Vitamin D metabolome in preterm infants: insights into postnatal metabolism
Status Publisher Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
40418768
DOI
10.1515/cclm-2025-0311
PII: cclm-2025-0311
Knihovny.cz E-resources
- Keywords
- LC-MS/MS, metabolome, metabolomics, microsomes, preterm infant, vitamin D,
- Publication type
- Journal Article MeSH
OBJECTIVES: To describe the structure of vitamin D metabolome and investigate the possible cause of high serum levels of C3 epimers of 25-(OH)D in preterm infants, we compared the vitamin D metabolites in umbilical cord blood with serum samples taken at 28 days of age. METHODS: We analysed 40 preterm infants (29+0-32+6 weeks of gestation). Cholecalciferol, 25-(OH)D, and its C3-epimers were measured using liquid chromatography. A microsomal study with human liver and kidney microsomes was conducted to assess vitamin D metabolism. Identified metabolites were then examined in cord blood and serum samples. RESULTS: Cholecalciferol, 25-(OH)D, and its C3-epimers were significantly lower in cord blood compared to serum at 28 days of age (p<0.001 for all metabolites). Conversely, metabolites from the microsomal study (monohydroxylated-, dihydroxylated-, and mono-oxylated dihydroxylated-cholecalciferol and their C3-epimers) were significantly higher in cord blood (p<0.001 for all). CONCLUSIONS: Our findings indicate that cholecalciferol, 25-(OH)D, and its C3-epimers increase during the first month of life, suggesting functional biosynthesis and postnatal accumulation of these metabolites. Conversely, based on microsomal study results, it seems that biotransformation responsible for a degradation of vitamin D during the first month of life in preterm infants is functionally impaired.
Biomedical Research Centre University Hospital Hradec Kralove Hradec Kralove Czech Republic
Department of Paediatrics 48234 University Hospital Hradec Kralove Hradec Kralove Czech Republic
See more in PubMed
Renwick, VL, Stewart, CJ. Exploring functional metabolites in preterm infants. Acta Paediatr 2022;111:45–53. https://doi.org/10.1111/apa.16146 . PubMed DOI
Noto, A, Fanos, V, Dessì, A. Metabolomics in newborns. Adv Clin Chem 2016;74:35–61. https://doi.org/10.1016/bs.acc.2015.12.006 . PubMed DOI
Gupta, JK, Alfirevic, A. Systematic review of preterm birth multi-omic biomarker studies. Expet Rev Mol Med 2022;24:1–24. https://doi.org/10.1017/erm.2022.13 . PubMed DOI PMC
Tuckey, RC, Cheng, CYS, Slominski, AT. The serum vitamin D metabolome: what we know and what is still to discover. J Steroid Biochem Mol Biol 2019;186:4–21. https://doi.org/10.1016/j.jsbmb.2018.09.003 . PubMed DOI PMC
Agostoni, C, Buonocore, G, Carnielli, VP, De Curtis, M, Darmaun, D, Decsi, T, et al.. Enteral nutrient supply for preterm infants: commentary from the European society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr 2010;50:85–91. https://doi.org/10.1097/MPG.0b013e3181adaee0 . PubMed DOI
Al-Zohily, B, Al-Menhali, A, Gariballa, S, Haq, A, Shah, I. Epimers of vitamin D: a review. Int J Mol Sci 2020;21:E470. https://doi.org/10.3390/ijms21020470 . PubMed DOI PMC
Bailey, D, Veljkovic, K, Yazdanpanah, M, Adeli, K. Analytical measurement and clinical relevance of vitamin D(3) C3-epimer. Clin Biochem 2013;46:190–6. https://doi.org/10.1016/j.clinbiochem.2012.10.037 . PubMed DOI
Matejek, T, Zapletalova, B, Stepan, M, Malakova, J, Palicka, V. Dynamics of the vitamin D C3-epimer levels in preterm infants. Clin Chem Lab Med 2023;61:1084–94. https://doi.org/10.1515/cclm-2022-1128 . PubMed DOI
Matejek, T, Zapletalova, B, Stranik, J, Zaloudkova, L, Palicka, V. Reference values of parathyroid hormone in very low birth weight infants. Ann Clin Biochem 2024;61:372–85. https://doi.org/10.1177/00045632241245942 . PubMed DOI
Hay, WTP. Neonatal nutrition and metabolism . Cambridge UK: Cambridge University Press; 2006.
