J. D. Chai, R. S. Kumar, J. Prabhu, R. Nandhakumar, Food Chem. 2024, 441, 138362.