Abrams, SA. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics 2013;131:e1676–83. https://doi.org/10.1542/peds.2013-0420 . PubMed DOI
Matejek, T, Navratilova, M, Zaloudkova, L, Malakova, J, Maly, J, Skalova, S, et al.. Vitamin D status of very low birth weight infants at birth and the effects of generally recommended supplementation on their vitamin D levels at discharge. J Matern Fetal Neonatal Med 2020;33:3784–90. https://doi.org/10.1080/14767058.2019.1586873 . PubMed DOI
Herrmann, M. Assessing vitamin D metabolism - four decades of experience. Clin Chem Lab Med 2023;61:880–94. https://doi.org/10.1515/cclm-2022-1267 . PubMed DOI
Lombardi, G, Jørgensen, NR, Harvey, NC, McCloskey, EV, Åkesson, KE, Eastell, R, et al.. Guidelines for the correct use of the nomenclature of biochemical indices of bone status: a position statement of the Joint IOF Working Group and IFCC Committee on Bone Metabolism. Clin Chem Lab Med 2025;63:704–11. https://doi.org/10.1515/cclm-2024-1148 . PubMed DOI
Bogusz, MJ, Al Enazi, E, Tahtamoni, M, Jawaad, JA, Al Tufail, M. Determination of serum vitamins 25-OH-D2 and 25-OH-D3 with liquid chromatography-tandem mass spectrometry using atmospheric pressure chemical ionization or electrospray source and core-shell or sub-2 μm particle columns: a comparative study. Clin Biochem 2011;44:1329–37. https://doi.org/10.1016/j.clinbiochem.2011.08.1134 . PubMed DOI
Craig, A, David, B, Anders, F. Fast and accurate analysis of vitamin D metabolites using Ascentis® Express F5 HPLC columns. Reporter (Supelco) 2011;47:3–4.
Novak, M, Svobodova, B, Konecny, J, Kuratkova, A, Nevosadova, L, Prchal, L, et al.. UHPLC-Orbitrap study of the first phase tacrine in vitro metabolites and related Alzheimer’s drug candidates using human liver microsomes. J Pharm Biomed Anal 2023;224:115154. https://doi.org/10.1016/j.jpba.2022.115154 . PubMed DOI
van den Ouweland, JM, Beijers, AM, van Daal, H. Overestimation of 25-hydroxyvitamin D3 by increased ionisation efficiency of 3-epi-25-hydroxyvitamin D3 in LC-MS/MS methods not separating both metabolites as determined by an LC-MS/MS method for separate quantification of 25-hydroxyvitamin D3, 3-epi-25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2014;967:195–202. https://doi.org/10.1016/j.jchromb.2014.07.021 . PubMed DOI
Temova, RŽ, Pišlar, M, Kristl, A, Roškar, R. Comprehensive stability study of vitamin D3 in aqueous solutions and liquid commercial products. Pharmaceutics 2021;13. https://doi.org/10.3390/pharmaceutics13050617 . PubMed DOI PMC
Fanos, V, Pintus, R, Dessì, A. Clinical Metabolomics in neonatology: from metabolites to diseases. Neonatology 2018;113:406–13. https://doi.org/10.1159/000487620 . PubMed DOI
Sinclair, TJ, Ye, C, Chen, Y, Zhang, D, Li, T, Ling, XB, et al.. Progressive metabolic dysfunction and nutritional variability precedes necrotizing enterocolitis. Nutrients 2020;12. https://doi.org/10.3390/nu12051275 . PubMed DOI PMC
Pintus, R, Dessì, A, Mussap, M, Fanos, V. Metabolomics can provide new insights into perinatal nutrition. Acta Paediatr 2023;112:233–41. https://doi.org/10.1111/apa.16096 . PubMed DOI PMC
Kindt, ASD, Förster, KM, Cochius-den Otter, SCM, Flemmer, AW, Hauck, SM, Flatley, A, et al.. Validation of disease-specific biomarkers for the early detection of bronchopulmonary dysplasia. Pediatr Res 2023;93:625–32. https://doi.org/10.1038/s41390-022-02093-w . PubMed DOI PMC
Vidarsdottir, H, Halldorsson, TI, Geirsson, RT, Bjarnason, R, Franzson, L, Valdimarsdottir, UA, et al.. Mode of delivery was associated with transient changes in the metabolomic profile of neonates. Acta Paediatr 2021;110:2110–8. https://doi.org/10.1111/apa.15822 . PubMed DOI
Bjerkhaug, AU, Granslo, HN, Klingenberg, C. Metabolic responses in neonatal sepsis-A systematic review of human metabolomic studies. Acta Paediatr 2021;110:2316–25. https://doi.org/10.1111/apa.15874 . PubMed DOI
Gridneva, Z, George, AD, Suwaydi, MA, Sindi, AS, Jie, M, Stinson, LF, et al.. Environmental determinants of human milk composition in relation to health outcomes. Acta Paediatr 2022;111:1121–6. https://doi.org/10.1111/apa.16263 . PubMed DOI
Oliva, C, Arias, A, Ruiz-Sala, P, Garcia-Villoria, J, Carling, R, Bierau, J, et al.. Targeted ultra performance liquid chromatography tandem mass spectrometry procedures for the diagnosis of inborn errors of metabolism: validation through ERNDIM external quality assessment schemes. Clin Chem Lab Med 2024;62:1991–2000. https://doi.org/10.1515/cclm-2023-1291 . PubMed DOI
Jones, G, Prosser, DE, Kaufmann, M. Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res 2014;55:13–31. https://doi.org/10.1194/jlr.R031534 . PubMed DOI PMC
Bikle, DD. Vitamin D: newer concepts of its metabolism and function at the basic and clinical level. J Endocr Soc 2020;4:bvz038. https://doi.org/10.1210/jendso/bvz038 . PubMed DOI PMC
Bikle, DD. Vitamin D: production, metabolism and mechanisms of action. In: Feingold, KR, Anawalt, B, Blackman, MR, Boyce, A, Chrousos, G, Corpas, E, editors, et al.. Endotext. South Dartmouth (MA): MDText.com, Inc. Copyright © 2000-2025 . South Dartmouth (MA): MDText.com, Inc.; 2000.
Masuda, S, Strugnell, SA, Knutson, JC, St-Arnaud, R, Jones, G. Evidence for the activation of 1alpha-hydroxyvitamin D2 by 25-hydroxyvitamin D-24-hydroxylase: delineation of pathways involving 1alpha,24-dihydroxyvitamin D2 and 1alpha,25-dihydroxyvitamin D2. Biochim Biophys Acta 2006;1761:221–34. https://doi.org/10.1016/j.bbalip.2006.01.004 . PubMed DOI
Knights, KM, Stresser, DM, Miners, JO, Crespi, CL. In vitro drug metabolism using liver microsomes. Curr Protoc Pharmacol 2016;74:7.8.1–7.8.24. https://doi.org/10.1002/cpph.9 . PubMed DOI
Ooms, N, van Daal, H, Beijers, AM, Gerrits, GP, Semmekrot, BA, van den Ouweland, JM. Time-course analysis of 3-epi-25-hydroxyvitamin D3 shows markedly elevated levels in early life, particularly from vitamin D supplementation in preterm infants. Pediatr Res 2016;79:647–53. https://doi.org/10.1038/pr.2015.251 . PubMed DOI
Hanson, C, Jones, G, Lyden, E, Kaufmann, M, Armas, L, Anderson-Berry, A. Vitamin D metabolism in the premature newborn: a randomized trial. Clin Nutr 2016;35:835–41. https://doi.org/10.1016/j.clnu.2015.07.023 . PubMed DOI
Sosa Henríquez, M, Gómez de Tejada Romero, MJ. Cholecalciferol or calcifediol in the management of vitamin D deficiency. Nutrients 2020;12. https://doi.org/10.3390/nu12061617 . PubMed DOI PMC
Ish-Shalom, S, Segal, E, Salganik, T, Raz, B, Bromberg, IL, Vieth, R. Comparison of daily, weekly, and monthly vitamin D3 in ethanol dosing protocols for two months in elderly hip fracture patients. J Clin Endocrinol Metabol 2008;93:3430–5. https://doi.org/10.1210/jc.2008-0241 . PubMed DOI
Khojah, HMJ, Ahmed, SA, Al-Thagfan, SS, Alahmadi, YM, Abdou, YA. The impact of serum levels of vitamin D3 and its metabolites on the prognosis and disease severity of COVID-19. Nutrients 2022;14. https://doi.org/10.3390/nu14245329 . PubMed DOI PMC
Saggese, G, Vierucci, F, Prodam, F, Cardinale, F, Cetin, I, Chiappini, E, et al.. Vitamin D in pediatric age: consensus of the Italian pediatric society and the Italian society of preventive and social pediatrics, jointly with the Italian federation of pediatricians. Ital J Pediatr 2018;44:51. https://doi.org/10.1186/s13052-018-0488-7 . PubMed DOI PMC
Paw, D, Bokiniec, R, Kołodziejczyk-Nowotarska, A. High initial dose of monitored vitamin D supplementation in preterm infants (HIDVID trial): study protocol for a randomized controlled study. Nutrients 2024;16. https://doi.org/10.3390/nu16050700 . PubMed DOI PMC
Adams, JS, Hewison, M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys 2012;523:95–102. https://doi.org/10.1016/j.abb.2012.02.016 . PubMed DOI PMC
Ma, R, Gu, Y, Zhao, S, Sun, J, Groome, LJ, Wang, Y. Expressions of vitamin D metabolic components VDBP, CYP2R1, CYP27B1, CYP24A1, and VDR in placentas from normal and preeclamptic pregnancies. Am J Physiol Endocrinol Metab 2012;303:E928–35. https://doi.org/10.1152/ajpendo.00279.2012 . PubMed DOI PMC